Browsing by Author "Kamel-ElSayed, Suzan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Narrative Literature Review of the Psychological Hindrances Affecting Return to Sport After InjuriesSweeney, Ashley; Kamel-ElSayed, Suzan; Swanberg, Stephanie M.After different sport injuries, athletes may express different psychological emotions that lead to stress. These emotions include anger, fear, frustration, anxiety and depression which may lead to lack of confidence and/or fear of sustaining a new injury. This thesis, in the form of a narrative review, aims to focus on the psychological hindrances that can be present when the athlete is planning on returning to the sport after injury to an anterior cruciate ligament (ACL) or concussion. The review will summarize the shared common and the different psychological hindrances that may be found in athletes after an ACL injury or concussion. A generation of a list for such hindrances will educate others about the psychological barriers which may affect the injured athletes from returning to sport.Item Novel Piezoelectric Biosensor Based on SARS-CoV-2 (COVID-19) Spike Antibody for Coronavirus (Covid-19) Detection(2022-01-01) Alromithy, Fares Sulaimin; Zohdy, Mohamed; Auner, Gregory; Kamel-ElSayed, Suzan; Das, Manohar; Kaur, AmanpreetAt the end of December 2019, the novel coronavirus SARS‐CoV‐2 appeared in Wuhan, China. The World Health Organization released a global health emergency declaration based on growing case notification rates in several locations worldwide. Therefore, sensitive, specific, rapid, and deliverable diagnostic monitoring is vital for making proper decisions on treating and isolating infected patients, which will help prevent the spread of infectious diseases. The surface Acoustic Wave (SAW) biosensor provides a unique, highly sensitive electrical approach to biomolecule detection and cell growth. For this study, a novel SAW sensor is developed, and the mass sensitivities are tested to detect the SARS‐CoV‐2 by attaching the SARS-CoV-2 spike antibody immobilized on the sensor surface. First, a two-dimensional (2D) and a three-dimensional (3D) finite element model were developed based on a realistic device to obtain a complete characterization of the senor. Then, the AlN/Al2O3 fabricated sensor was tested and ultrasonically rinsed in preparation for silanization. After depositions of (APTMS) on the sensor by the Chemical Vapor Deposition method, the antibodies were immobilized on surfaces with the aid of a crosslinker (EDC) and (Sulfo-NHS). Finally, the SARS-CoV-2 was introduced to the sensor, and the attachment of the immobilized antibody was tested and evaluated. The sensor was tested and characterized by Raman spectroscopy and the vector Network Analyzer. Finally, our device was able to detect the virus in real-time time (within two to three minutes), confirming its high sensitivity and selectivity with regard to the SARS-CoV-2 virus.Item Play to Learn: Gamification Techniques in Medical Education for Exploring Type I Renal Tubular Acidosis(2024-05-01) Scheffler, Emelie-jo; Patel, Het; Kamel-ElSayed, Suzan