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Self-inversive polynomials, curves, and codes

D. Joyner and T. Shaska

Abstract. We study connections between self-inversive and self-reciprocal
polynomials, reduction theory of binary forms, minimal models of curves, and

formally self-dual codes. We prove that if X is a superelliptic curve defined
over C and its reduced automorphism group is nontrivial or not isomorphic to

a cyclic group, then we can write its equation as yn = f(x) or yn = xf(x),

where f(x) is a self-inversive or self-reciprocal polynomial. Moreover, we state
a conjecture on the coefficients of the zeta polynomial of extremal formally

self-dual codes.

1. Introduction

Self-inversive and self-reciprocal polynomials have been studied extensively in
the last few decades due to their connections to complex functions and number the-
ory. In this paper we explore the connections between such polynomials to algebraic
curves, reduction theory of binary forms, and coding theory. While connections to
coding theory have been explored by many authors before we are not aware of
any previous work that explores the connections of self-inversive and self-reciprocal
polynomials to superelliptic curves and reduction theory.

In Section 2, we give a geometric introduction to inversive and reciprocal poly-
nomials of a given polynomial. We motivate such definitions via the transformations
of the complex plane which is the original motivation to study such polynomials. It
is unclear who coined the names inversive, reciprocal, palindromic, and antipalin-
dromic, but it is obvious that inversive come from the inversion z 7→ 1

z̄ and reciprocal

from the reciprocal map z 7→ 1
z of the complex plane.

We take the point of view of the reduction theory of binary forms. While this
is an elegant and beautiful theory for binary quadratics, it is rather technical for
higher degree forms. However, the inversion plays an important role on reduction
as can be seen from section 2 and from [5] and [2]. We are not aware of other
authors have explored the connection between reduction theory and self-inversive
and self-reciprocal polynomials before even though the overlap is quite obvious.

We state some of the main results of self-inversive polynomials including the
middle coefficient conjecture (2.3) and results on the location of the roots of such
polynomials. Self-inversive polynomials over Q, R, and C are discussed and a few
recent results on the height of such polynomials. The normal references here are
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[7,13,16–20,22,25]. Further, we discuss the roots of the self-inversive polynomials.
There is a huge amount of literature on this topic including several conjectures. It
is the location of such roots that makes self-inversive polynomials interesting in
reduction theory, coding theory, and other areas of mathematics. An attempt at a
converse to this conjecture is discussed in §2.2.

In Section 3 it is given an account of how self-inversive polynomials can be
used to determine minimal polynomials of superelliptic curves with extra automor-
phisms. This is a new idea spurred by Beshaj’s thesis [2] and [1] and has some
interesting relations between two different areas of mathematics, namely the the-
ory of algebraic curves and the theory of self-inversive polynomials. Further details
in this direction are planned in [5]. In this section we prove that for any superel-
liptic curve with reduced automorphism group not trivial and not isomorphic to a
cyclic group we can write the equation of the curve as yn = f(x) or yn = xf(x),
where f(x) is a palindromic, antipalindromic, or self-inversive polynomial. Indeed,
we can say more since in each case when the automorphism group of the curve we
can determine the polynomial f(x) specifically.

In Section 4 we explore connections of self-inversive and self-reciprocal polyno-
mials to reduction theory of binary forms. We show that self-inversive polynomials
which have all roots on the unit circle correspond to the totally real forms. The
reduction theory for such forms is simpler than for other forms since the Julia qua-
dratic of any degree n form f(x, y) is a factor of a degree (n− 1)(n− 2) covariant
Gf (x, y) given in terms of the partial derivatives of f ; see [1]. We prove that for f
palindromic, Gf is self-inversive and if f is palindromic of odd degree then Gf is
palindromic. Moreover, we determine explicitly which self-inversive polynomials f
with all roots on the unit circle are reduced.

In Section 5 we discuss the Riemann hypothesis for formal weight enumerators
of codes and its relation to the self-inversive polynomials. We state several open
problems which relate to Riemann hypotheses for extremal formal weight enumer-
ators of codes.

Most of the results obtained here, with the necessary adjustments, can be
extended to curves defined over fields of positive characteristic. In [21] equations
of superelliptic curves are also determined over such fields. The main question that
comes from the connection between self-inversive and self-reciprocal polynomials
and reduction theory is whether such polynomials are actually reduced. In other
words, if f(x, y) is a primitive form which is self-reciprocal or self-inversive, is it
true that f(x, y) is reduced? This question is addressed in [5].

Acknowledgments: We would like to thank Lubjana Beshaj for helpful conversa-
tions and explaining to us the reduction theory of self-inversive and self-reciprocal
forms.

2. Self-inversive polynomials

Let P1 be the Riemann sphere and GL2(C) the group of 2 × 2 matrices with
entries in C. Then GL2(C) acts on P1 by linear fractional transformations. This
action is a transitive action, i.e. has only one orbit. Consider now the action of
SL2(R) on the Riemann sphere. This action is not transitive, because for M =
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α β
γ δ

)
∈ SL2(R) we have

Img (Mz) =
(αδ − βγ)

|γz + δ|2
Img z.

Hence, z and Mz have the same sign of imaginary part when det(M) = 1. The
action of SL2(R) on P1 has three orbits, namely R ∪∞, the upper half plane, and
the lower-half plane. Let H2 be the complex upper half plane, i.e.

H2 =
{
z = x+ iy ∈ C

∣∣∣ Img (z) > 0
}
⊂ C.

The group SL2(R) preserves H2 and acts transitively on it, since for g ∈ SL2(R)
and z ∈ H2 we have

Img (gz) =
Img z

|γz + δ|2
> 0

The modular group Γ = SL2(Z)/{±I} also acts on H2. This action has a funda-
mental domain F

F =
{
z ∈ H2

∣∣∣ |z|2 ≥ 1 and |Re(z)| ≤ 1/2
}

Consider now all binary quadratic forms with real coefficients. A quadratic
form f ∈ R[x, y] has two complex roots (conjugate of each other) if f is positive
definite. Hence, we have a one to one correspondence between positive definite
quadratic forms and points of H2. For a given f ∈ R[x, y], let ξ(f) denote the
zero of f in H2. This is called zero map. The positive definite binary form f has
minimal coefficients if and only if ξ(f) ∈ F ; see [1] for details.

The group SL2(R) acts on the set of positive definite quadratic forms by linear
changes of coordinates. Moreover, the zero map f 7→ ξ(f) is equivariant under this
action. In other words, ξ(fM ) = ξ(f)M , for any M ∈ SL2(R). Hence, to reduce
a binary quadratic f with integer coefficients we simply compute ξ(f) and then
determine M ∈ Γ such that ξ(f)M ∈ F . Then, the quadratic fM has minimal
coefficients.

This approach can be generalized to higher degree forms f ∈ R[x, y]. Then
f(x, y) is a product of linear and quadratic factors over R. In studying roots of
f(x, y) we are simply concerned with roots in the upper half plane H2. The zero
map can also be defined in this case, but its definition is much more technical. The
interested reader can check [1] or [2] for details.

Hence the problem of finding a form equivalent to f with minimal coefficients
becomes equivalent to determine a matrix M ∈ Γ such that ξ(f)M ∈ F . The
generators of the modular group Γ are the matrices

S =

[
0 −1
1 0

]
and T =

[
1 1
0 1

]
which correspond to transformations z → − 1

z and z → z + 1. Next, we will see
the geometry of some of these transformations which play an important role in this
process.

Let σ(z) = 1
z be the reciprocal map of the complex plane. Then,

σ(a+ bi) =
1

|z|2
(a− bi)
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Hence, on the unit circle U = {z ∈ C, |z| = 1} the reciprocal map becomes simply
the complex conjugation. From this we see that to the geometric inversion of the
unit circle corresponds the inversion map

τ : z → 1

z̄

which sends points z ∈ H2 inside the unit circle U to points in z′ ∈ H2 with the
same argument as z and |z|·|z′| = 1. It fixes points on the unit circle U . It is exactly
this transformation together with z 7→ z+ 1 which we use to ”move” points within
H2 and bring them in the fundamental domain. We are interested in forms f(x, y)
which are fixed by this transformation. Hence, we are interested in polynomials
f(z, 1) whose set of roots is fixed by τ(z).

For a degree n polynomial f(z) ∈ C[z], the inversive of f is called the function
f?(z) = znf

(
1
z̄

)
. A polynomial f will be called self-inversive if f = f?. We can

make this definition more precise.
Let p(z) ∈ C[z] such that

(2.1) p(z) =

n∑
i=0

aiz
i.

Then, p(z) is called self-inversive if its set of zeroes is fixed by the inversion map
τ(z) = 1/z̄. Thus, the set of roots is{

α1, . . . , αn,
1

ᾱ1
, . . . ,

1

ᾱn

}
and then p(z) is given by

(2.2) p(z) = an

s∏
i=1

(
z2 −

(
αi +

1

ᾱi

)
z +

αi
ᾱi

)
,

Let us denote by p̄(z) the conjugate polynomial of p(z), namely

p̄(z) :=

n∑
i=0

āiz
i.

Then, we have the following; see [20].

Lemma 1. If p(z) be given as in Eq. (2.1). The following are equivalent:

(1) p(z) is self-inversive
(2) For every z ∈ C \ {0},

ān p(z) = a0 z
n p̄

(
1

z

)
(3) For every z ∈ C \ {0}

p(z) = w · zn · p̄
(

1

z

)
,

where |w| = 1.
(4) For j = 0, 1, . . . , n,

a0āj = ānan−j

Moreover, if p(z) is self inversive then

(1) |ai| = |an−i| for all i = 0, . . . , n.
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(2) ān [n p(z)− z p′(z)] = a0 z
n−1 p̄′

(
1
z

)
, for each z ∈ C

(3)
∣∣∣n · p(z)

z·p′(z) − 1
∣∣∣ = 1, for each z ∈ U .

Studying roots of the self-inversive polynomials is an old problem which has
been studied by many authors. A classical result due to Cohn states that a self-
inversive polynomial has all its zeros on the unit circle if and only if all the zeros
of its derivative lie in the closed unit disk.

For p(z) ∈ C[z] we let ||p|| denote the maximum modulus of p(z) on the unit
circle. In [20] it is proved the following

Theorem 1. If p(z) =
∑n
i=0 aiz

j, an 6= 0, is a self-inversive polynomial which
has all the zeroes on |z| = 1, then

|ai| ≤
||p||

2

for each i 6= n
2 and |an/2| ≤

√
2

2 ||p||.

From the above theorem we can see that the middle coefficient is special. The
middle coefficient conjecture says that for p(z) as in the above theorem, it is con-
jectured that

(2.3) |an/2| ≤ ||p||

If n is even then the middle coefficient conjecture is true when |an/2| ≤ 2|an|; see
[20, pg. 334] for details.

The following theorem holds; see [25], [16] for details.

Theorem 2. Let p ∈ C[x] be a degree n self-inversive polynomial. If

|an−λ| >
1

2

n

n− 2λ

n∑
k=0,k 6=λ,k 6=n−λ

|ak|

for some λ < n
2 , then p(z) has exactly n− 2λ non-real roots on the unit circle.

If n is even and λ = n
2 , then p(z) has no roots on the unit circle if

|an/2| > 2

n∑
k=0,k 6=n/2

|ak|

For a proof see [25]. If λ = 0 this correspond to a result of Lakatos and Losonczi
[16] which says that a self-inversive polynomial with non-zero discriminant has all
roots on the unit circle if

|an| ≥
1

2

n∑
k=1

|ak| .

There is a huge amount of literature on bounding the roots or the coefficients of
polynomials or finding polynomials which have bounded coefficients. Most of that
work relates to Mahler measure and related works. There was another approach
by Julia [15] which did not gain the attention it deserved. Lately there are works
of Cremona and Stoll in [24], Beshaj [1,2], and others who have extended Julia’s
method and provide an algorithm of finding the polynomial (up to a coordinate
change) with the smallest coefficients. The first paragraph of this section eludes to
that approach.
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2.1. Reciprocal polynomials. For a degree n polynomial f(z) ∈ C[z], its
reciprocal is called the polynomial f×(z) = zn f

(
1
z

)
. A polynomial is called

self-reciprocal or palindromic if f = f× and it is called anti-palindromic if
f = −f×.

If p(z) ∈ C[z] be a polynomial such that its set of roots is fixed by reciprocal
map σ(z), say

S =

{
α1, . . . , αs,

1

α1
, . . . ,

1

αs

}
,

then f(z) is palindromic or antipalindromic polynomial. Due to the properties of
the binomial coefficients the polynomials P (x) = (x + 1)n are palindromic for all
positive integers n, while the polynomials Q(x) = (x − 1)n are palindromic when
n is even and anti-palindromic when n is odd. Also, cyclotomic polynomials are
palindromic.

What if we would like some kind of invariant of the reciprocal map z 7→ 1/z?
Consider the transformation

α(z) = z +
1

z
Obviously, α(1/z) = z. When considered as a function α : C → C this is a 2 to
1 map since both z and 1/z go to the same point. Considered on each one of the
three orbits of SL2(R) in C we have the following: α sends the upper half-plane H2

onto the complex plane C except for (−∞, 2] and [2,∞) which are doubly covered
by R \ {0}. We organize such actions in the following Lemma:

Lemma 2. For any polynomial p(z) =
∑n
i=0 aiz

i of degree n = 2s the following
are equivalent:

(1) The coefficients of p(z) satisfy

ai = an−i, for all i = 0, . . . n.

(2) There exists a polynomial q(z) such that

p(z) = zs q

(
1

z

)
(3) There exists some polynomial g(z) of degree m ≥ 1 such that

p(z) = zm · g
(
z +

1

z

)
For a proof see [13] among other papers. Hence, any polynomial f(z) satisfying

any of the properties of the Lemma is self-reciprocal.
Next we list some properties of palindromic and antipalindromic polynomials.

Their proofs are elementary and we skip the details.

Remark 1. Here are some general properties of palindromic and anti-palindromic
polynomials:

(1) For any antipalindromic polynomial p(z) =
∑n
i=0 aiz

i

ai = −an−i, for all i = 0, . . . n.

(2) For any polynomial f , the polynomial f + f× is palindromic and the poly-
nomial f − f× is antipalindromic.

(3) The product of two palindromic or antipalindromic polynomials is palin-
dromic.
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(4) The product of a palindromic polynomial and an antipalindromic polyno-
mial is antipalindromic.

(5) A palindromic polynomial of odd degree is a multiple of x+ 1 (it has -1 as
a root) and its quotient by x+ 1 is also palindromic.

(6) An antipalindromic polynomial is a multiple of x− 1 (it has 1 as a root)
and its quotient by x− 1 is palindromic.

(7) An antipalindromic polynomial of even degree is a multiple of x2 − 1 (it
has -1 and 1 as a roots) and its quotient by x2 − 1 is palindromic.

The following lemma shows an important correspondence among the pairs of
roots

(
α, 1

α

)
of f(z) and real roots of g

(
z + 1

z

)
. Polynomials f(z) which have all

roots on the units circle correspond to g
(
z + 1

z

)
which have all real roots. When

homogenized the corresponding forms are called totally real forms (cf. Section 4).

Lemma 3. Let f(z) =
∑n
i=0 aiz

i be a palindromic polynomial and g(z) ∈ C[z]
such that f(z) = zmg(z + 1/z). Denote by Sf the set of pairs of roots of f(z) on
U ,

Sf =

{(
α,

1

α

)
, such that |α| = 1 and f(α) = 0

}
and by Sg the set of roots of g(z) in [−2, 2]. There is a one-to-one correspondence
between Sf and Sg.

Proof. The proof is rather elementary. If |z| = 1 then z = cos θ + i sin θ, for
some θ. Then, α(z) = 2 cos θ is in the interval [−2, 2]. Conversely, if t ∈ [−2, 2]
then t = 2 cos θ for some θ. Hence, t = z + 1/z, where z = cos θ ± i sin θ. �

Notice that the inversion z 7→ 1/z induces an involution on the group of sym-
metries of a palindromic polynomial. Hence, the Galois group of such polynomials
is non-trivial. We will see in the next section how such involution among the roots
of f(x) induces automorphisms for algebraic curves with affine equation yn = f(x).

A polynomial f(z) =
∑n
i=0 aiz

i is called quasi-palindromic if

|ai| = |an−i|,
for all i = 0, . . . , n.

The following Lemma will be used in the next section.

Lemma 4. Let f, g ∈ C[x] with no common factor. If f and g are self-inversive
then fg is a self-inversive. If f and g are quasi-palindromic, then fg is quasi-
palindromic.

Proof. The proof is an immediate consequence of the definitions. Since the
set of roots of f and g contain all z and 1

z̄ (resp. z and ± 1
z ), then so would contain

their union, which is the set of roots of fg. �

Remark 2. A polynomial with real coefficients all of whose complex roots lie
on the unit circle in the complex plane (all the roots are unimodular) is either
palindromic or antipalindromic

2.2. Self-reciprocal polynomials over the reals. Here is a basic fact about
even degree self-reciprocal polynomials; see [8], §2.1; see also [18]. The degree
d = 2n polynomial p(z) is self-reciprocal if and only if it can be written

p(z) = zn · (an + an+1 · (z + z−1) + · · ·+ a2n · (zn + z−n)),
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if and only if it can be written

(2.4) p(z) = a2n ·
n∏
k=1

(1− αkz + z2),

for some real αk ∈ R.
Note that g(z) = 1−αz+z2 has roots on the unit circle if and only if the roots

are of the form e±iθ, for some θ, in which case, α = 2 cos(θ).
For the rest of this section we denote by p(z) =

∑n
i=0 aiz

i a degree n self-
reciprocal polynomial, where n = 2d or n = 2d + 1. The answer to the following
question is unknown at this time: for which increasing sequences a0 < a1 < . . . ad
do the roots of the corresponding self-reciprocal polynomial, p(z) = 0, lie on the
unit circle |z| = 1?

If n = 2d, which p(z) with a0 < a1 < . . . ad, can be written as a product∏d
k=1(1− 2 cos(θk)z + z2)?

It is clear that, in a product such as (2.4), with all its roots on the unit circle
so −2 ≤ αk ≤ 2, we have

(2.5) 0 < a0 ≤ a1 ≤ · · · ≤ an, an−i = an+i,

for all i ∈ {0, 1, 2, . . . , n}, provided the collection αjs satisfy

(2.6) αk ≤ −1.

A self-reciprocal polynomial satisfying (2.5) is called symmetric increasing. Mo-
tivated by Problem 3 below, we look for a bound which is more general than (2.6)
and which also implies the polynomial is symmetric increasing. For instance, we ob-
serve that the following result can be used inductively to establish a generalization
of (2.6).

Lemma 5. Let p(z) be as above. To multiply p(z) by 1−αx+x2 (−2 ≤ α ≤ 2),
and still have the new coefficients satisfy a symmetric increasing condition such as
in (2.5), we require

(2.7) (ai, ai+1, ai+2, ai+3) · (1,−1− α, 1 + α,−1) ≤ 0,

for all i ≤ d. In particular, if ai = a, ai+1 = a + ε1, ai+2 = a + ε2, ai+3 = a + ε3
then (2.7) holds if

ε2 ≤
ε1 + ε3

2
.

Proof. This is verified simply by multiplying out p(z)(1−αx+x2), so omitted.
�

The examples below illustrate how sensitive (2.5) is to the size of the αjs.

Example 1. We have

(1+1.05x+x2)(1−0.28x+x2)(1+1.25x+x2) = x6+2.02x5+3.6685x4+3.67250x3+3.6685x2+2.02x+1,

which satisfies (2.5), but change the 0.28 to 0.3 and

(1+1.05x+x2)(1−0.30x+x2)(1+1.25x+x2) = x6+2x5+3.6225x4+3.60625x3+3.6225x2+2x+1,

does not. Similarly, we have

(1 + 1.05x+ x2)(1− 0.3x+ x2)(1 + 1.25x+ x2)(1− 0.6x+ x2) =

x8 + 1.4x7 + 3.4225x6 + 3.43275x5 + 5.08125x4 + 3.43275x3 + 3.4225x2 + 1.4x+ 1,



SELF-INVERSIVE POLYNOMIALS, CURVES, AND CODES 9

which satisfies (2.5), but change the 0.6 to 0.7 and

(1 + 1.05x+ x2)(1− 0.3x+ x2)(1 + 1.25x+ x2)(1− 0.7x+ x2) =

x8 + 1.3x7 + 3.2225x6 + 3.0705x5 + 4.720625x4 + 3.0705x3 + 3.2225x2 + 1.3x+ 1,

does not.
The polynomial

(1+1.5x+x2)(1+0.2x+x2)(1+0.1x+x2) = x6+1.8x5+3.47x4+3.63x3+3.47x2+1.8x+1

satisfies (2.5), as does

(1 + 1.5x+ x2)(1 + 0.2x+ x2)(1 + 0.1x+ x2)(1− 0.5x+ x2) =

x8 + 1.3x7 + 3.57x6 + 3.695x5 + 5.125x4 + 3.695x3 + 3.57x2 + 1.3x+ 1

but change the 0.5 to 0.6 and the product

(1 + 1.5x+ x2)(1 + 0.2x+ x2)(1 + 0.1x+ x2)(1− 0.6x+ x2) =

x8 + 1.2x7 + 3.39x6 + 3.348x5 + 4.762x4 + 3.348x3 + 3.39x2 + 1.2x+ 1

does not.
The polynomial

(1 + 0.1x+ x2)(1 + 0.2x+ x2)(1 + 0.3x+ x2)(1 + 0.92x+ x2) =

x8 + 1.52x7 + 4.662x6 + 4.6672x5 + 7.32952x4 + 4.6672x3 + 4.662x2 + 1.52x+ 1

satisfies (2.5), but change the 0.92 to 0.91 and

(1 + 0.1x+ x2)(1 + 0.2x+ x2)(1 + 0.3x+ x2)(1 + 0.91x+ x2) =

x8 + 1.51x7 + 4.656x6 + 4.6361x5 + 7.31746x4 + 4.6361x3 + 4.656x2 + 1.51x+ 1

does not.
The above lemma holds, namely the condition (2.7), because

(1 + 0.1x+ x2)(1 + 0.2x+ x2)(1 + 0.3x+ x2)(1 + 0.92x+ x2)(1 + 0.999x+ x2) =

x10 + 2.519x9 + 7.18048x8 + 10.844538x7 + 16.6540528x6+

+16.65659048x5 + 16.6540528x4 + 10.844538x3 + 7.18048x2 + 2.519x+ 1

satisfies (2.5), but change the 0.999 to 0.99 and

(1 + 0.1x+ x2)(1 + 0.2x+ x2)(1 + 0.3x+ x2)(1 + 0.92x+ x2)(1 + 0.99x+ x2) =

x10 + 2.51x9 + 7.1668x8 + 10.80258x7 + 16.612048x6+

+16.5906248x5 + 16.612048x4 + 10.80258x3 + 7.1668x2 + 2.51x+ 1

does not.
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3. Superelliptic curves and self-inversive polynomials

The following theorem connects self-reciprocal polynomials with a very special
class of algebraic curves, namely superelliptic curves. We follow the definitions and
notation as in [4].

Fix an integer g ≥ 2. Let Xg denote a genus g generic planar curve defined
over an algebraically closed field k of characteristic p ≥ 0. We denote by G the full
automorphism group of Xg. Hence, G is a finite group. Denote by K the function
field of Xg and assume that the affine equation of Xg is given by some polynomial
in terms of x and y.

Let H = 〈τ〉 be a cyclic subgroup of G such that |H| = n and H is in the center
of G, where n ≥ 2. Moreover, we assume that the quotient curve Xg/H has genus
zero. The reduced automorphism group of Xg with respect to H is called
the group Ḡ := G/H, see [4].

Assume k(x) is the genus zero subfield of K fixed by H. Hence, [K : k(x)] = n.
Then, the group Ḡ is a subgroup of the group of automorphisms of a genus zero
field. Hence, Ḡ < PGL2(k) and Ḡ is finite. It is a classical result that every finite
subgroup of PGL2(k) is isomorphic to one of the following: Cm, Dm, A4, S4, A5,
semidirect product of an elementary Abelian group with cyclic group, PSL(2, q) and
PGL(2, q).

The group Ḡ acts on k(x) via the natural way. The fixed field of this action is
a genus 0 field, say k(z). Thus, z is a degree |Ḡ| := m rational function in x, say
z = φ(x).

Lemma 6. Let Xg be a superelliptic curve of level n with |Aut (Xg)| > n. Then,
Xg can be written as

yn = f(xs), or yn = xf(xs)

for some s > 1.

The proof goes similar as for the hyperelliptic curves as in [23]. Since below
we display all equations of such curves in such form then the Lemma is obviously
true.

Next we focus on studying the nature of the polynomial f(x) and its connections
to self-inversive polynomials. We are assuming that the curves are of characteristic
zero, so the reduced automorphism group is cyclic, dihedral, A4, S4, or A5. The
list of equations, including the full group of automorphisms, the dimension of the
loci, and the ramification of the corresponding covers can be taken from [21].

Theorem 3. If the reduced automorphism group of a superelliptic curve X is
nontrivial or not isomorphic to a cyclic group, then X can be written with the affine
equation

yn = f(x) or yn = x · f(x)

where f(x) is a palindromic or antipalindromic polynomial. If the reduced automor-
phism group is isomorphic to A5, then f(x) is a quasi-palindromic plynomial.
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Proof. If Aut (X ) is isomorphic to a dihedral group D2m, then the equation
of Xg can be written as in one of the following cases

yn = F (x) :=

δ∏
i=1

(x2m + λix
m + 1)

yn = (xm − 1) · F (x),

yn = x · F (x),

yn = (x2m − 1) · F (x),

yn = x(xm − 1) · F (x),

yn = x(x2m − 1) · F (x),

The polynomial F (x) is palindromic from Lemma 2. The polynomials xm − 1
and x2m − 1 are antipalindromic. From Lemma 4 the products (xm − 1)F (x) and
(x2m − 1)F (x) are antipalindromic. Hence, if the reduced automorphism group of
a superelliptic curve is isomorphic to a dihedral group then the equation of the
curve can be written as y2 = f(x) or y2 = xf(x), where f(x) can be chosen to be
a palindromic or antipalindromic polynomial.

If Aut (X ) is isomorphic to A4, then the equation of Xg can be written as in
one of the following cases

yn = G(x)

yn = (x4 + 2i
√

3x2 + 1) ·G(x),

yn = (x8 + 14x4 + 1) ·G(x),

yn = x(x4 − 1) ·G(x),

yn = x(x4 − 1)(x4 + 2i
√

3x2 + 1) ·G(x),

yn = x(x4 − 1)(x8 + 14x4 + 1) ·G(x),

where

G(x) :=

δ∏
i=1

(x12 − λix10 − 33x8 + 2λix
6 − 33x4 − λix2 + 1)

Notice that every factor of G(x) is palindromic, hence G(x) is also palindromic from

Lemma 4. The polynomials x4 + 2i
√

3x2 + 1 and x8 + 14x4 + 1 are palindromic
and therefore (x4 + 2i

√
3x2 + 1)G(x) and (x8 + 14x4 + 1)G(x) are palindromic.

When multiplied by x4 − 1 such polynomials become antipalindromic since x4 − 1
is antipalindromic. So the equation of the curve can be written as y2 = f(x) or
y2 = xf(x), where f(x) can be chosen to be a palindromic or antipalindromic
polynomial.
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If Aut (X ) is isomorphic to S4, then the equation of Xg can be written as in
one of the following cases

yn = M(x)

yn =
(
x8 + 14x4 + 1

)
·M(x)

yn = x(x4 − 1) ·M(x)

yn =
(
x8 + 14x4 + 1

)
· x(x4 − 1) ·M(x)

yn =
(
x12 − 33x8 − 33x4 + 1

)
·M(x)

yn =
(
x12 − 33x8 − 33x4 + 1

)
·
(
x8 + 14x4 + 1

)
·M(x)

yn =
(
x12 − 33x8 − 33x4 + 1

)
· x(x4 − 1) ·M(x)

yn =
(
x12 − 33x8 − 33x4 + 1

)
·
(
x8 + 14x4 + 1

)
· x(x4 − 1)M(x)

where

M(x) =

δ∏
i=1

(
x24 + λix

20 + (759− 4λi)x
16 + 2(3λi + 1228)x12 + (759− 4λi)x

8

+λix
4 + 1

)
Since every factor of M(x) is palindromic, then M(x) is palindromic. By Lemma 4
we have that the equation of the curve can be written as y2 = f(x) or y2 = xf(x),
where f(x) can be chosen to be a palindromic or antipalindromic polynomial. The
antipalindromic cases correspond exactly to the cases when x4 − 1 appears as a
factor.

Let Aut (X ) is isomorphic to A5. This case is slightly different from the other
cases due to the fact that now the reduced group has an element of order 5 and
f(x) will be written as a decomposition of x5. So the change of coordinates x 7→ −x
will preserve the sign for odd powers and change it for even powers of x.

Let Λ(x), Q(x), ψ(x) be as follows

Λ(x) =

δ∏
i=1

(x60 + a1x
55 + a2x

50 + a3x
45 + a4x

40 + a5x
35 + a6x

30 − a5x
25 + a4x

20

− a3x
15 + a2x

10 − a1x
5 + 1)

a1 = λi − 684

a2 = 55λi + 157434

a3 = 1205λi − 12527460

a4 = 13090λi + 77460495

a5 = 69585λi − 130689144

a6 = 134761λi − 33211924

Q(x) =x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1,

ψ(x) =x4 + 2i
√

3x2 + 1
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Then, the equation of Xg can be written as in one of the following cases

yn = Λ(x)

yn = x(x10 + 11x5 − 1) · Λ(x)

yn = x(x20 − 228x15 + 494x10 + 228x5 + 1)(x10 + 11x5 − 1) · Λ(x)

yn = (x20 − 228x15 + 494x10 + 228x5 + 1) · Λ(x)

yn = Q(x) · Λ(x)

yn = x(x10 + 11x5 − 1).ψ(x) · Λ(x)

yn = (x20 − 228x15 + 494x10 + 228x5 + 1) · ψ(x) · Λ(x)

yn = (x20 − 228x15 + 494x10 + 228x5 + 1)(x(x10 + 11x5 − 1)) · ψ(x) · Λ(x)

Notice that Λ(x) is a quasi-palindromic polynomial since all its factors are so. So
are Q(x), ψ(x) and the other factors. By Lemma 4 we can say that in this case he
equation of the curve can be written as y2 = f(x) or y2 = xf(x), where f(x) can
be chosen to be a quasi-palindromic polynomial.

This completes the proof of the theorem. �
In [12] it is shown that if the group H is unique in G and the reduced group

G/H is not cyclic or nontrivial, then the field of moduli is a field of definition for
superelliptic curves. In [3] and [5] it is explored the fact that most palindromic or
self-inversive polynomials have minimal coefficients. So it is a natural question to
investigate what is the relation between the minimal of definition of such curves,
the minimal height as in [2], and the palindromic polynomial f(x).

4. Self-reciprocal polynomials and reduction theory

Every stable binary form f(z, y) of degree n ≥ 2 correspond uniquely to a
positive definite quadratic Jf called Julia quadratic; see [2]. Since positive definite
quadratics have a unique zero in the upper half plane H2, then we associate the zero
of Jf to the binary form f . This defines a map ε from the set of degree n binary
forms to H2, which is called the zero map. A binary form f(z, y) is called reduced
if ε(f) ∈ F2. The size of the coefficients of a reduced binary form is bounded by its
Julia invariant θ(f). If f is a reduced form, we say that f has minimal coefficients;
see [2] for details.

There are no efficient ways to compute the Julia quadratic or the Julia invariant
of a binary form of high degree (i.e. degree > 6). Moreover, there is no known
method to express the Julia invariant θ(f) in terms of the generators of the ring of
invariants of the degree n binary forms (i.e. transvections of the form). However,
as discussed in [2] the case when f is totally real is much easier. A form is called
totally real if it splits over R.

Let f ∈ C[z] be a degree n ≥ 2 polynomial. We denote by f∗ the corresponding
form (homogenization of f) in C[z, y]. GL2(C) acts on the space of degree n binary
forms. For a matrix M ∈ GL2(C) we denote by fM∗ the action of M on f∗. By fM

we denote fM∗ (z, 1).

Lemma 7. Let f ∈ C[z] and M =

[
1 −i
1 i

]
. Then, f∗ is a totally real binary

form if and only if fM has all roots in the unit circle.
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Proof. The proof is rather elementary. The Möbious transformation h(z) =
Mz maps H2 onto the open unit disk. Moreover, it maps bijectively U \ {1} to R.

�
For reduction of totally real forms see [2] and [5].

Theorem 4. Let f(z) be a self-inversive polynomial. Then the following are
equivalent:

i) all roots of f(z) are on the unit circle
ii) all roots of its derivative f ′(z) are on the unit disk
iii) fM∗ is totally real form

Proof. The equivalence of i) and iii) is the above Lemma. The equivalence of
i) and ii) is a result of Cohn. �

It is interesting to see how the reduction is performed in such case. From [2] we
have a polynomial Gf associated to f . The Julia quadratic Jf is the only quadratic
factor of Gf when factored over R. Moreover, Beshaj [2] has proved that Gf is
very similar to a self-inversive polynomial. We describe briefly below

Let f be a generic totally real form given by

f(x, y) = anx
n + an−1x

n−1y + · · ·+ a1xy
n−1 + a0y

n

where a0, . . . , an are transcendentals. Identify a0, . . . , an respectively with 1, . . . , n+
1. Then the symmetric group Sn+1 acts on R[a0, . . . an][x, y] by permuting a0, . . . , an.
For any permutation τ ∈ Sn+1 and f ∈ R[a0, . . . an][x, y] we denote by τ(f) = fτ .
Then

fτ (x, y) = τ(an)xn + τ(an−1)xn−1y + · · ·+ τ(a1)xyn−1 + τ(a0) yn.

Define G(x, y) as follows

(4.1) G(x, y) =
x · fx(−fy(x, y), fx(x, y)) + y · fy(−fy(x, y), fx(x, y))

n f(x, y)
.

Notice that since f is totally real, then f ∈ R[x, y]. Therefore, G ∈ R[x, y]. Note
also that, for σ ∈ Sn+1 we have an involution

σ =


(1, n+ 1)(2, n) · · ·

(n
2
,
n

2
+ 2
)
, if n is even

(1, n+ 1)(2, n) · · ·
(
n+ 1

2
,
n+ 3

2

)
, if n is odd.

Next result describes the properties of G(x, y).

Theorem 5 (Beshaj). The polynomial G(x, y) satisfies the following

i) G(x, y) is a covariant of f of degree (n− 1) and order (n− 1)(n− 2).
ii) G(x, y) has a unique quadratic factor over R, which is the Julia quadratic

Jf .

iii) Gσ(x, y) = (−1)n−1G(x, y). Moreover, if Gf =
∑d
i=1 gi x

iyd−i, then

gσi = (−1)n−1 gd−i,

for all i = 0, ..., d.

Then we have the interesting connection between real forms and self-inversive
polynomials.
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Theorem 6. If f is a palindromic real form then Gf (x, y) is self-inversive. If
f is of odd degree then Gf is palindromic.

Proof. If f is palindromic, then from Lemma 3, i) we have that ai = an−i
for all i = 0, . . . , n. That means that σ fixes all coefficients of f . Hence, gσi =
(−1)n−1 gi for all i = 0, . . . , d, where d = degGf . Thus, Gf is self-inversive. If n is
odd, then gσi = gi. Hence, Gf is palindromic.

�
We know that Gf has exactly two non-real roots, namely ε(f) and its conjugate.

Consider now GMf . Then all real roots of Gf will go to roots on the unit circle of

GMf and the two non-real roots ε(f) and its conjugate ε(f) go inside the unit disk

as roots of GMf .

Figure 1. The region T

Lemma 8. Let f be a self-inversive polynomial with all roots in the unit circle
U , f∗ its homogenization, T be the region in the complex plane given by

T = {z = a+ bi | a2 − 2a+ b2 ≥ 0, a2 + 2a+ b2 ≥ 0},

and M =

[
1 −i
1 i

]
. If ε(f∗)

M ∈ T or ε(f∗)
M ∈ F2, then fM has minimal coeffi-

cients.

Proof. From Lem. 7 we have that fM∗ is a totally real form. Then ε(fM∗ ) is
the image of the zero map in the upper half plane H2.

If ε(f∗)
M ∈ F2 then fM∗ is reduced and we are done. If ε(f∗)

M ∈ T then let

S =

[
0 1
1 0

]
and compute ε(f∗)

MS . Let ε(f∗)
M = a+ bi. Then

ε(f∗)
MS =

1

a+ bi
=

a

a2 + b2
− b

a2 + b2
i

Hence, |ε(f∗)MS | ≥ 1 and

−1

2
≤ a

a2 + b2
≤ 1

2
Hence, ε(f∗)

M ∈ F2 However, the height of fM∗ does not change under the trans-
formation S. Hence, fM∗ has minimal coefficients. Thus, in both cases fM has
minimal coefficients. �
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The region T is the blue colored region in Fig. 1 and the grey area is the
fundamental domain.

5. Self-reciprocal polynomials and codes

The goal of this section is to show how self-reciprocal polynomials are connected
to other areas of mathematics, namely whether extremal formal weight enumerators
for codes satisfy the Riemann hypothesis. We will follow the setup of [11].

For d ≤ n, denote the weight enumerator of an MDS code C over F = GF (q)
of length n and minimum distance d by Mn,d(x, y). The dual C⊥ is also an MDS
code of length n and minimum distance d⊥ = n+ 2− d. Therefore, for d ≥ 2, the
weight enumerator of C⊥ is Mn,n+2−d(x, y). Let Mn,n+1 = xn. The MDS code with
weight enumerator Mn,1 has dimension n−d+1 = n−1+1 = n, hence C = Fnq . It

is easy to see that Mn,n+1 is the MacWilliams transform, (x, y) 7→ (x+(q−1)y√
q , x−y√q ),

of Mn,1. We may think of Mn,1 as the weight enumerator of the zero code.
The set {Mn,1,Mn,2, . . . ,Mn,n−1,Mn,n+1} is a basis for the vector space of

homogeneous polynomials of degree n in x, y. Furthermore, this set is closed under
the MacWilliams transform; see [11] for details.

If C is an [n, k, d]q-code, then one can easily see that

AC(x, y) =

n+1∑
i=d

ai−dMn,i = a0Mn,d + . . .+ an+1−dMn,n+1,

for some integers ai as in §4.4.2 in [14]. The zeta polynomial of C is defined as

P (T ) := a0 + a1T + · · ·+ an−d+1T
n+1−d.

The zeta polynomial P (T ) of an [n, k, d]q-code C determines uniquely the weight
enumerator of C. The degree of P (T ) is at most n− d+ 1. The quotient

Z(t) =
P (T )

(1− T )(1− qT )

is called the zeta function of the linear code C. The zeta function of an MDS
code

1

(1− T )(1− qT )
=

∞∑
j=0

qj+1 − 1

q − 1
T j

is the rational zeta function over Fq; see [11, Cor. 1]. Formally self-dual codes lead
to self-reciprocal polynomials. The proof of the following Proposition can be found
in [11].

Proposition 1. If P (T ) is the zeta polynomial of a formally self-dual code,
then P (T/

√
q) is a self-reciprocal polynomial.

5.1. Riemann zeta function versus zeta function for self-dual codes.
From [11] we have that for a self-dual code C,

Z(T ) = qg−1T 2g−2Z(1/qT ),

which for z(T ) := T 1−gZ(T ), may be written as

z(T ) = z(1/qT ).

Now let
ζC(s) := Z(q−s) and ξC(s) := z(q−s).
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We obtain

ξC(s) = ξC(1− s),
which is the same symmetry equation is analogous to the functional equation for
the Riemann zeta function. We note that ζ(s) and ξ(s) have the same zeros.

The zeroes of the zeta function of a linear code C are useful in understanding
possible values of its minimum distance d.

Let C be a linear code with weight distribution vector (A0, A1, . . . , An). Let
α1, . . . , αr be the zeros of the zeta polynomial P (T ) of C Then

d = q −
∑
i

α−1
i −

Ad+1

Ad

d+ 1

n− d
.

In particular,

d ≤ q −
∑
i

α−1
i ;

see [11] for details.
A self-dual code C is said to satisfy Riemann hypothesis if the real part of any

zero of ζC(s) is 1/2, or equivalently, the zeros of the zeta polynomial PC(T ) lie on
the circle |T | = 1/

√
q, or equivalently, the roots of the self-reciprocal polynomial

(see Proposition 1 above) PC(T/
√
q) lie on the unit circle.

While Riemann hypothesis is satisfied for curves over finite fields, in general
it does not hold for linear codes. A result that generates many counterexamples
may be found in [14]. There is a family of self-dual codes that satisfy the Riemann
hypothesis which we are about to discuss. The theory involved in this description
holds in more generality than linear codes and their weight enumerators.

5.2. Virtual weight enumerators. A homogeneous polynomial

F (x, y) = xn +

n∑
i=1

fix
n−iyi

with complex coefficients is called a virtual weight enumerator. The set

{0} ∪ {i : fi 6= 0}

is called its support. If

(5.1) F (x, y) = xn +
n∑
i=d

fix
n−iyi,

with fd 6= 0, then n is called the length and d is called the minimum distance of
F (x, y).

Let C be a self-dual linear [n, k, d]-code. Recall that n is even, k = n/2 and
its weight enumerator satisfies MacWilliams’ Identity. A virtual generalization of
AC(x, y) is straightforward. A virtual weight enumerator F (x, y) of even degree
that is a solution to MacWilliams’ Identity

(5.2) F (x, y) = F

(
x+ (q − 1)y
√
q

,
x− y
√
q

)
,

is called virtually self dual over Fq with genus γ(F ) = n/2 + 1 − d. Although
a virtual weight enumerator in general does not depend on a prime power q, a
virtually self-dual weight enumerator does.
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Problem 1. Find the conditions under which a (self-dual) virtual weight enu-
merator with positive integer coefficients arises from a (self-dual) linear code.

The zeta polynomial and the zeta function of a virtual weight enumerator are
defined as in the case of codes.

Proposition 2 ([6]). Let F (x, y) be a virtual weight enumerator of length n
and minimum distance d. Then, there exists a unique function PF (T ) of degree at
most n− d which satisfies the following

(y(1− T ) + xT )n

(1− T )(1− qT )
PF (T ) = . . .+

F (x, y)− xn

q − 1
Tn−d + . . .

The polynomial PF (T ) and the function

ZF (T ) :=
P (T )

(1− T )(1− qT )
,

are called respectively the zeta polynomial and the zeta function of the virtual weight
enumerator F (x, y).

A virtual self-dual weight enumerator satisfies the Riemann hypothesis if the
zeroes of its zeta polynomial PF (T ) lie on the circle |T | = 1/

√
q. There is a family

of virtual self-dual weight enumerators that satisfy Riemann hypothesis. It consists
of enumerators that have certain divisibility properties.

Let b > 1 be an integer. If supp(F ) ⊂ bZ, then F is called b-divisible. Let F
given by Eq. (5.1) be a b-divisible, virtually self-dual weight enumerator over Fq.
Then F (x, y) is called

Type I: if q = b = 2, 2|n.
Type II: if q = 2, b = 4, 8|n.
Type III: if q = b = 3, 4|n.
Type IV: if q = 4, b = 2, 2|n.

Then we have the following theorem:

Theorem 7 (Mallows-Sloane-Duursma). If F (x, y) is a b-divisible self-dual
virtual enumerator with length n and minimum distance d, then

d ≤



2
[n

8

]
+ 2, if F is Type I,

4
[ n

24

]
+ 4, if F is Type II,

3
[ n

12

]
+ 3, if F is Type III,

2
[n

6

]
+ 2, if F is Type IV.

A virtually self-dual weight enumerator F (x, y) is called extremal if the bound
in Theorem 7 holds with equality. A linear code C is called b-divisible, extremal,
Type I, II, II, IV if and only if its weight enumerator has the corresponding property.
The zeta functions of all extremal virtually self-dual weight enumerators are known;
see [10]. The following result can be found in [10].

Proposition 3. All extremal type IV virtual weight enumerators satisfy the
Riemann hypothesis.

For all other extremal enumerators, Duursma has suggested the following conjecture
in [9].
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Problem 2. Prove that any extremal virtual self-dual weight enumerators of
type I-III satisfies the Riemann hypothesis.

Let F denote a weight enumerator as in (5.2) and PF (T ) the associated zeta
polynomial. Let pF (T ) = PF (T/

√
q) denote the normalized zeta polynomial. Nu-

merous computations suggest the following result.

Problem 3. If F is an extremal weight enumerator of Type I, II, II, IV then
the normalized zeta polynomial is symmetric increasing. In fact, using the notation
of (2.5), if if ai = a, ai+1 = a+ ε1, ai+2 = a+ ε2, ai+3 = a+ ε3 then ε2 ≤ ε1+ε3

2 .

References

[1] L. Beshaj, Reduction theory of binary forms, Arithmetic of superelliptic curves, 2015.

[2] , Integral binary forms with minimal height, Ph.D. Thesis, 2016.

[3] , Julia quadratic of superelliptic curves with extra automorphisms, Algebraic curves

and their fibrations in mathematical physics and arithmetic geometry, 2016.

[4] L. Beshaj, V. Hoxha, and T. Shaska, On superelliptic curves of level n and their quotients,
I, Albanian J. Math. 5 (2011), no. 3, 115–137. MR2846162

[5] L. Beshaj and T. Shaska, Julia quadratic of self-inversive binary forms, 2016. in preparation.

[6] Koji Chinen, Zeta functions for formal weight enumerators and the extremal property, Proc.
Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 168–173 (2006). MR2196722 (2007g:11110)

[7] Keith Conrad, Root on a circle, 2015.

[8] Stephen A. DiPippo and Everett W. Howe, Real polynomials with all roots on the unit cir-
cle and abelian varieties over finite fields, J. Number Theory 73 (1998), no. 2, 426–450.

MR1657992

[9] Iwan Duursma, A Riemann hypothesis analogue for self-dual codes, Codes and association
schemes (Piscataway, NJ, 1999), 2001, pp. 115–124. MR1816392 (2001m:94055)

[10] , Extremal weight enumerators and ultraspherical polynomials, Discrete Math. 268
(2003), no. 1-3, 103–127. MR1983272 (2005e:94295)

[11] A. Elezi and T. Shaska, Weight distributions, zeta functions and riemann hypothesis for

linear and algebraic geometry codes, Arithmetic of superelliptic curves, 2015.
[12] R. Hidalgo and T. Shaska, On the field of moduli of superelliptic curves, Algebraic curves

and their fibrations in mathematical physics and arithmetic geometry, 2016.

[13] David Joyner, Zeros of some self-reciprocal polynomials, Excursions in harmonic analysis.
Volume 1, 2013, pp. 329–348. MR3050347

[14] David Joyner and Jon-Lark Kim, Selected unsolved problems in coding theory, Applied
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