Oakland University Kresge Library Logo
View Item 
  •   DSpace Home
  • Undergraduate Student Scholarship
  • Honors College
  • Honors College Theses
  • View Item
  •   DSpace Home
  • Undergraduate Student Scholarship
  • Honors College
  • Honors College Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

OUR at Oakland

OU Libraries

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Resources

OUR@Oakland FAQsScholarly Communication at OUResearch Data Support at OU

Evaluation of Common Secondary Tasks in Highly Automated Vehicles

Thumbnail

Author


Ali, Arsha

View/Open


Download (1.266Mb)
thesis_final_Ali.pdf

Description


In highly automated vehicles, a driver is required to takeover control from the automated system and manually drive in the event of a situation automation cannot handle. Until autonomy is perfected, a driver’s input is mission critical. However, it is possible the driver became occupied with an alternate, non-driving related task and no longer has the proper situational awareness to safely takeover driving before automation is disengaged. The purpose of this study is to understand how common non-driving related tasks affect a driver’s takeover performance. The results of a questionnaire are being used to determine prevalent non-driving related tasks that are common among drivers today and projected to be engaged in as vehicle automation progresses. Although previous studies have incorporated non-driving related tasks, there is a paucity in comparative studies that have investigated more than one task under the same conditions. Most recent autonomous vehicle takeover research has concentrated primarily on the takeover response time for single tasks, or focused on takeover modality (e.g., visual, auditory, haptic). In this project, the comparison of non-driving related tasks by response time and performance are being evaluated. The time that participants take to takeover vehicle control after a takeover request is initiated is being analyzed under a non-scheduled system initiated handover with a fixed time-to-collision of 6 seconds. For this experiment, a customized driving simulator was constructed and a simulated driving scenario was meticulously designed. This study is based on the premise that longer takeover response times are indicative of low situational awareness. The pilot study results show that a fast takeover time does not mean safer driving behavior. Identifying how users respond to takeover requests when previously engaged in different non-driving related tasks will assist designers in constructing vehicle takeovers that are likely to be successful.

Subject


Autonomous vehicles
Highly automated vehicles
Transition of Control

URI


http://hdl.handle.net/10323/7476

Collections


  • Honors College Theses

Metadata


Show full item record

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback