Thetanulls of cyclic curves of small genus
Loading...
Date
2007-12-15
Journal Title
Journal ISSN
Volume Title
Publisher
Albanian J. Math.
Abstract
We study relations among the classical thetanulls of cyclic curves, namely curves $\X$ (of genus $g(\X )>1$ ) with an automorphism $\s$ such that $\s$ generates a normal subgroup of the group $G$ of automorphisms, and $g \left( \X/ <\s> \right) =0$. Relations between thetanulls and branch points of the projection are the object of much classical work, especially for hyperelliptic curves, and of recent work, in the cyclic case. We determine the curves of genus 2 and 3 in the locus $\mathcal M_g (G, \textbf{C})$ for all $G$ that have a normal subgroup $\langle\s\rangle$ as above, and all possible signatures \textbf{C}, via relations among their thetanulls.
Description
Keywords
Thetanulls, Cyclic curves
Citation
Previato, E., Shaska, T., Wijesiri, G.S.: Thetanulls of cyclic curves of small genus. Albanian J. Math. 1(4), 253–270 (2007)