A Comparison Between the Firefly Algorithm and Particle Swarm Optimization



Journal Title

Journal ISSN

Volume Title



When a problem is large or difficult to solve, computers are often used to find the solution. But when the problem becomes too large, traditional methods of finding the answer may not be enough. It is in turning to nature that inspiration can be found to solve these difficult problems. Artificial intelligence seeks to emulate creatures and processes found in nature, and turn their techniques for solving a problem into an algorithm. Many such metaheuristic algorithms have been developed, but there is a continuous search for better, faster algorithms. The recently developed Firefly Algorithm has been shown to outperform the longstanding Particle Swarm Optimization, and this work aims to verify those results and improve upon them by comparing the two algorithms with a large scale application. A direct hardware implementation of the Firefly Algorithm is also proposed, to speed up performance in embedded systems applications.



Firefly agorithm, Swarm optimization, Emission source localization, Metaheuristics