Oakland University Kresge Library Logo
View Item 
  •   DSpace Home
  • Theses and Dissertations
  • Electrical and Computer Engineering
  • View Item
  •   DSpace Home
  • Theses and Dissertations
  • Electrical and Computer Engineering
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

OUR at Oakland

OU Libraries

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Resources

OUR@Oakland FAQsScholarly Communication at OUResearch Data Support at OU

Novel Piezoelectric Biosensor Based On Sars-Cov-2 (Covid-19) Spike Antibody For Coronavirus (Covid-19) Detection

Thumbnail

Author


Alromithy, Fares Sulaimin

Description


At the end of December 2019, the novel coronavirus SARS_CoV_2 appeared in Wuhan, China. The World Health Organization released a global health emergency declaration based on growing case notification rates in several locations worldwide. Therefore, sensitive, specific, rapid, and deliverable diagnostic monitoring is vital for making proper decisions on treating and isolating infected patients, which will help prevent the spread of infectious diseases. The surface Acoustic Wave (SAW) biosensor provides a unique, highly sensitive electrical approach to biomolecule detection and cell growth. For this study, a novel SAW sensor is developed, and the mass sensitivities are tested to detect the SARS_CoV_2 by attaching the SARS-CoV-2 spike antibody immobilized on the sensor surface. First, a two-dimensional (2D) and a three-dimensional (3D) finite element model were developed based on a realistic device to obtain a complete characterization of the senor. Then, the AlN/Al2O3 fabricated sensor was tested and ultrasonically rinsed in preparation for silanization. After depositions of (APTMS) on the sensor by the Chemical Vapor Deposition method, the antibodies were immobilized on surfaces with the aid of a crosslinker (EDC) and (Sulfo-NHS). Finally, the SARS-CoV-2 was introduced to the sensor, and the attachment of the immobilized antibody was tested and evaluated. The sensor was tested and characterized by Raman spectroscopy and the vector Network Analyzer. Finally, our device was able to detect the virus in real-time time (within two to three minutes), confirming its high sensitivity and selectivity with regard to the SARS-CoV-2 virus.

Date


2022-07-17

Subject


Electrical engineering
Biosensor detection
COVID-19
SARS-CoV-2
Spike antibody
Surface acoustic wave sensor

URI


http://hdl.handle.net/10323/12009

Collections


  • Electrical and Computer Engineering

Metadata


Show full item record

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback