Computer Science and Engineering
Permanent URI for this collection
Browse
Browsing Computer Science and Engineering by Subject "Engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Meta-Heuristic Algorithm Based on Modified Global Firefly Optimization: In Supply Chain Networks with Demand Uncertainty(2022-03-15) Altherwi, Abdulhadi; Zohdy, Mohamed; Malik, Ali; Edwards, William; Cho, Seong-Yeon; Alwerfalli, DawNowadays, many challenges affect global supply chain networks including disruptions, delays, and failures during shipment of products. These challenges also incur penalty costs due to customers’ unmet demands and failures in supply. In this dissertation, the model was developed as a multi-objective supply chain network under two risk factors including failure in supply and unmet demand based on three different scenarios. The objective of scenario I was to minimize the total expected transportation costs between stages for each supply chain and penalty costs associated with shortage of products. Supply chain with no failure in supply will communicate with supply chain with failure to deliver its product to the final customer. For scenario II, the objective was to maximize the profits of the supply chain that face extra inventory. This supply chain with surplus products will collaborate with supply chains with shortage of products to prevent any undesirable costs associated with extra inventory. The objective of scenario III was to develop a multi-objective function, which maximizes the profit and minimizes the total costs associated with production, holding, and penalties due to supplier failure of raw materials. Once a supply chain faces failure in supply of raw materials, other supply chains with no supply failure will collaborate to prevent any associated costs. This research investigates the applicability of the Modified Firefly Algorithm for a multi-stage supply chain network consisting of suppliers, manufacturers, storages, and markets under risks of failure. Commercial software cannot obtain the optimal results for these problems considered in this research. To achieve better findings, we applied a Modified Firefly Algorithm to solve the problem. Two case studies for a pipe and a steel manufacturing integrated supply chain demonstrated the efficiency of the model and the solutions obtained by the Firefly Algorithm. We used four optimization algorithms in ModeFRONTIER and MATLAB software to test the efficiency of the proposed algorithm. The results revealed that when compared with other four optimization algorithms, Firefly Algorithm can help achieve maximum profits and minimizing the total expected costs of supply chain networks.Item Robust and Adaptive Lateral Controller for Autonomous Vehicles(2022-03-25) Khasawneh, Lubna S.; Das, Manohar; Ka, Cheok C; Shilor, Meir; Guangzhi, QuThis thesis addresses the problem of controlling the lateral motion of an autonomous vehicle in the presence of parametric uncertainties, disturbances, and hard nonlinearities in the steering system, such as backlash in gears, stiction, hysteresis, and dead zones. The lateral motion of an autonomous vehicle is controlled by two cascaded controllers, the trajectory tracking controller and the steering angle controller. This thesis focuses on the development of both controllers using robust and adaptive control techniques. Two control strategies are developed to control the electric power steering angle, sliding mode control and adaptive backstepping control. The limitation of sliding mode control is first addressed, which is the chattering phenomena, and then a proposed methodology is presented to solve it using variable gain sliding mode control. Self-aligning moment acts as disturbance on the steering system that the controller has to compensate for. A model-based approach to estimate it is first developed and its limitations are addressed, which is tire parameters dependence. Two other approaches are then developed to overcome these limitations, the first one is a sliding mode observer, and the second one is part of a backstepping controller. Two approaches are developed to control the vehicle lateral trajectory, non-adaptive backstepping and adaptive backstepping. The extended matching design procedure is used in the adaptive backstepping controller to avoid the overestimation problem. Road curvature must be accurately known by the controller to follow the planned trajectory. It is usually measured by a camera, but the quality of the measurement is affected by environmental factors. An adaptive law is developed to estimate the road curvature online as part of an adaptive backstepping controller. Two feedforward approaches are presented to compensate for road curvature, one is derived from steady state vehicle lateral dynamics, and another is based on estimating the transfer function dynamics from road curvature to steering angle. Road bank angle is a significant disturbance in vehicle lateral control systems. A vehicle lateral state and disturbance observer is developed to estimate the road bank angle and the vehicle side slip angle, which are expensive to measure in current road vehicles, using extended Kalman filter. The observer combines a dynamical vehicle model with two measurements from inexpensive sensors.