Biological Sciences Faculty Scholarship

Permanent URI for this collection


Recent Submissions

Now showing 1 - 6 of 6
  • Item
    Global patterns and drivers of ecosystem functioning in rivers and riparian zones
    (2019-01-09) Tiegs, Scott D.; Costello, David M.; Isken, Mark W.; Woodward, Guy; McIntyre, Peter B.; Gessner, Mark O.; Chauvet, Eric; Griffiths, Natalie A.; Flecker, Alex S.; Acuña, Vicenç; Albariño, Ricardo; Allen, Daniel C.; Alonso, Cecilia; Andino, Patricio; Arango, Clay; Aroviita, Jukka; Barbosa, Marcus V. M.; Barmuta, Leon A.; Baxter, Colden V.; Bell, Thomas D. C.; Bellinger, Brent; Boyero, Luz; Brown, Lee E.; Bruder, Andreas; Bruesewitz, Denise A.; Burdon, Francis J.; Callisto, Marcos; Canhoto, Cristina; Capps, Krista A.; Castillo, María M.; Clapcott, Joanne; Colas, Fanny; Colón-Gaud, Checo; Cornut, Julien; Crespo-Pérez, Verónica; Cross, Wyatt F.; Culp, Joseph M.; Danger, Michael; Dangles, Olivier; de Eyto, Elvira; Derry, Alison M.; Díaz Villanueva, Veronica; Douglas, Michael M.; Elosegi, Arturo; Encalada, Andrea C.; Entrekin, Sally; Espinosa, Rodrigo; Ethaiya, Diana; Ferreira, Verónica; Ferriol, Carmen; Flanagan, Kyla M.; Fleituch, Tadeusz; Follstad Shah, Jennifer J.; Frainer Barbosa, André; Friberg, Nikolai; Frost, Paul C.; Garcia, Erica A.; García Lago, Liliana; García Soto, Pavel Ernesto; Ghate, Sudeep; Giling, Darren P.; Gilmer, Alan; Gonçalves, José Francisco Jr.; Gonzales, Rosario Karina; Graça, Manuel A. S.; Grace, Mike; Grossart, Hans-Peter; Guérold, François; Gulis, Vlad; Hepp, Luiz U.; Higgins, Scott; Hishi, Takuo; Huddart, Joseph; Hudson, John; Imberger, Samantha; Iñiguez-Armijos, Carlos; Iwata, Tomoya; Janetski, David J.; Jennings, Eleanor; Kirkwood, Andrea E.; Koning, Aaron A.; Kosten, Sarian; Kuehn, Kevin A.; Laudon, Hjalmar; Leavitt, Peter R.; Lemes da Silva, Aurea L.; Leroux, Shawn J.; LeRoy, Carri J.; Lisi, Peter J.; MacKenzie, Richard; Marcarelli, Amy M.; Masese, Frank O.; McKie, Brendan G.; Medeiros, Adriana Oliveira; Meissner, Kristian; Miliša, Marko; Mishra, Shailendra; Miyake, Yo; Moerke, Ashley; Mombrikotb, Shorok; Mooney, Rob; Moulton, Tim; Muotka, Timo; Negishi, Junjiro N.; Neres-Lima, Vinicius; Nieminen, Mika L.; Nimptsch, Jorge; Ondruch, Jakub; Paavola, Riku; Pardo, Isabel; Patrick, Christopher J.; Peeters, Edwin T. H. M.; Pozo, Jesus; Pringle, Catherine; Prussian, Aaron; Quenta, Estefania; Quesada, Antonio; Reid, Brian; Richardson, John S.; Rigosi, Anna; Rincón, José; Rîşnoveanu, Geta; Robinson, Christopher T.; Rodríguez-Gallego, Lorena; Royer, Todd V.; Rusak, James A.; Santamans, Anna C.; Selmeczy, Géza B.; Simiyu, Gelas; Skuja, Agnija; Smykla, Jerzy; Sridhar, Kandikere R.; Sponseller, Ryan; Stoler, Aaron; Swan, Christopher M.; Szlag, David; Teixeira-de Mello, Franco; Tonkin, Jonathan D.; Uusheimo, Sari; Veach, Allison M.; Vilbaste, Sirje; Vought, Lena B. M.; Wang, Chiao-Ping; Webster, Jackson R.; Wilson, Paul B.; Woelfl, Stefan; Xenopoulos, Marguerite A.; Yates, Adam G.; Yoshimura, Chihiro; Yule, Catherine M.; Zhang, Yixin X.; Zwart, Jacob A.
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
  • Item
    Advances and challenges in stem cell culture
    (2017-07-27) McKee, Christina; Chaudhry, G. Rasul
    Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
  • Item
    The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type)
    (PLOS ONE, 2016-08-22) Wendell, Douglas L.
    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function.
  • Item
    Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord
    (2016-10-27) Beeravolu, Naimisha; Khan, Irfan; McKee, Christina; Dinda, Sumi; Thibodeau, Bryan; Wilson, George; Perez-Cruet, Mick; Bahado-Singh, Ray; Chaudhry, G. Rasul
    Human umbilical cord (hUC) blood and tissue are non-invasive sources of potential stem/progenitor cells with similar cell surface properties as bone marrow stromal cells (BMSCs). While they are limited in cord blood, they may be more abundant in hUC. However, the hUC is an anatomically complex organ and the potential of cells in various sites of the hUC has not been fully explored.We dissected the hUC into its discrete sites and isolated hUC cells from the cord placenta junction (CPJ), cord tissue (CT), and Wharton's jelly (WJ). Isolated cells displayed fibroblastoid morphology, and expressed CD29, CD44, CD73, CD90, and CD105, and showed evidence of differentiation into multiple lineages in vitro. They also expressed low levels of pluripotency genes, OCT4, NANOG, SOX2 and KLF4. Passaging markedly affected cell proliferation with concomitant decreases in the expression of pluripotency and other markers, and an increase in chondrogenic markers. Microarray analysis further revealed the differences in the gene expression of CPJ-, CT- and WJ-hUC cells. Five coding and five lncRNA genes were differentially expressed in low vs. high passage hUC cells. Only MAEL was expressed at high levels in both low and high passage CPJ-hUC cells. They displayed a greater proliferation limit and a higher degree of multi-lineage differentiation in vitro and warrant further investigation to determine their full differentiation capacity, and therapeutic and regenerative medicine potential.
  • Item
    Lake St. Clair Zooplankton: Evidence for Post-Dreissena Changes
    (2009-01-22T14:14:53Z) David, K. A.; Davis, B. M.; Hunter, R. D.
    Raw data sets for the 2000 zooplankton survey of Lake St. Clair in Michigan and Ontario. Files include coordinates of the 12 sample stations, physico-chemical data by station and date, and density of each taxon mostly to species level. A site and date code key is provided to interpret the big density table. Files are given in Excel and PDF formats. Published as: David, K.A., B.M. Davis, and R.D. Hunter 2009. Lake St. Clair Zooplankton: Evidence for Post-Dreissena Changes. Journal of Freshwater Ecology (pending).
  • Item
    Raw data for the 2004 freshwater mussel survey of the Clinton River
    (2009-01-16T17:59:31Z) Morowski, D.; Hunter, R. D.; James, L. J.
    Raw data set for the 2004 freshwater mussel re-survey of the Clinton River in southeastern Michigan based on sites originally sampled by David Strayer in 1978 (Strayer, 1980). Scientific and common names of each species indicating number of live and spent shells collected, area searched, site location (GPS coordinates and road/bridge descriptions), man hours spent by site, and date of sample are given for each of the 76 sites. Published as: Morowski, D., L.J. James, and R.D. Hunter 2009. Freshwater mussels of the Clinton River, southeastern Michigan: an assessment of Community status. Michigan Academician 39 (pending publication)