Benzodiazepine Coordination Chemistry And Nitrogen Heterocyclic Compounds From Reactions Of Carbonyl Alkynes With O-Phenylenediamines

Loading...
Thumbnail Image

Date

2022-07-19

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The presence of heterocyclic compounds in active pharmaceutical ingredients and natural products implicates their importance to synthetic chemistry. Moreover, their inherent structures offer potential as metal-chelators. This work involved the design of simple methods for the construction of new nitrogen-containing heterocycles and to explore examples of coordination complexes. Benzodiazepines and their derivatives are biologically active heterocycles often prescribed as a treatment for anxiety, epilepsy, and insomnia. In addition, benzimidazo[2,1-a]isoquinolines are another class of biologically active heterocycles that are composed of moieties inherent to a wide variety of active pharmaceutical ingredients. Herein, the microwave-assisted reaction in ethanol of o-phenylenediamines with either alk-2-ynones or 2-ethynyl benzaldehydes was found to yield 1,5-benzodiazepines and benzimidazo[2,1-a]isoquinolines, respectively. To facilitate selective coordination of benzodiazepines, new pyridine containing 1,5-benzodiazepine chelators were synthesized and combined with metal reagents to form new benzodiazepine metal complexes characterized by X-ray crystallography.

Description

Keywords

Organic chemistry, Benzodiazepines, Biomedical sciences, Heterocycles

Citation

Collections