DEVELOPMENT AND IMPLEMENTATION OF AN INTRAOPERATIVE METHADONE GUIDELINE FOR COMPLEX SPINAL SURGERY

by

KELSEY FOBBE, RN, BSN, SRNA & THOMAS HART, RN, BSN, SRNA

A research report submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF NURSING PRACTICE

2022

Oakland University
Rochester, Michigan
Acknowledgements

We would like to express our deepest gratitude to Dr. Toni Glover, PhD, GNP-BC, ACHPN for serving as our DNP chair and for providing her time, guidance, and support throughout our project duration. We would also like to thank Dr. Peter Coles for being our DNP Project Team Member and providing his clinical expertise on our topic. Special thanks are also extended to Dr. Mary Golinski, PhD, CRNA and Dr. Robert Nicholson for assisting us in making the connections needed for our project to take place. We are deeply grateful to Kyle Moxley, who provided us with his statistical expertise which allowed us to find meaningful analysis of our data. We would like to acknowledge all of the Kalamazoo Anesthesiology Certified Registered Nurse Anesthetists (CRNAs) and Anesthesiologists who allowed us to educate them, who participated in our pre-education and post-education surveys, as well as helped implement our Intraoperative Methadone Guideline. Your participation is what made this project possible.
Abstract

Background: The recent and ongoing opioid epidemic in the United States has been very detrimental to the country’s overall health and has led to devastating patient outcomes. There is a responsibility on the part of healthcare providers to do their part in reducing these negative consequences.

Purpose: This quality improvement project was to develop and implement an evidence-based guideline for intraoperative methadone administration during complex spine surgery. Data was collected to evaluate whether this intervention correlated with reduced postoperative pain and narcotic use.

Methods: Education was provided to the clinical associates of Kalamazoo Anesthesiology regarding the guideline components and associated benefits of methadone. The guideline was implemented for all patients undergoing complex spine surgery at Bronson Methodist Hospital. At the conclusion of the implementation period, provider adherence to the guideline was assessed as well as patient outcomes for patients who received all components of the methadone guideline.

Results: Complete provider adherence to the methadone guideline occurred in five out of 22 (22.7%) opportunities. A Wilcoxon test showed a statistically significant finding in patients who received methadone who reported decreased pain scores ($p = .015$) post-operatively. This test showed that patients who did not receive methadone reported a pain score of well over double (mean = 9.57) as compared to those who received intraoperative methadone (2.67).

Conclusion: Despite knowledge of current literature and the methadone guideline components, anesthesia providers had a low level of adherence to the protocol, overall. Patients who did receive all elements of the methadone guideline demonstrated decreased consumption of opioids and pain levels in the postoperative period.

Key Words: methadone, intraoperative, spine surgery, opioid epidemic
Table of Contents

Acknowledgements..ii
Abstract..iii
Background and Significance ...1
Purpose Statement ..2
Literature Review ..2
Theoretical Framework ...8
Project Methodology ..9
Project Resource ..15
Approvals for Implementation ...15
Evaluation of the Results ..15
Recommendations for Future Research ...17
Implications for Nursing Practice ...18
Contributions to the Doctor of Nursing Practice Essentials19
Conclusion ...20
References ...21
Appendix A - *Guideline for Intraoperative Methadone* ..25
Appendix B - *Data Collection Tool* ..27
Appendix C - *The Gate Control Theory of Pain* ..28
Appendix D - *Approvals for Implementation* ...29
Appendix E - *Pre and Post Educational Survey* ..31
Appendix F - *Literature Evaluation Table* ...33
DEVELOPMENT AND IMPLEMENTATION OF AN INTRAOPERATIVE METHADONE GUIDELINE FOR COMPLEX SPINAL SURGERY

Background and Significance

Chronic opioid use is an ongoing public health concern and has even been declared a public health emergency due to its detrimental impact on public health and socioeconomic welfare (Centers for Medicare & Medicaid Services, 2020). Recently, the crisis has seen a precipitous and alarming spike during the COVID-19 pandemic, causing the American Medical Association to urge state legislators and governors to implement and support all harm reduction strategies (American Medical Association, 2021).

Surgery is a known risk factor for the development of chronic opioid use (Dunn et al., 2018). This conclusion is underscored by a study by Quinlan et al. (2019), in which it was demonstrated that the risk of opioid use at 90 days post-surgery, in patients who were previously opioid naive, may be as high as 6.5%. Thus, perioperative providers play an instrumental role in developing alternative strategies to decrease opioid use in the perioperative setting and beyond.

A decrease in opioid use after surgery could potentially be accomplished via the administration of an intraoperative intravenous dose of methadone. Methadone is a mu-receptor agonist and NMDA receptor antagonist with the longest elimination half-life of the clinically used opioids (Kharasch, 2011). Due to methadone’s extended half-life, one dose administered intraoperatively by an anesthesia provider has the potential to provide extended pain relief beyond the postoperative period (Murphy & Szokol, 2018).

The literature review below and the corresponding literature table (Appendix F) aims to address the following question: in adult patients undergoing complex thoracolumbar spinal surgery (defined as a spinal fusion of at least two levels with instrumentation) under general
anesthesia, does the implementation of a methadone guideline correspond with decreased postoperative pain scores and opioid consumption, or does it reveal no impact or even increased postoperative pain scores and opioid consumption? Additionally, in our quest to include an educational component to this project, we ask the following question: for anesthesia providers with Kalamazoo Anesthesiology, does formative education impact guideline adherence, knowledge base, and attitude toward methadone administration for patients having complex thoracolumbar spine surgery, or does it show no significant impact?

Purpose Statement

The purpose of this quality improvement project was to develop and implement an evidence-based guideline for intraoperative methadone administration during complex thoracolumbar spinal surgery (defined as a spinal fusion of at least two levels with instrumentation). The project consisted of the following four components:

1. Development of an evidence-based Intraoperative Methadone Administration Guideline;
2. Assessment of knowledge and attitude of anesthesia providers on using methadone during surgery;
3. Implementation of the Intraoperative Methadone Administration Guideline; and
4. Formative evaluation of the Intraoperative Methadone Administration Guideline as it is being implemented.

Literature Review

The aim of this literature review is to explore the impact of utilizing a single dose of intravenous methadone intraoperatively in patients undergoing complex thoracolumbar spine surgery, defined for this project as a spinal fusion with instrumentation of at least two levels or
more. The primary outcome investigated was the impact on postoperative pain and opioid requirements. Secondary outcomes examined included methadone’s impact on post-operative nausea and vomiting (PONV), hemodynamic stability, and respiratory stability.

Methods

A systematic search of current literature was conducted, utilizing the following databases: CINAHL, the Cochrane Library, and PubMed. Key search terms included “intraoperative methadone,” “postoperative pain,” “spinal surgery,” and “spinal fusion.” Criteria for inclusion consisted of peer-reviewed articles which specifically contained data evaluating the impact of methadone on postoperative pain control and opioid consumption. Excluded articles were those that did not measure postoperative pain or opioid requirements. Articles were all published within the last ten years with the exception of one (Gourlay et al., 1984), which was retained due to its relevance to this project.

Results

The search of the medical databases yielded 732 results. After applying the inclusion and exclusion criteria outlined above, 24 studies remained. Ultimately, 16 articles were chosen, with the remaining seven excluded based on relevancy. Of the 16 included studies, 10 are randomized controlled trials (RCTs) (Murphy et al., 2020; Bolton et al., 2019; Friesgaard et al., 2019; Gottschalk et al., 2011; Gourlay et al., 1984; Korman et al., 2019; Murphy et al., 2017; Pacreu et al., 2012; Sharma et al., 2011; Udelsmann et al., 2011), four are meta-analyses (D’Souza et al., 2019; Kendall et al., 2020; Karasch, 2011; Murphy & Szokol, 2019), one was a cohort study/quality improvement project (Ye, et al., 2020), and one was an observational study (Dunn et al., 2018). The literature review table is presented in Appendix F.
Primary Outcomes

Sixteen research articles were chosen for the purpose of this review, all of which support the administration of intraoperative methadone for improving postoperative pain control. A further examination of the study methods and population characteristics will illuminate a potential rationale and guide the anesthesia provider in the best use of this therapy.

Patient Reports of Pain. One measure of pain control was patient-reported intensity of pain. All studies included in this review contain data on this outcome. Only one RCT (Bolton et al., 2019) found no difference in postoperative pain scores in the methadone group versus control group; however, it is the only study in this literature review in which oral methadone was administered, rather than intravenous methadone. In one RCT (Friesgaard et al., 2019), while postoperative pain score was listed as a primary outcome, the study had not been conducted at the time of this literature review and, therefore, results are unknown.

Of the nine RCTs that have been conducted, seven examined methadone administration on spinal surgery patients, and two examined methadone administration on cardiac patients (Bolton et al., 2019; Udelsmann et al., 2011). One study (Sharma et al., 2011) evaluated methadone administration on adolescents, rather than adults. Doses of methadone were not consistent. Most studies were conducted with weight-based intravenous (IV) dosing, ranging from 0.1mg/kg to 0.3mg/kg, though one study (Udelsmann et al., 2011) administered a standard dose of 20mg IV to patients. Finally, some studies compared pain scores of patients who received methadone to scores of patients who received a short-acting opioid (e.g., hydromorphone or morphine), while other studies compared them to a placebo group, in which patients did not receive any type of opioid. Nonetheless, the results remained consistent, and overall, the studies were supportive of methadone leading to improved postoperative pain scores.
Opioid Usage. Of the RCTs that have been carried out, nine found that the use of intraoperative methadone results in decreased postoperative opioid consumption. One study (Pacreu et al., 2012) further evaluated the effect of methadone both with and without concurrent administration of Ketamine, and it was discovered that when patients received both, there was a 70% decrease in methadone requirements by PCA. Interestingly, however, there were increased remifentanil requirements when patients received both, compared to when they only received methadone. This is thought to be attributed to a significant increase in Bispectral Index (BIS) values that accompany Ketamine. Sharma et al. (2011) evaluated the administration of different doses of methadone, ranging from 0.1mg-0.3mg/kg, and found that postoperative pain scores and opioid consumption were improved by methadone, but they were not affected by dose. It should be noted, however, that this study was conducted in adolescents, which is in contrast to the aim of this proposed quality improvement project which focuses on adults. In contrast, the study performed by Korman et al. (2019) found that dose affected total opioid consumption. It was discovered that opioid consumption in the PACU was significantly less in subjects who received methadone 0.15mg/kg, but not in subjects who only received 0.1mg/kg.

Two meta-analyses evaluated the effect of intraoperative methadone on postoperative opioid requirements and reached different conclusions. D’Souza et al. (2019) found that postoperative opioid consumption in the first 24 hours was decreased in patients who received methadone, while Kendall et al. (2020) found the effect of intraoperative methadone on postoperative opioid consumption did not reveal a significant effect (p=0.42). The quality improvement project conducted by Ye at al. (2020) found that morphine consumption postoperatively was lower (29.3mg versus 9.9mg) in the intervention group where subjects received methadone, versus the control group where they did not (p < 0.001).
Secondary Outcomes

Postoperative Nausea and Vomiting (PONV). One RCT (Udelsmann et al., 2011) found that the prevalence of PONV was lower in patients who received methadone 20mg with induction than it was in patients who received morphine. The RCT concluded that there was an obvious decrease in PONV observed in the methadone group and therefore “it is a low-cost option available that should be utilized.” Other RCTs (Murphy et al., 2020; Bolton et al., 2019; Gottschalk et al., 2011; Koman et al., 2019; Murphy et al., 2017) and meta-analyses (D’Souza, et al., 2019 and Murphy & Szokol, 2019), although not explicitly listing PONV among outcomes, indicate that methadone does not cause increased prevalence of adverse effects such and PONV, or at the very least, causes no change when compared to the control group. Friesgaard et al. (2019) is a RCT to be conducted in the future that will evaluate the difference in PONV at 6, 24, and 72 hours postoperatively. The study by Pacreu et al. (2012), which evaluated methadone alone versus methadone with Ketamine, found that there was no statistical significance in PONV between the two groups (p < .05).

Hemodynamic Stability. Murphy & Szokol (2018) evaluated the mechanism of action of methadone and also addressed safety concerns. Here, cardiac QT interval was discussed, and it was proposed that patients receiving large doses of oral methadone for longer periods of time are at risk for QT prolongation, torsades de pointes, and cardiac death. However, “the effect of a single dose of methadone on the risk of prolonged QT interval has not been examined, although no adverse cardiac events related to methadone administration have been described in clinical trials or case reports.” The observational study conducted by Dunn et al., (2018) on 1,478 patients who underwent spinal surgery and received an IV dose of intraoperative methadone of 0.14 ± 0.07mg/kg found that cardiac complications including arrhythmias (29.9%), QTc
prolongation (58.8%), and myocardial infarction (1.1%) occurred, as well as two in-hospital deaths (0.14%).

RCTs by Gottschalk et al. (2011) and Murphy et al. (2017), and a meta-analysis by Murphy & Szokol (2019), did not explicitly evaluate hemodynamic effects, but generally evaluated adverse events and outcomes that were associated with intraoperative methadone administration. It was summarized that methadone does not appear to increase the risk of hemodynamic side effects, and the consensus was that there were no differences between the methadone group and the control group with respect to adverse events.

Respiratory Stability. In the article by Murphy & Szokol (2018), which evaluated the mechanism of action of methadone and addressed safety concerns, it was noted that, at the present time, no adverse respiratory events related to methadone use have been found in the clinical trials to date. It was pointed out, however, that past studies are limited by small sample sizes and “a lack of close postoperative respiratory monitoring to assess the incidence of hypoxemic events and airway obstruction” (p. 82). Respiratory depression was defined as a respiratory rate less than 8-12 breaths per minute, while a hypoxemic event was defined as oxygen saturation dropping below 90-92%. It was recommended that further studies, with larger sample sizes and more diligent monitoring, be conducted to assess these outcome measures. The RCTs that evaluated respiratory parameters (Bolton et al., 2019; Gottschalk et al., 2011; Gourlay et al., 1984; Murphy et al., 2017; Udelsmann et al., 2011) reached similar conclusions: there was no difference in opioid-related respiratory effects between the methadone group and the control or placebo groups.

The observational study conducted by Dunn et al. (2018) evaluated hypoxemia and reintubation rates as secondary outcomes. The results found that, of the 1,478 subjects, 77.4%
were extubated in the operating room, 36.8% experienced respiratory depression, 79.8% experienced hypoxemia, and 1.5% required reintubation. It was concluded that, while the incidence of respiratory depression and hypoxemia were common, they were also easily managed.

The meta-analysis by Karasch (2011) recommended targeting doses and concentrations as high as possible above the minimal analgesic concentration, but below the threshold for respiratory depression. It is claimed that this will achieve the longest-lasting analgesia while preventing adverse respiratory side effects. Notably, the authors of this study estimate a methadone dose of greater than, or equal to, 20 milligrams. Relatedly, the meta-analysis performed by Murphy & Szokol (2019) found that “the dose of methadone that will result in prolonged analgesia without inducing respiratory depression has not been clearly defined in the literature” (p. 688). The authors point out that clinical trials have not supported the belief that the long half-life of methadone contributes to prolonged sedation and respiratory depression. Respiratory depression has occurred, but generally speaking, it can be deduced from the literature that methadone has not led to significant and detrimental respiratory events.

Theoretical Framework

Conceptual Framework

Melzack and Wall’s (1965) gate control theory of pain was used as a framework for the implementation of the identified quality improvement project.

Gate Control Theory of Pain

The basis of the pain theory is that, like vision and hearing centers, the brain possesses a completely unique system for pain perception (Hua et al., 2020). Pain is transmitted from nerve endings on the skin along specific pathways to the pain center of the brain, where the sensation
of pain is processed. The brain therefore generates the experience of pain in the body (Melzack, 1999).

Specific to chronic spinal pain, the gate control theory of chronic pain recognizes pain as it pertains to both aspects of the nervous system: the central nervous system and the peripheral nervous system. As initially researched by Melzack and Wall (1965), pain is detected by multiple nerve endings in the back which are present in muscles, ligaments, disks, vertebrae and joints. With any irritation or inflammation, the perception of pain is transmitted through the spinal cord and up to the brain. Various treatments override these signals, including but not limited to: medication, massage, transcutaneous nerve stimulation, heat, and cold. In the gate control theory, these sensational impulses travel through large-diameter fibers and cause the gate in the spinal cord to close off to small-diameter fibers that carry pain impulses, thereby inhibiting the sensation of pain (Melzack & Wall, 1965), as represented in the model in Appendix C. The inverse is also true, i.e., an open gate will enable the pain sensation. There is a link between the open gate theory and the question presented in this project, which can be captured as follows: the project assesses the effect of long-duration opioid methadone on overriding pain perception signals when the body’s recognition of pain occurs and continues following complex thoracolumbar spine surgery.

Project Methodology

Sample and Setting

This quality improvement project was conducted at Bronson Methodist Hospital in Kalamazoo, Michigan for a time period of one month. There was no financial compensation or any conflicts of interest. The evidence-based literature guideline used is available in Appendix A.
Adults 18-80 years old undergoing complex thoracolumbar spine surgery performed at Bronson Methodist Hospital were eligible for inclusion. Patients were included in the study regardless of preoperative medication administration, including any medications given as part of an Early Recovery After Surgery (ERAS) protocol. Exclusion criteria included known hypersensitivity to methadone hydrochloride or any other ingredient in Dolophine, current Methadone use, pregnant women, and known prolonged QTc interval preoperatively (>460 msec).

Key Personnel/Stakeholders

Key personnel involved in this project were anesthesia professionals with Kalamazoo Anesthesiology. The pharmacy department was also notified of this guideline implementation to prepare them for a likely increase in methadone preparation and consumption.

Recruitment Strategies

This DNP project was not a clinical trial and therefore there were no challenges with patient recruitment or anticipated challenges that would warrant the need to develop a detailed recruitment strategy. The proposed recruitment strategy involved eligible patients subjected to the Intraoperative Methadone Administration Guideline for a one-month period and then followed through PACU discharge.

Study Design and Implementation Plan

Development of Evidenced-Based Intraoperative Methadone Administration Guideline. After extensive evaluation of the current evidence-based literature, the Intraoperative Methadone Guideline was created (Appendix A). Due to the evidence-based beneficial effects discussed in the literature review above, a dose of 0.2mg/kg based on ideal body weight (IBW) was chosen. It was requested that fentanyl (if desired), be limited to 100mcg with induction, with
a goal to withhold further narcotic. Methadone 0.2mg/kg (IBW) was to be administered intravenously over five minutes after induction, but before incision. The anesthetic plan beyond the foregoing was performed at the discretion of the anesthesia provider.

Education of the Anesthesia Team. Prior to initiation of the quality improvement project, an educational presentation was provided to all anesthesia providers. This presentation took place during a department monthly meeting. The anesthesia providers were asked to take a pre-education assessment (Appendix E). A link to the survey, created in Survey Monkey, was provided to all anesthesia providers. This helped determine baseline knowledge and areas for education. After the completion of the pre-survey, a PowerPoint presentation was provided on the use of methadone for spine surgery. The intraoperative methadone administration guideline (Appendix A) was presented and explained to the anesthesia team. Time was allotted to answer any questions or concerns. At the conclusion of the presentation, the anesthesia providers were asked to take a post-survey (identical to the pre-survey found in Appendix E), to assess if there was adequate education provided. In addition, all Kalamazoo Anesthesiology employees received an e-mail correspondence with the guideline attached.

Implementation of the Intraoperative Methadone Administration Guideline.

Implementation of the Intraoperative Methadone Administration Guideline began in February 2022. Prior to implementation, the anesthesia providers were presented with education about the guideline as well as an opportunity to address questions and concerns during a department meeting, as stated above. After the conclusion of the education session, the guideline was emailed to all anesthesia providers. Another e-mail was sent to all anesthesia providers one week before implementation of the guideline to remind them of the initiation date. To further assist with ease of implementation, a copy of the guideline was placed on the anesthesia workstation in
all operating rooms where spine surgery occurs. Our contact information was provided on the
guideline to assist with availability if any questions arise.

Anesthesia and Airway Management. Induction, maintenance and emergence of
anesthesia were performed at the discretion of the anesthesia provider. Aside from the
intraoperative methadone administration guideline, we did not attempt to control for any aspects
of the anesthetic technique. Anesthesia providers were free to manage anesthesia and administer
analgesics as they deemed appropriate for their patient.

Surgical Technique. All procedures were performed at the discretion of the surgeon. We
did not attempt to control for any aspect of the surgical technique or postoperative surgical
management.

Evaluation of the Results. Descriptive statistics was used to find meaningful
conclusions of the data. A professional Oakland University statistician was consulted. Without
recording any identifying data, chart reviews were conducted on all applicable surgical
procedures that occurred during the pre-established timeframe. Data collected included:

- Procedure type
- Pre-operative medications administered
- QTc interval, if pre-operative ECG performed
- Dose of methadone administered, if applicable
- Oxycodone administered pre-operatively (yes/no)
- Dose of fentanyl administered with induction, if applicable
- Any additional intraoperative narcotics administered
- Pain Score on admission to Post Anesthesia Care Unit (PACU)
- Post-operative narcotics administered in PACU
Measurement Methods and Data Collection. Upon completion of the intraoperative methadone guideline, we accessed the surgical record for data collection. Kalamazoo Anesthesiology provided a Letter of Support (Appendix D) indicating approval for chart reviews. Data was collected via electronic medical chart review. Guideline adherence data was collected on all patients who underwent a complex thoracolumbar spine surgery between January 31, 2022 until February 25, 2022. Patient outcome data was collected on any patient meeting the inclusion and exclusion criteria who underwent an applicable procedure. Patient outcomes were measured and evaluated from the time the patient arrived in the PACU.

Guideline adherence data collected included:

- Randomly assigned patient number
- Methadone 0.2mg/kg IBW was given prior to incision per the guideline (yes/no)
- Fentanyl limited to 100mcg or less (yes/no)
- Complete adherence to the guideline (yes/no)

Patient outcome data included:

- Initial pain score recorded in PACU
- Post-operative narcotic requirements in PACU

Evaluation Plan. For data management, IBM SPSS Statistics Version 24 software was utilized as a centralized repository for ease of computation of data sets. After data collection was complete, descriptive statistics was conducted on all major study variables. A computerized statistical software and professional statistician was consulted. All statistical computations were performed by the professional statistician.
Dissemination of the findings occurred during another anesthesia department meeting in May 2022, where we also discussed project limitations and possible explanations for lack of adherence.

Barriers and Project Limitations. This study was limited by a few factors. While there was education provided and a clear guideline to follow, there was no way to ensure the anesthesia providers strictly adhered to the guideline. Our low adherence rate and inconsistent sample size in survey participation decreased the strength of our findings. In addition, we were unable to control for all variables throughout the patient’s surgical experience, thereby also limiting the generalizability of the results. Finally, a specific sample size could not be guaranteed over the allotted time period, which limited the potential for statistical significance and generalizable findings. Finally, matched pre-and post-surveys would produce stronger results and we believe that a focus group would facilitate some insight in determining why providers used the medications they did and why they chose not to use methadone for applicable cases.

In the planning phase of this project, we discovered three additional populations that we neglected to address for consideration of the methadone guideline. These included critical care patients, patients undergoing emergent procedures (e.g., trauma victims), and those with spinal cord injuries. We were appreciative of the anesthesiologists and CRNAs caring for these patients for reaching out to ask us how our guideline fits their specific disease processes. We regretfully did not have an answer, but perhaps future research can determine the best plan of care for these patients. Without supporting literature, we modified our patient population and placed these conditions into our exclusion criteria. We also did not find in our literature review any information about the impact of methadone administration for the various thoracolumbar
approaches. All of our chart reviews were conducted on posterior approaches, and we therefore cannot generalize our findings in relation to the oblique or anterior approaches.

Project Resources

There was no financial burden or cost involved in the implementation process. While there were no increased overhead costs from the perspective of the anesthesia department, there was the potential for increased labor and material costs in the pharmacy department, due to the sudden need for increased methadone preparation and use.

Approvals for Implementation

Prior to the implementation of this project, we received exemption from the Oakland University IRB and Institutional letter of support from Bronson’s research compliance department (Appendix D).

Evaluation of the Results

Anesthesia provider adherence to the Intraoperative Methadone Administration Guideline was assessed during the month of February, 2022. Throughout this time period, 22 patients were eligible to receive the protocol, and were evaluated for adherence to the protocol. Adherence to the protocol components as well as the protocol in its entirety was evaluated on a yes/no basis. Complete adherence to the guideline occurred in five of the 22 patients, for an adherence rate of 22.7%.

We conducted our chart reviews systematically utilizing a data collection tool (Appendix B) to ensure consistency. Upon completion of the chart reviews, we met with a statistician with Oakland University, and utilized his assistance and expertise to find a meaningful analysis of both the results of our chart review and of our pre- and post-survey results.
An analysis of the results of the surveys revealed no strong correlation between pre- and post-surveys. In other words, the surveys did not reveal a statistically significant difference in methadone knowledge or attitude toward using methadone during complex spinal surgery. This may have been partially due to decreased participation rates in the post-survey, but it ultimately indicates that our presentation did not have a significant impact on provider knowledge and attitude toward methadone.

In the results that we analyzed with our statistician, we found that provider role was not predictive of either attitude toward methadone, nor of knowledge base in pre- vs post-education results. When looking at experience and familiarity with methadone, the results displayed a “signal,” indicating that providers with more experience felt more familiar with methadone. This was not a statistically significant finding, but the statistician pointed out that this result was trending significant. Likewise, there was also a trending significant result in improved knowledge regarding methadone’s onset of action between pre- and post-surveys, at p = 0.052.

Overall, it was difficult to extrapolate any generalizations from the data we collected via the surveys. In the future, it would be helpful to have linked survey results, where we can anonymously link a provider’s pre-and post-survey. We believe it would also be helpful to receive feedback from KA providers on where the perceived barriers or reluctance lied in participating in one or both of the surveys, as a larger, more consistent sample size would have provided more valid and reliable results.

Utilizing SPSS Statistics and the expertise of a professional statistician, a Wilcoxon test showed a statistically significant finding in patients who received methadone who reported decreased pain scores (p = .015) post-operatively. The Wilcoxon test is a non-parametric analysis that we utilized on this data because this test accounts for smaller sample sizes. This test
showed patients who did not receive methadone (whether they received oxycodone, or no pre-operative narcotic at all) reported a pain score of well over double (mean = 9.57) as compared to those who received intraoperative methadone (2.67).

In a comparison between patients who received oxycodone versus those who did not receive any preoperative narcotic, we again ran a Wilcoxon test and found that there was no statistical difference in pain scores among patients who received oxycodone pre-operative versus those who did not. Of the 20 applicable procedures during our implementation timeframe, 10 patients received oxycodone, while five did not receive any preoperative narcotic and six patients received methadone. The patients who received oxycodone reported no significant effect on pain scores in PACU (p = .165) compared to those who received no preoperative narcotic. Again, due to a small sample size and low adherence rate, it is not possible to make broad generalizations from the results of this study. More research is needed with a larger sample size in order for generalizations to be made.

Recommendations for Future Research

Recommendations for future quality improvement projects will include strategies to improve anesthesia provider adherence to the evidence-based protocol. Future projects may explore ways to increase anesthesia staff engagement in the earlier stages of the project. This may include identifying areas of interest or need and earlier implementation of staff education. This would likely improve staff engagement and willingness to adhere to the proposed protocol. Additionally, it would be beneficial for future projects to aim to remove all barriers that may prevent providers from adhering to the components of an evidence-based protocol. For example, having eligible procedures flagged in the charting system would ensure that the provider had an instant reminder and confirmation of eligibility.
Implications for Nursing Practice

While the use of intraoperative methadone has direct implications for nursing practice, the overall implementation of this DNP project will also affect the practice of nursing and the goals of nursing in a variety of ways. A main goal in the practice of nursing is to improve a patient’s overall health experience. Through the implementation of this DNP project, the evidence suggests that a patient’s post-operative pain will be improved, post-operative opioid requirements will be reduced, and a high level of patient satisfaction will be maintained with the use of intraoperative methadone. With the reduction of post-operative pain and opioid consumption, patients will additionally benefit from a reduction of side effects such as nausea and vomiting and opioid-induced hyperalgesia.

Moreover, enhancing the patient’s experience results in an anticipated reduction in length of stay. Since evidence shows that intraoperative methadone administration reduces opioid consumption and improves post-operative outcomes, this guideline would logically prove to be beneficial for both patient and hospital reimbursement. The cost savings for patients would directly correlate to the evidence that suggests implementation of this DNP project will lead to quicker recovery times and decreased length of stay.

While the use of intraoperative methadone administration could provide a tool for decreasing opioid use, dissemination of the benefits of intraoperative methadone and the findings of this study will contribute to an overall increase in the knowledge of nursing practice and will ultimately help improve patient outcomes. The findings from this study could then be applied to other procedures such as open-heart surgery or extensive open abdominal surgery. There is an obligation on behalf of the nursing profession to advocate for the health of patients and
communities. Nursing interventions that are evidence-based, cost-effective, and safe result in improved patient outcomes should be adopted by the nursing profession.

Contributions to the Doctor of Nursing Practice Essentials

The American Association of Colleges of Nurses (AACN) developed competencies that must be addressed in the curriculum of all Doctor of Nursing Practice (DNP) programs. These eight essentials of doctoral education tackle the increasingly complex needs of the healthcare system. The development and implementation of this DNP project addressed all of these essentials, but Essentials I, III and VIII specifically were met repetitively and consistently *(The essentials of doctoral education for advanced nursing practice, 2006)*.

Essential I, Scientific Underpinnings for Practice, is met by incorporating a nursing theory which enhances healthcare delivery and improves patient outcomes. As discussed above, the Gate Control Theory of pain was utilized in this project to help guide the nursing interventions used throughout the DNP project.

Essential III, Clinical Scholarship and Analytical Methods for Evidence-Based Practice, is achieved by facilitating evidence-based initiatives into patient care to promote better outcomes. The overarching purpose of this project was to implement meaningful change using current best evidence and practice guidelines regarding intraoperative methadone administration, thereby improving the care of patients.

Essential VIII, Advanced Nursing Practice, is met by working alongside multiple healthcare disciplines to facilitate a large systematic change. Essential VIII can be seen throughout this project through discussions and collaborations with pharmacy staff, anesthesia providers, and recovery nurses in the development of the methadone guideline, feasibility of the project, and the identification of barriers for implementation.
Conclusion

This quality improvement project aimed to reduce the detrimental consequences of the national opioid epidemic by shifting the practice of anesthesia providers. This effort was comprised of multiple phases including an extensive review of current literature, development and implementation of an evidence-based guideline, evaluation of provider adherence to the guideline, and the evaluation of patient outcomes. Current literature reveals that the intraoperative administration of methadone to patients undergoing a complex spine surgery is associated with decreased opioid administration in the postoperative period, as well as decreased post-operative reports of pain. Therefore, a guideline was developed to assist anesthesia providers in the administration of intraoperative methadone during complex spine surgery with instrumentation. The evidence-based guideline was presented to the providers of Kalamazoo Anesthesiology in an educational staff meeting. Although many providers failed to adhere completely to the methadone guideline, patient outcomes still demonstrated reduced opioid consumption with the administration of methadone. Future quality improvement projects should address barriers to protocol adherence with a goal to strengthen the quality of post-intervention data.
References

Anesthesia and Analgesia, 112(1), 13–16.

Anesthesiology, 131(3), 678-692.

Appendix A

Guideline for Intraoperative Methadone

Intraoperative Methadone Guideline for Complex Thoracolumbar Spine Surgery

- **Background:** Severe pain after complex spine surgery is a common and undertreated problem that can be difficult to manage and may lead to poor postoperative outcomes and even opioid dependence. Chronic pain (commonly neuropathic in nature) is prevalent among patients undergoing complex spine surgery, as is the existence of a long-standing pain management regimen that often includes the use of opioids. Consequently, these patients often present with opioid-induced hyperalgesia, elevated tolerance levels to medications, and increased requirements of pain medication to treat their postoperative pain. As such, patients who undergo complex spine surgery are at an increased risk of both postoperative pain and postoperative opioid dependence, and potentially even increased morbidity and mortality.

 Perioperative pain control has traditionally been accomplished via opioids with shorter half-lives intraoperatively (e.g., fentanyl, sufentanil, remifentanil), which is then transitioned to opioids with longer half-lives postoperatively (e.g., morphine or dilaudid). The problem with this pain regimen is that it often creates a “peak and valley” effect, where significant fluctuations in opioid concentrations lead to reports of inadequate pain control. Methadone has been proven to provide potential advantages as a perioperative analgesic, decreasing the need for opioids with shorter half-lives, such as those listed above.

- **Study:** The Oakland University SRNAs are implementing a practice guideline derived from evidence-based literature in which methadone will be administered intra-operatively for thoracolumbar complex spine surgery (defined as a spinal fusion involving at least two levels with instrumentation).

- **Rationale:** A decrease in opioid use after surgery can potentially be accomplished via the administration of an intraoperative intravenous dose of methadone. Methadone is a mu-receptor agonist and NMDA receptor antagonist with the longest elimination half-life of the clinically used opioids. Due to methadone’s extended half-life, one dose administered intraoperatively by an anesthesia provider has the potential to provide extended pain relief beyond the postoperative period.

- **Population:**
 - **Inclusion criteria:** Adults 18-80 years old undergoing thoracolumbar spinal fusion surgery of two or more levels with instrumentation at Bronson Methodist Hospital are eligible for inclusion
 - **Exclusion criteria:**
 - Hypersensitivity to methadone hydrochloride or any other ingredient in Dolophine
 - Current methadone use
 - Pregnant women
- Patients with a known prolonged QTc > 460 msec preoperatively

Instructions

Pre-operatively:
- Pre-operative medications to be administered via Bronson’s Neurosurgical ERAS protocol, and per provider discretion
-

Intra-operatively:
- Fentanyl (if desired), limited to 100mcg with induction, with efforts maintained to withhold any further narcotic throughout the duration of the procedure.
- Methadone 0.2mg/kg \((IBW)\) IV push over 5 minutes, administered with induction but \textit{before} incision
- Induction drugs and anesthetic plan (beyond what is listed above) is at the discretion of the anesthesia provider

Post-operatively:
- Routine post-operative monitoring per hospital policy
- Post-operative care, including medication administration, to be administered per policy and PACU provider discretion based on patient status

This project will not control for any aspects of the anesthetic technique during the induction, maintenance, or emergence phases beyond the components of this guideline. The anesthetic delivery will be at the discretion of the anesthesia provider. Similarly, the surgical technique and postoperative management will be solely at the discretion of the surgeon.

Contact Information: Please feel free to contact us with any questions

Kelsey Fobbe
Kfobbe@oakland.edu
(517) 282-1295

Thomas Hart
Thart@oakland.edu
(810) 813-5020

Also available via TigerText
Appendix B

Data Collection Tool

Patient #: ________________________________
Procedure: __________________________________
Date: ___________________________________
Age: ____________________________________
Gender: Male Female

Inclusion Criteria Met (see guideline)? Yes No
Exclusion Criteria Met (see guideline)? Yes No

PRE-OP
Medications given per Bronson’s Neurosurgical ERAS protocol, per provider discretion

<table>
<thead>
<tr>
<th>Medication</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dramamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetaminophen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celecoxib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabapentin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EKG:

QTc Pre-op:	ms
QTc Post-op:	ms

INTRA-OP

<table>
<thead>
<tr>
<th>Medication</th>
<th>Yes</th>
<th>No</th>
<th>Dose: ______ mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methadone 0.2mg/kg IV Used?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxycodone 5mg PO Used?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Induction Dose of Fentanyl: ______ mcg

Additional Narcotics Intra-op? Yes No

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
</tr>
</thead>
</table>

POST-OP

Pain score on admission to PACU: ____/10

PACU Narcotics Given? Yes No

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
</tr>
</thead>
</table>

Guideline Adherence: Yes No
Appendix C

The Gate Control Theory of Pain

Note: The neurophysiologic events that gate (modulate) the pain impulse may be influenced by numerous peripheral and central factors (Cho & Min, 2015).
Appendix D
Approvals for Implementation

Date: October 28, 2021

Study #: IRB-FY2021-400

Study Title: Intra-operative Methadone Administration for Complex Spine Surgery

Submission Type: Initial

IRB Decision: Not Research

Research Team:
Kelsey Fobbe
Toni Glover
Mary Golinski
Thomas Hart

The above referenced study has been has been determined to be Not Research according to federal regulations.

The IRB decision is based on the following:

This is not research. This is a quality improvement project to develop and implement an evidence-based guideline for intra-operative methadone administration during complex spinal surgery. The results of this project are not intended to be generalized and the results of this QI project will be disseminated only to the anesthesia providers with Kalamazoo Anesthesiology at Bronson Hospital.

Please note the following:

- Before the project is initiated, permission must be obtained from all locations listed in the IRB submission.
- You must keep copies of all such permission letters for your files.
- It is the responsibility of each investigator to follow all applicable policies and procedures of any outside institution

Please retain a copy of this correspondence for your records.
If you have any questions, please contact the IRB staff.

The Oakland University IRB
NOTICE OF QUALITY IMPROVEMENT PROJECT APPROVAL

11/16/2021

Kelsey Fobbe
Kalamazoo Anesthesiology
900 Peeler St., #B
Kalamazoo, MI 49008

TYPE OF REVIEW: QUALITY IMPROVEMENT PROJECT

Dear Kelsey

On 11/16/2021, it was determined the proposed activity does not meet the definition of research as defined by the Common Rule and FDA [45 CFR 46.102(d)]. Therefore, review and approval by our local Western Michigan University Homer Stryker School of Medicine Institutional Review Board (IRB) is not required. Please be mindful when presenting or publishing the collected data that it is presented as a Bronson-specific Quality Improvement project and not as research.

This approval only applies to activities described in the proposed protocol submitted for approval and does not apply should any changes be made. If there are changes to the protocol, please re-submit for review and approval prior to implementation. If there are questions about whether these activities constitute research involving human subjects, please submit a new request to our local IRB for a determination utilizing the electronic submission system at https://med.wmich.edu/irbesubmit.

Your project will remain on file within the Research Compliance Office. If you should have any questions please feel free to contact me at 269-341-6662 or by email at ferrisp@bronsonhg.org.

Sincerely,

Pamela Ferris

Pamela Ferris, RN, BSN
Research Compliance Specialist
Bronson Methodist Hospital
601 John Street
Kalamazoo, MI 49007

Cc Toni Glover, Dr. Robert Nicholoson, Kate Pratley, Dr. Larson
Appendix E

Pre- and Post-Education Survey

Intraoperative Methadone Administration for Complex Spine Surgery: A Pre- & Post-Assessment

1. I am a(n):
 a. Anesthesiologist
 b. Certified Registered Nurse Anesthetist

2. Number of years in practice:
 a. <1 year
 b. 1-<5 years
 c. 5-<10 years
 d. 10-<20 years
 e. >20 years

3. Please indicate the option that best describes your familiarity with methadone
 a. I routinely administer methadone to complex spine surgery patients
 b. I administer methadone to spine patients most of the time (>50%)
 c. I rarely administer methadone to spine patients (<50%)
 d. I have never administered methadone to spine patients

4. Compared to shorter-acting opioids, I currently feel that methadone in the post-operative period:
 a. is more effective
 b. is less effective

5. How likely is it that you would administer methadone to a patient undergoing a complex spinal surgery? (Defined above)
 - Not at all Likely
 - Extremely Likely

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

6. How comfortable are you in administering methadone?
 a. I am not comfortable administering intraoperative methadone
 b. I am reluctant to use methadone
 c. I am comfortable with methadone
 d. I think methadone is an effective method of pain management
7. Methadone has an onset of action of:
 a. 1-2 minutes
 b. 6-8 minutes
 c. 15-30 minutes
 d. 45-60 minutes

8. The half-life of Methadone is:
 a. 1-2 hours
 b. 6-8 hours
 c. 10-12 hours
 d. 24-60 hours

9. Methadone’s primary mechanisms of action are: (select 2)
 - Mu-receptor agonist
 - GABA receptor agonist
 - Alpha-2 receptor agonist
 - NMDA receptor antagonist

10. Methadone is contraindicated in all of the following patients except:
 a. Pregnant women
 b. Pulmonary pathophysiology (e.g. asthma/COPD)
 c. Chronic Kidney Disease
 d. Prolonged QT interval

11. An appropriate loading dose for intraoperative methadone is _______, and is based on ideal body weight/actual body weight: (select two)
 - 0.2mg/kg
 - 0.4mg/kg
 - Actual Body Weight
 - Ideal Body Weight
Appendix F:

Literature Evaluation Table

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Design/Method</th>
<th>Sample/Setting</th>
<th>Major Variables Studied</th>
<th>Measurement</th>
<th>Data Analysis</th>
<th>Findings</th>
<th>Appraisal: Worth to Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Murphy, et al. (2020), Anesthesiology (132), 330-342.</td>
<td>Follow up to RCT evaluating 0.2mg/kg Methadone at induction vs 2mg hydromorphone at surgical closure</td>
<td>N= 120</td>
<td>InV1: Methadone 0.2mg/kg</td>
<td>Questionnaire at 1.3.6, and 12 months after surgery</td>
<td>Mann-Whitney U Test or Fisher exact probability test</td>
<td>Three months after surgery, patients randomized to receive methadone reported the weekly frequency of chronic pain was less (median score 0 on a 0 to 4 scale [less than once a week] vs. 3 [daily] in the hydromorphone group, P = 0.004).</td>
<td>Limitations: none stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>InV2: Hydromorphone 2mg/kg</td>
<td>Primary Outcome: Frequency (scale 0-4) and Intensity (scale 0-10) of pain during first post-operative year</td>
<td>Secondary Outcomes: requirements for any oral opioid analgesic medications (yes/no), as well as the frequency of use (scale 0-3); Patients recorded whether they had sought the care of a physician to treat pain directly related to the surgery; pain interference with sleep (scale 0-10) and pain interference with daily activities (scale 0-10)</td>
<td>Conclusion: Analgesic benefits of a single dose of intraoperative methadone were observed during the first 3 months after spinal surgery (but not at 6 and 12 months)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV1: Pain frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV2: Pain Intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV3: Oral Opioid Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV4: Opioid Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV5: Need to contact physician</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV6: Pain interference with sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV7: Pain interference with daily activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protocol group (n=61, scheduled methadone, intrathecal morphine, gabapentin, intravenous opioids, and adjuncts)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>InV: Methadone 0.2mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV1: LOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV2: pain scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV3: total opioid use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV4: time to a first bowel movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DV5: post-discharge phone calls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QI Macros to statistically analyze LOS and total Morphine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Categorical variables compared using the Chi-square test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wilcoxon rank-sum test for comparison of medians.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New protocol patients were discharged earlier (median LOS, 2 days) compared with control patients (3 days; P < 0.001).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Morphine consumption was lower in the protocol group (P < 0.001).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pain scores were higher in the protocol group on the day of surgery, similar on</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limitations: none stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ye, et al. (2020), Pediatric Quality and Safety 5(4), 1-8</td>
<td>Retrospective Matched Cohort Design (quality improvement [QI] project)</td>
<td>n = 122</td>
<td>InV: Methadone 0.2mg/kg</td>
<td>QI Macros to statistically analyze LOS and total Morphine</td>
<td>Mann-Whitney U Test or Fisher exact probability test</td>
<td>Three months after surgery, patients randomized to receive methadone reported the weekly frequency of chronic pain was less (median score 0 on a 0 to 4 scale [less than once a week] vs. 3 [daily] in the hydromorphone group, P = 0.004).</td>
<td>Limitations: none stated</td>
</tr>
<tr>
<td></td>
<td>Purpose: methadone-based multimodal analgesia protocol, aiming to decrease the length of hospital stay (LOS), improve</td>
<td></td>
<td>DV1: LOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control group (n=61, intrathecal morphine, gabapentin, intravenous opioids, and adjuncts) Protocol group (n=61, scheduled methadone)</td>
<td></td>
<td>DV2: pain scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>DV3: total opioid use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>DV4: time to a first bowel movement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>DV5: post-discharge phone calls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>QI Macros to statistically analyze LOS and total Morphine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>Categorical variables compared using the Chi-square test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>Wilcoxon rank-sum test for comparison of medians.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>New protocol patients were discharged earlier (median LOS, 2 days) compared with control patients (3 days; P < 0.001).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>Morphine consumption was lower in the protocol group (P < 0.001).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>Pain scores were higher in the protocol group on the day of surgery, similar on</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol group (n=61, scheduled hydromorphone)</td>
<td></td>
<td>Limitations: none stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>3. Murphy & Szokol (2018), APSF 32(3), 81-82</td>
<td>Not a study</td>
<td>N/A</td>
<td>pain control, and decrease the need for additional opioids</td>
<td>methocarbamol, ketorolac/ibuprofen, acetaminophen, and oxycodone with intravenous opioids as needed</td>
<td>day), -opioid-related side effects (measured by time to first bowel movement) -post-discharge pain-related phone calls</td>
<td>postoperative day (POD) 1, and lower by POD 2 ($P = 0.01$). Reduced the median time to first bowel movement ($P < 0.001$), and the number of post-discharge pain-related phone calls ($P < 0.006$)</td>
<td>SAFETY: QT INTERVAL: Patients receiving large doses of oral methadone for longer periods of time are at risk for QT prolongation, torsades de pointes, and cardiac death. The effect of a single dose of methadone on the risk of QT lengthening and torsades de pointes has not been examined, although no adverse cardiac events related to methadone administration have been described in clinical trials or case reports. RESP DEPRESSION: At the present time, no adverse respiratory events related to methadone use have been described in the clinical trials. However, the studies are limited by small sample sizes and a lack of close postoperative respiratory monitoring to assess the incidence of hypoxemic events and airway obstruction. Further studies are needed</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4, Bolton et al. (2019), Canadian Journal of Pain 3(1), 49-57</td>
<td>Randomized, Double-Blind Pilot Study</td>
<td>N=21</td>
<td>InV1: Oral Methadone 0.3mg/kg, InV2: Placebo (sweet syrup)</td>
<td>Postoperative pain scores were measured and reported for 72 h postoperatively using a validated 0- to 10-point Verbal Rating Scale</td>
<td>Kolmogorov-Smirnov test used and compared between groups with a t test if normally distributed and with a Mann-Whitney rank sum test if nonnormally distributed.</td>
<td>Oral methadone did not reduce pain scores in the methadone group (P = 0.08). Postoperative morphine requirement during the first 24 h was reduced by a mean of 23 mg in the methadone group (P < 0.005). No reduction in pain scores or PCA morphine was observed beyond 24 h postoperatively. There was no difference in incidence of opioid-related side effects between groups throughout the postoperative period.</td>
<td>Limitations: This study focused on the effect of Methadone on cardiac patients rather than spinal patients. Also, this study examined the use of oral Methadone rather than IV Methadone. Small sample size. High-risk patients and opioid-tolerant patients were excluded from enrollment. It is unclear what effect pre-operative oral methadone would have in this group. Conclusions: Though preoperative oral methadone did not reduce pain scores, morphine requirements were reduced in the first 24 h post-CABG.</td>
</tr>
<tr>
<td>5, D’Souza, et al. (2019), Pain, 161(2), 237-243</td>
<td>Meta-Analysis</td>
<td>10 studies (617 patients)</td>
<td>InV1: Methadone (any route), InV2: Other opioid (any route), DV1: Post-operative opioid consumption</td>
<td>Pooled odds ratios were calculated for a primary outcome of postoperative opioid consumption and secondary outcomes of time-to-extubation, time-to-first postoperative analgesia request, satisfaction, hospital length-of-stay, and complications. Postoperative pain scores were assessed qualitatively</td>
<td>N/A</td>
<td>Postoperative opioid consumption at 24 hours was lower in the methadone group vs control (P =0.01). Patients in the methadone group generally reported lower postoperative pain scores in 7 of 10 studies. Meta-analysis revealed greater satisfaction with analgesia in the methadone group vs control (0-100 visual analog scale; P = 0.004). No difference in time-to-extubation, time-to-first analgesia request, hospital LOS, or</td>
<td>Conclusion: Surgical patients who received intraoperative methadone had lower postoperative opioid consumption, generally reported lower pain scores and experienced better satisfaction with analgesia. Recommendation: the advantages need to be weighed carefully against dangerous risks with perioperative methadone, specifically respiratory depression and arrhythmia. Future studies should explore logistics, safety, and cost effectiveness.</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>6. Dunn, et al. (2018), Journal of Opioid Management, 14(2), 83-87</td>
<td>Observational Study: Retrospective Review of perioperative records</td>
<td>N= 1,478 records of adult patients who underwent elective spinal fusion of 2 or more levels</td>
<td>InV: IV Methadone (mean intraoperative dose was 0.14 ± .07 mg/kg)</td>
<td>1° outcome: incidence of postoperative respiratory depression (respiratory rate < 8 breaths per minute [bpm]).</td>
<td>Chi-squared tests and Fisher’s exact tests (for naloxone intraoperatively, MI postoperatively, in-hospital death, and 30-d mortality) were used to test for the differences in incidences of adverse events between opioid naive patients and chronic preoperative opioid users</td>
<td>1,142 patients (77.4%) were extubated in the operating room, 543 (36.8%) experienced respiratory depression, 1,180 (79.8%) hypoxemia, 22 (1.5%) required reintubation. Cardiac complications included arrhythmias (289 patients, 29.9%), QTc prolongation (568 patients, 58.8%), and myocardial infarction (16 patients, 1.1%). Two in hospital deaths occurred (0.14 percent)</td>
<td>Limitations: only patients who received intraoperative methadone were assessed. Propensity matching to a control group that received a different intraoperative opioid would allow for comparison of adverse events between groups. The dose of intraoperative methadone was not standardized. Conclusion: results demonstrate that the incidence of respiratory depression and hypoxemia were common (36.8 and 79.8 percent, respectively) but easily managed. Mild-moderate respiratory depression is observed following a onetime dose of intraoperative methadone, and monitoring in an appropriate postoperative setting is recommended.</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------------------------</td>
</tr>
</tbody>
</table>
| 7. Friesgaard, et al. (2019), Acta Anaesthesiologica Scandinavica, 63(9), 1257-1261 | Randomized, double-blind study | N=250 (anticipated) | InV1: Single-dose intraoperative methadone 0.2mg/kg 60-minutes prior to extubation | Primary Outcomes: Opioid consumption within first 6 hours and opioid consumption within first 24 hours | For the primary outcomes, all opioids during the first six and 24 post-operative hours will be converted to oral morphine equivalents. | N/A; this study has not been conducted as of this article being published | Limitations: Patients are followed by telephone after discharge which may make information less accurate
This study has not yet been performed, and therefore we can only use this article as a guide and compare it to other trial designs.
This article focuses on a patient population undergoing hysterectomies, and therefore the results may be altered from that of a complex spinal surgery. Also, the patient population for this study would be limited to females, whereas our project is inclusive of both males and females. |
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Design/Method</th>
<th>Sample/Setting</th>
<th>Major Variables Studied</th>
<th>Measurement</th>
<th>Data Analysis</th>
<th>Findings</th>
<th>Appraisal: Worth to Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gottschalk et al. (2011), Anesthesia & Analgesia, 112, 218-223</td>
<td>Prospective, RCT single-blinded study</td>
<td>N=29, age 18-75 years undergoing multilevel thoracolumbar spine surgery with instrumentation and fusion</td>
<td>Methadone group, n = 13</td>
<td>Pain score (visual analog scale 0-10)</td>
<td>Differences between groups were compared using the unpaired Student t test or Mann-Whitney U test.</td>
<td>Methadone reduced postoperative opioid requirement by approximately 50% at 48 hours, (P = 0.023); and 72 hours, (P = 0.024) after surgery.</td>
<td>Limitations: One weakness of this study is that the patients, but not the anesthesiologists, were blinded to the study medication; hence, the study was only single blinded. Blinding the surgeons, who were responsible for postoperative pain management, and the postoperative team, which did the pain assessments, to the study medication mitigates this weakness.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sufentanil group, n = 16</td>
<td>The cumulative opioid requirement at 24, 48, and 72 hours after surgery and the time of the first dose of pain medication were recorded.</td>
<td>Incidences of side effects were compared using the chi-square test or Fisher exact test.</td>
<td>In addition, pain scores were lower by approximately 50% in the methadone group at 48 hours after surgery, (P = 0.026) The incidence of side effects was comparable in both groups.</td>
<td>Conclusion: Perioperative administration of a single bolus of methadone before surgical incision resulted in a significant reduction of pain scores and reduced requirement of opioids in patients presenting for multilevel complex thoracolumbar spine surgery with instrumentation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>InV1: Methadone (0.2mg/kg) before surgical incision</td>
<td>DV1: Pain score</td>
<td>P ≤ 0.05 was considered to be statistically significant.</td>
<td>Computerized statistical analysis was performed using Sigma-Stat</td>
<td>There was no difference in postoperative opioid consumption during the first 24 hours; patients who received methadone seemed to derive the greatest benefit between 48 and 72 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>InV2: Sufentanil continuous infusion (0.25 mcg/kg/hr) after a loading dose of 0.75 mcg/kg</td>
<td>DV2: Cumulative opioid requirement</td>
<td></td>
<td></td>
<td>Methadone requires no special preparation and can be given IV in the operating room immediately after the induction of general anesthesia</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>9. Gourlay et al, (1984). Anesthesiology, 61(1), 19-26</td>
<td>Randomized Control Trial</td>
<td>N= 16 (mixed upper abdominal and spinal fusion)</td>
<td>InV: Methadone 20mg IV intraoperatively + supplemental 5mg doses (per pre-defined criteria)</td>
<td>Serial blood samples collected following each methadone dose</td>
<td>SPSS software; descriptive statistics including unpaired student’s t-test and scattergram</td>
<td>Duration of analgesia ranged from 7.4 hours to prolonged (= entire hospital stay)</td>
<td>Conclusion: Prolonged and safe postoperative analgesia can be obtained from methadone following methadone administration (Note: Much higher methadone doses administered in this study)</td>
</tr>
<tr>
<td>10. Kendall, et al., (2020), Anesthesiology Research and Practice, 2020, 1-9</td>
<td>Meta-Analysis of RCT’s</td>
<td>7 RCT’s evaluating 337 patients</td>
<td>InV1: Intraoperative Methadone InV2: Intraoperative Morphine DV1: Post-op opioid consumption (MME) DV2: Postoperative pain (scale 0-10)</td>
<td>A systematic and quantitative meta-analysis following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The study was registered with the PROSPERO database</td>
<td>Meta-analysis was performed using the random effects model, WMD, standard deviation, 95% confidence intervals, and sample size</td>
<td>Effect of intraoperative methadone on postoperative opioid consumption did not reveal a significant effect (P = 0.43). Effect of methadone on postoperative pain demonstrated a significant effect in the postanesthesia care unit, P = 0.005, and at 24 hours, P < 0.001.</td>
<td>Conclusions: The use of intraoperative methadone reduces postoperative pain when compared to morphine. In addition, the beneficial effect of methadone on postoperative pain is not attributable to an increase in postsurgical opioid consumption. Intraoperative methadone may be a viable strategy to reduce acute pain in surgical patients. Recommendation: Future studies with larger sample sizes and longer follow-up periods with more comprehensive reporting are warranted to draw</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>11. Karasch, E.D., (2011), Anesthesia and Analgesia, 112(1), 13–16</td>
<td>Meta-Analysis</td>
<td>N = 2 studies (Gottschalk and Gourlay studies above)</td>
<td>N/A</td>
<td>N/A</td>
<td>Misconceptions of Methadone: 1. The onset of methadone analgesia is slow, and therefore it is unsuitable for perioperative use; actually, the central nervous system effect site methadone concentrations rapidly equilibrate with plasma concentrations, evidenced by the short lag time between plasma concentrations and effects. Comparable to Fentanyl and Sufentanil (5-6 minutes). Morphine takes 4 hours. 2. The duration of methadone analgesia is shorter than its elimination half-life. (continued) The relationship between elimination half-life and duration of effect depends also on the dose administered (as with any opioid). The clinical effect of small doses will be terminated by redistribution, whereas the effect of larger will be terminated by systemic elimination. Thus, targeting doses and concentrations as high as possible above the minimal analgesic concentration, but below the threshold for respiratory depression, will achieve the longest-lasting analgesia. At concentrations approximately >=20 mg, the duration of methadone analgesia approximates its elimination half-life. (continued)</td>
<td>(continued)</td>
<td>3. Deals with metabolism of methadone. Methadone is considered to have a highly variable clearance and significance which has been attributed in the past to different cytochrome P450s. Actually, methadone metabolism may be less susceptible to inhibitory drug interactions than has been previously thought, and accumulated evidence demonstrates that is metabolized solely by CYP2B6</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Koman, et al. (2019), Anesthesia and Analgesia, 128(4), 802–810</td>
<td>Randomized, Double-Blind Pilot Study</td>
<td>N = 60 Methadone group, n = 40 Other opioid group, n = 20</td>
<td>InV1: Intraoperative methadone (0.1mg/kg) InV2: Intraoperative methadone (0.15mg/kg) InV3: Short-Duration Opioids prn DV1: Opioid Consumption DV2: Post-operative pain DV3: Effective methadone dose</td>
<td>Patient home diaries recorded pain, opioid use, and opioid side effects daily for 30 days postoperatively. Primary outcome was in-hospital (intraoperative and postoperative) opioid use. Secondary outcomes were 30 days opioid consumption, pain intensity, and opioid side effects.</td>
<td>Categorical outcomes comparing groups: x2 or Fisher exact test as appropriate, Continuous variables: Kruskal-Wallis test was used to compare groups For all analyses, P values <.05 were considered statistically significant</td>
<td>Median methadone doses were 6 and 9 mg in the 0.1 and 0.15 mg/kg methadone groups, respectively. Total opioid consumption (MME) in the PACU was significantly less compared with controls in subjects receiving 0.15 mg/kg methadone (P < .001) but not 0.1 mg/kg methadone (P = .60). Total in-hospital non-methadone opioid use after short-duration opioid, 0.1 mg/kg methadone, and 0.15 mg/kg methadone was 35.3 (25.0–44.0), 7.1 (3.7–10.0), and 3.3 (0.1–5.8) mg morphine equivalents, respectively (P < .001 for both versus control). In-hospital pain scores and side effects were not different between groups. In the 30 days after discharge, patients who received methadone 0.15 mg/kg had less pain at rest (P = .02) and used fewer opioid pills than controls (P < .0001). Patients who received 0.1 mg/kg had no difference in pain at rest (P = .69) and opioid use compared to controls (P = .08).</td>
<td>A single intraoperative dose of methadone (0.15 mg/kg ideal body weight) decreased intraoperative and post-operative opioid requirements and postoperative pain compared with conventional intermittent short-duration opioids, with similar side effects. Limitations: This was a pilot and feasibility study, with small sample size. There was an elevated chance of type I error due to multiple outcomes. Not all patients returned the 30-day diaries. There was a predominance of women.</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>13. Murphy et al. (2017). Anesthesiology, 126(5), pp.822-833</td>
<td>Randomized, double-blinded controlled trial</td>
<td>N = 115 N = 62: Methadone group N = 53: Hydromorphone group</td>
<td>N = 115 N = 62: Methadone group N = 53: Hydromorphone group</td>
<td>Primary outcome: was intravenous hydromorphone consumption on postoperative day 1 (mg) Secondary outcomes: Pain scores (VAS 0-10 scale) and satisfaction (VAS 0-100 scale) in PACU on admission, at 1 hour, and 2 hours, and mornings and afternoons of POD 1-3</td>
<td>Median hydromorphone use was reduced in the methadone group on POD 1 (4.56 vs. 9.90 mg) and POD 2 (0.60 vs. 3.15 mg) and 3 (0 vs. 0.4 mg; all P < 0.001). Pain scores at rest, with movement, and with coughing were less in the methadone group at 21 of 27 assessments (all P = 0.001 to < 0.0001). Overall satisfaction with pain management was higher in the methadone group than in the hydromorphone group until the morning of postoperative day 3 (all P = 0.001 to < 0.0001).</td>
<td>Intraoperative methadone administration reduced postoperative opioid requirements, decreased pain scores, and improved patient satisfaction with pain management. In patients undergoing posterior spinal fusion surgery (averaging two levels), IV methadone (0.2mg/kg) given at induction compared w/ IV hydromorphone (2 mg at surgical closure) resulted in decreased postoperative IV and PO opioid requirements and also diminished pain scores and improved patient satisfaction. There were no differences between the methadone and hydromorphone groups in opioid-related or other adverse events. Limitations: methadone dose–response studies have not been performed in adults undergoing spinal fusion surgery; therefore, the optimal dose that produces sufficient analgesia without inducing respiratory depression has not been determined. Also, the two study opioids were given at different times during the surgical procedure. The administration of hydromorphone and methadone was staggered with the second dose of methadone administered 2 hours after the first dose. This could potentially affect the outcomes of the study.</td>
<td></td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Murphy & Szokol (2019), Anesthesiology, 131(3), 678-692</td>
<td>Meta-Analysis</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Normally distributed data compared between the randomized groups using the unpaired Student’s t test</td>
<td>In RCT’s, no differences in the incidence of respiratory depression (< 8 -12 breaths/min) or hypoxemic events (oxygen saturations <92 - 90%) were observed between methadone and control groups</td>
<td>There are limitations to many of the clinical trials. The majority of prospective clinical studies enrolled only a small number of patients. Such small sample sizes can produce false positive results or overestimate the magnitude of an association. Only a few investigations examined the potential analgesic benefits of methadone in conjunction with other opioid-sparing agents. At the present time, there is a need for larger-scale, double blinded investigations to define the efficacy and safety of intraoperative methadone. The safety of methadone in higher-risk patients (the elderly, those who are morbidly obese, or those with cardiovascular disease) has not been documented in the published literature. Methadone has additional central nervous system effects (NMDA receptor antagonism and inhibition of serotonin and norepinephrine uptake) that may enhance recovery by attenuating the development of hyperalgesia and tolerance and improve mood state. RCT’s have documented that the use of methadone in room is associated with significant (\Delta) in postoperative analgesic requirements, compared to patients administered shorter-acting intraoperative opioids. Clinical trials have not supported the belief that the long half-life of methadone may</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>15. Pacreu, et al. (2012). Acta Anaesthesiologica Scandinavica, 56(10), 1250-1256</td>
<td>Randomized, double blind study</td>
<td>N=22 N= 11 in each group (MK combined and methadone alone)</td>
<td>InV1: MK combined (Methadone 0.1mg/kg at closure and Ketamine 0.5mg/kg bolus after induction followed by infusion 2.5mcg/kg/min). Post-op pain control PCA bolus methadone 0.25 mg plus ketamine 0.5 mg</td>
<td>Pain intensity: NRS on PACU admission, 24 hours, 48 hours Post-op opioid requirements: Methadone by PCA (mg) Remifentanil (mg)</td>
<td>The distribution of continuous variables in the two groups was compared with the Mann–Whitney U-test. Categorical variables were compared with the chi-square. Statistical significance was set at P < 0.05. Remifentanil requirements were higher in the MK group (P = 0.004) probably because it causes a significant increase in BIS values and a less degree in mean arterial pressure and heart rate. Patients in the MK group received 70% less methadone by PCA at 24 h (MK vs. methadone group, median and interquartile range) – 3.43 mg vs. 15 mg (P < 0.001) and at 48 h – 2 mg vs. 9.5 mg (P = 0.001). Patients in the MK group also attempted less doses, at 24 h: 19.5 vs. 98 (P = 0.043). Both groups had similar NRS values and comparable side effects.</td>
<td>Perioperative MK combination significantly decreased opioid consumption by PCA</td>
<td>development of chronic postsurgical pain contribute to prolonged sedation and respiratory depression</td>
</tr>
<tr>
<td>16. Sharma et al. (2011). Anesthesiology, 115(6), 1153–1161.</td>
<td>Randomized Control Trial</td>
<td>N= 31 Three groups of 10-11 pts Ages ranged from 10-18yo</td>
<td>InV1: Methadone 0.1mg/kg InV2: Methadone 0.2mg/kg InV3: Methadone 0.3mg/kg (up to 20mg)</td>
<td>Pain intensity was assessed by patients using the Wong-Baker FACES scale and a laminated card, 0 (no hurt) to 5 (hurts worst) Also assessed using a Colored-Visual Analog Scale, which was then scored with a metric ruler from 0 (no pain relief) to 10</td>
<td>Dose groups compared using ANOVA. Differences in methadone and metabolite enantiomer pharmacokinetics parameters were compared using paired Student t test or Wilcoxon signed rank tests, as appropriate. Opioid use and pain scores were analyzed by 2-way repeated measures ANOVA. Statistical significance</td>
<td>Methadone administration did not dose-dependently affect postoperative pain scores, and did not dose-dependently decrease daily or total postoperative opioid consumption in spinal fusion patients. Limitations: this study was conducted on adolescents, while the focus of our project is on adults, 18yo or older</td>
<td>A single intraoperative dose of methadone did not decrease postoperative opioid consumption in adolescents undergoing major spine surgery</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Design/Method</td>
<td>Sample/Setting</td>
<td>Major Variables Studied</td>
<td>Measurement</td>
<td>Data Analysis</td>
<td>Findings</td>
<td>Appraisal: Worth to Practice</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Udelsmann, et al. (2011). Revista brasileira de anestesiologia, 61(6), 695–701</td>
<td>Randomized, double-blind study</td>
<td>Purpose: to compare the requirements of postoperative analgesia in patients who received methadone, morphine, or placebo during anesthetic induction, while evaluating the prevalence of postoperative N/V</td>
<td>N = 55
N= 18: Methadone group
N= 19: Morphine group
N= 18: Placebo group</td>
<td>InV1: Methadone 20mg with induction
InV2: Morphine group with induction
InV3: Placebo with induction
DV1: Duration of anesthesia
DV2: Time until extubation
DV3: Time until the need of the first analgesic
DV4: # doses required in 24 hours
DV5: Assessment of analgesia by the patient
DV6: N/V</td>
<td>Duration of anesthesia: (minutes)
Time until extubation: (minutes)
Time until the need of first analgesic: (minutes)
doses required in 24 hours: (Number)
Pt assessment of pain: (VAS)
Prevalence of N/V: (Number of incidents)</td>
<td>A descriptive analysis of the quantitative and qualitative variables was performed; to determine the association among the different qualitative variables Fisher’s exact test or the Chi-square test was used. Quantitative variables were compared among groups using the non-parametric Kruskal-Wallis test and Tukey test. A level of significance of 5% was adopted.</td>
<td>Differences in the duration of anesthesia and time until extubation were not observed. The first dose of analgesic in patients who received methadone was administered later than in patients in the other two groups. The need of analgesics in the methadone group was lower, quality of analgesia was better, and prevalence of N/V was also lower.</td>
</tr>
</tbody>
</table>