Electrical and Computer Engineering
Permanent URI for this collection
Browse
Browsing Electrical and Computer Engineering by Subject "Automotive antennas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Design of a Compact Multi-Band (Cellular 5g/GNSS/V2x) Antenna and Rigorous Analysis of Antenna Performance on Glass Roofs for Vehicular Platforms(2023-01-01) Ibrahim, Ahmad Abu Elhassan Salih; Aloi, Daniel N; Kaur, Amanpreet; Qu, Guangzhi; Shaska, TonyThe growing market competition between the automakers led to the implementation of more entertainment systems and extra features to satisfy the automotive customers. The entertainment systems depend on wireless services and communication which led to increasing numbers of antennas mounted on and inside the vehicles. This dissertation is focused on automotive antenna design and the effect of the vehicle environment on the antenna performance. For the first part of the dissertation, a compact multi-band monopole antenna is designed for vehicular roof top shark-fin applications. The proposed multi-band antenna covers 5G sub-6GHz, GNSS and V2X frequency bands starting at 617MHz to 5925MHz. The presented antenna is a three-dimensional monopole antenna with two branches to cover the required bands with compact size to fit inside a roof top shark-fin. The antenna is simulated, optimized and then a prototype is fabricated, and its radiation characteristics are measured when mounted on one-meter ground plane and on a vehicle's roof. For the second part of the dissertation, the analysis of a C-V2X quarter-wavelength monopole antenna performance when mounted on a vehicle's glass roof is presented. Antenna gain measurements performed on a full glass roof exhibited a performance degradation in a linear average gain of 8 dB compared to when the same antenna is mounted on a metallic ground plane. In addition, the antenna radiation pattern on the glass roof had deep nulls. The antenna was simulated using a full-wave, three-dimensional electromagnetic field solver on the full glass sample with low emissivity (low-E) coating on the edges of the full glass roof and the simulation results showed acceptable agreement with the measurements. Simulation shows that the C-V2X antenna performance on the full glass roof can be improved by moving the low-E coating from underneath the glass to top of the glassItem Innovative Designs For Low Profile Antenna Systems For Mimo 5G/V2X And Gnss Communications(2022-11-07) Yacoub, Ahmad; Aloi, Daniel N; Cesmelioglu, Aycil; Li, Jia; Qu, GuangzhiThe research in this dissertation shows the analysis and development of designing antenna elements and MIMO antenna systems that can be implemented in the automotive industry and have a significant role in an autonomous driving system. The antennas presented in this research cover 5G-sub-6GHz bands which have much more extended bandwidth compared to previous LTE network, in addition to covering Vehicle-to-Everything (V2X) frequency band. The design work presented in this research followed a scientific method that included simulating the antenna element using 3-D electromagnetic solver (HFSS) on 1-meter ground plane. The antenna was then fabricated using properlycut metal sheet, measured on 1-meter rolled-edge ground plane, and measured on a vehicle’s roof inside an anechoic chamber for practical measurements. The design guidelines and measurements are discussed in detail throughout this work. The first two sections of this research begin with presenting a novel wideband low-profile Planar Inverted F-Antenna (PIFA) that covers a wide frequency range (617MHz-6000MHz) that includes cellular 5G bands and V2X band while having reasonable rejection for Global Navigation Satellite System (GNSS) frequency bands. Then, Multiple MIMO configurations based on the novel PIFA design are studied by using spatial diversity, rotational diversity, and orthogonal diversity to increase the total throughput and data rate of the system. The performance of each element in the MIMO system is analyzed and discussed to evaluate the functionality of the system. The third section of this work introduces a 2x2 MIMO antenna system for vehicular application in the sub-6GHz 5G systems that operates in the middle and high frequency bands from 1.71GHz to 5GHz. The design consists of two novel raised printed monopoles on Flame Retardant 4 (FR4) dielectric material with Partial Ground Plane (PGP) structure to improve bandwidth impedance and achieve higher isolation across the operating frequency range. The design is an excellent candidate to be implemented in a shark-fin housing due to its low-profile characteristics and good electrical performance. Eventually, in the fourth section of this work, a fully integrated low-profile antenna systems for MIMO 5G and global navigation satellite system (GNSS) for L1/L5 frequency bands is presented. The designs can be used on the vehicle’s roof inside a low profile housing due to its physical parameters and RF performance.