Grizzlies Healthy Planet Initiative (GHPI) Biodiversity Subcommittee Report Submitted May, 2022

COMMITTEE MEMBERS: (alphabetical order)

Amy Banes-Berceli (Ph.D.) – Interim Associate Provost for Operations Keith Berven (Ph.D.) – Associate Professor of Biological Sciences Matthew Carlson – Mastery Level V Groundskeeper Eric Diesing – M.S. student in Biological Sciences Mary Hartson (Ph.D.) – Associate Professor of Spanish Mary Jamieson (Ph.D.) – Associate Professor of Biological Sciences Megan Jamison – M.S. student in Environmental Science Douglas LaLone – Director of Facility Services Thomas Raffel (Ph.D.) – Associate Professor of Biological Sciences (subcommittee chair)

INTRODUCTION

The Biodiversity Subcommittee is one of four subcommittees in the Environmental Operations working group of the Grizzlies Healthy Planet Initiative. Our charge is to assess and recommend ways to improve biodiversity on OU's campus. Specifically, we seek to: (1) document existing biodiversity on campus, identify high-value wildlife habitats, and assess impacts of current OU policies and practices; (2) assess importance of campus biodiversity for advancing OU's education, research, and sustainability goals; (3) recommend actions and policy changes to help protect, expand, and enhance biodiversity on campus; and (4) encourage development of a campus community that values biodiversity.

To assess existing biodiversity and wildlife habitats on campus, we compiled a wildlife species list based on data gathered by OU faculty and students in the course of educational and research activities. We made use of the National Land Cover Database and other sources to quantify and map land cover types on OU's campus. To assess the value of biodiversity for educational, research, and recreational activities, and to review existing OU policies and practices related to land use and grounds maintenance, we interviewed faculty, students, and staff and recruited subcommittee members who were directly involved with these activities.

To formulate recommendations for preserving, expanding, and enhancing biodiversity on OU's campus in the future, we recruited subcommittee members with expertise in ecology, environmental science, conservation biology, and land management. We will make use of the best available scholarship from these fields.

PURPOSE

Oakland University's campus supports a diverse array of wildlife species and ecosystems, which provide essential services to our community and support the university's research and teaching missions. Unlike many of our peer institutions, OU's campus includes extensive tracts of natural land cover with diverse wildlife habitats. To achieve the sustainability goals of the GHPI, it is essential that we recognize the importance of biodiversity to our campus community, and that we ensure the continued preservation, enhancement, and expansion of biodiversity on OU's campus.

ASSESSMENT

Biodiversity and Wildlife Habitats on OU's Campus

More than 500 wild animal, plant, and fungi species have been observed on OU's campus, including 180 insects, 143 bird, 15 mammal, 22 fish, 11 reptile & amphibian, 143 herbaceous plant, and 58 trees & shrub species (Appendix 1). The majority of these species were observed by faculty and students on the OU

Biological Preserve or Student Organic Farm, including species of conservation concern in MI such as Blanding's turtles, chorus frogs, red-shouldered hawks, common nighthawks, flying squirrels, and bald eagles (Appendix 1, Fig. 1).

- OU's campus includes a diverse array of wildlife habitats, with 34% of campus comprised of undeveloped land cover including 405 acres of deciduous forest, 193 acres of woody wetlands, 5 acres of shrubland and mixed forest, and 28 acres of meadows and emergent herbaceous wetlands (Fig. 1, 2). Much of OU's campus area consists of vegetation types identified as high priority for conservation by the Michigan Natural Features Inventory, including Oak Opening, Oak-Pine Barrens, and Inland Wet Prairie vegetation types (Fig. 3). High-value areas for biodiversity on campus include the OU Biological Preserve, the OU Student Organic Farm, several remaining tracts of uncut primary forest that remain outside of the preserve, and over a dozen naturally occurring wetlands that serve as amphibian breeding habitats (Appendix 1; Fig. 2, 3).
- OU's campus also includes approximately 1400 acres of developed land where the primary ground cover is manicured lawn and intentionally planted trees and shrubs. Campus trees include a mix of ornamental species and species native to Michigan. Many of the plantings over the past decade were supported by the Campus Beautification Fund, which was created to incentivize tree plantings on campus. Developed areas include ~46 acres of buildings, ~268 acres of sports turf, ~6930 parking spaces in 26 lots, ~5 miles of road, and ~15 miles of sidewalk. There are also two 18-hole golf courses and a driving range (Fig. 4, 4), and extensive gardens surrounding the historic Meadowbrook Hall.

Biodiversity Contributions to OU's Mission (Education, Research, and Operations)

- The diverse vegetation and wildlife present on our campus provide tangible support for OU's teaching, research, and service missions, particularly in the biological and environmental sciences. Over 20 courses and over 60 published research articles have relied on the Biological Preserve or Student Organic Farm as living laboratories (Fig. 1; Appendix 2, 3). Campus biodiversity also enriches OU's ties with local community organizations. The Clinton River Watershed Council (CRWC) has maintained a citizen science monitoring site for >10 years in the Biological Preserve, providing volunteer opportunities for students and collecting valuable data.
- Natural areas on campus, and trails running through them, serve students and faculty by providing
 recreational opportunities (1, 4). Multiple student and faculty groups rely on campus biodiversity to support
 their activities, including the Ecology Club, the Leaders for Environmental Awareness & Protection
 (LEAP), the Growing Grizzlies, the Pollinator Conservation Organization, and the Campus Alliance for
 Sustainability and the Environment (CASE-OU).
- Natural ecosystems on campus provide important ecosystem services that help to support university operations, including stormwater mitigation, air & water filtration, noise reduction, and microclimate cooling.
- Biodiversity also provides intangible benefits, allowing us to provide a healthy environment for our students and faculty that is conducive to learning and scholarship.

History of Land Use on OU's Campus

- Prior to Oakland University's founding, the Dodge Estate lands that would become our campus included a
 patchwork of wildlife habitats typical of an agricultural landscape, including pasture lands, agricultural
 fields, and patches of deciduous forest and woody wetlands. The property also included developed land
 associated with Meadowbrook Hall and associated private golf course, which was expanded into the KatkeCousins Golf Course in the 1970's (Fig. 5, 6).
- Through the 1980's and 1990's, many of the agricultural fields and pasture lands outside main campus gradually transitioned to woody wetlands, mixed woodlands, and deciduous forest through the natural process of ecological succession (Fig. 2–6).

In the 1990's, parts of the southern campus were developed into the R & S Sharf Golf Course (Fig. 4). In 2000, the Faculty Senate proposed creating a Biological Preserve, resulting in informal protections for much of the remaining undeveloped land in support of educational, research, and recreational activities by students, faculty and staff (Fig. 1, 5).

Current Land Management Policies & Practices

- Facilities is currently responsible for all land management decisions and actions, which are implemented by groundskeepers working for Buildings & Grounds. This includes maintaining lawns, gardens, and trees throughout main campus, the athletic fields, and along campus roads. It also includes maintaining the area surrounding the Student Organic Farm and Biological Research Station in East Campus, and all management practices in the Biological Preserve. Broad policy decisions and long-term planning for managing OU's lands are largely guided by availability of funding for projects and reference to the Campus Master Plan.
- Groundskeepers maintain training and certifications related to land management at OU. In particular, they
 must maintain Commercial Pesticide Applicator certifications for chemical management of turfgrass, rightof-way, and ornamental plants. Groundskeepers are required to follow state & federal regulations for
 chemical applications. No off-label use of pesticides or fertilizers is allowed. OU sponsors training
 opportunities that count as course credits toward recertification requirements, in partnership with Oakland
 Community College, MI State University, the International Society of Arboriculture, and the MI Nursing
 and Landscape Association.
- Groundskeepers work with construction crews to ensure replacement of trees damaged or destroyed during projects. The Campus Beautification Fund has also supported planting hundreds of new trees and shrubs throughout the main campus. Some plantings have been of native tree species, but most have been ornamentals. Decisions about selecting tree, shrub, or herbaceous plant species have been based primarily on aesthetics and management costs. As part of the Tree Campus USA initiative, new policies are being drafted to provide guidelines for planting and replacing trees on main campus.
- Groundskeepers are encouraged to allow plant growth on the borders of wetlands and lakes, such as Bear Lake. However, this is an informal policy, and lake banks are sometimes mowed in response to complaints about aesthetics. So far as we were able to determine, there are no formal policy documents to guide everyday decision-making regarding the width of buffer zones around wetlands and lakes, when or where woody debris should be removed from natural wetlands or streams, how and when to manage invasive species, where or how to maintain trails, or which areas of campus should be mowed regularly. These decisions appear to be made based on past practices, responses to specific complaints, or feedback from administrators.
- The primary point of contact between Facilities and OU students or faculty is the Campus Development and 0 Environment Committee (CDEC). Decisions about land management practices are sometimes changed in response to faculty or student feedback, as with the recent recommendation not to go forward with a plan to modify the Meadowbrook Marsh wetland. However, on other occasions large-scale management decisions proceeded without significant communication with faculty or student stakeholders, as with the 2018 Galloway Creek project which was opposed by local faculty members with expertise in stream ecology. This was in part because CDEC lacked faculty members with ecology or environmental science expertise in the academic year when the proposal was reviewed. To help improve communications about these types of projects, the Faculty Senate recently modified the CDEC charge and composition to include issues related to campus sustainability, and to ensure participation by at least one faculty member with expertise in ecology or environmental science. Academic Affairs is also currently working to pilot a new model that will directly involve relevant faculty and staff in decision-making affecting research and teaching operations at the East Campus Field Site. These changes should help to improve communications between Facilities and the faculty and students who have the greatest interest and expertise in preserving and enhancing biodiversity on OU's campus.

RECOMMENDATIONS

Key questions to address

- What can we do to better protect or enhance campus biodiversity in high-value wildlife habitats, such as the Biological Preserve and existing tracts of forest or wet meadows?
- What are ways we might change our approaches to campus planning, to help expand wildlife habitats into highly-managed areas of campus? ("Re-Wilding OU" initiative)
- What can we do to better control invasive plants in natural and managed parts of campus?
- What can we do to better protect wetlands and streams from stormwater discharge and chemical runoff?
- What can we do to increase faculty and student involvement in decisions about land & water management that affect biodiversity?
- What resources would we need to implement each recommendation?
- What time frame might be reasonable to implement each recommendation?

Summary of recommended actions (Tables 1 & 2)

We recommend that the university take the twenty-two specific actions to preserve and enhance biodiversity on OU's campus, listed in Tables 1 and 2. These recommendations include four proposed changes to organizational leadership, seven proposed changes to university policies, and eleven proposals to take direct action (Tables 1 & 2). Within each category (leadership, policies, and direct actions), we listed actions in order of priority, timeline, and projected cost.

Recommended changes to organizational leadership

Recommended changes to organizational leadership include: (1) create a standing Biodiversity Subcommittee of CDEC, (2) establish a process for reviewing habitat-restoration proposals from faculty and student groups, (3) appoint committees and/or faculty directors and advisory boards to oversee management of the Biological Preserve and East Campus Field Station, and (4) hire a Sustainability Officer to coordinate sustainability initiatives. All of these are high priority actions that should be implemented within the next year or two, since these changes will help to facilitate many of the recommended direct actions listed in Table 2. Except for hiring a Sustainability Officer, these actions will require no more than minimal financial investments by the university.

Hiring a Sustainability Officer is high priority because most if not all of the recommended actions will require coordinated efforts by multiple groups of faculty, students, staff, and administrators. Many of the proposed direct actions may be difficult to implement without this type of coordination (Table 2), which is why we recommend creating this position within the next 1-2 years.

Establishing a process to review habitat-restoration proposals is especially urgent, as demonstrated by recent difficulties with the review and implementation of a proposal to create a new pollinator garden on OU's main campus. This proposal was submitted to CDEC and received broad support from its committee members, but missing or vague details subsequently resulted in problems for the faculty and staff charged with implementing the proposal. Creating a clearly defined process for the review and implementation of landscaping proposals will help to ensure that all necessary information is provided and that key stakeholders are included in the decision-making process.

Recommended changes to university policies

Recommended policy changes include: (1) identifying currently-mowed areas that could be allowed to revert to natural landscapes, (2) developing a written policy document for groundskeepers and their supervisors to encourage practices that preserve and enhance wildlife habitat, (3) promote groundskeeper training opportunities aimed at reducing use of chemical pesticides and fertilizers on campus, (4) develop groundskeeper training opportunities to learn more about landscaping practices to preserve and enhance wildlife habitat, (5) investigate and implement alternative options to reduce the use of salt for de-icing roads, (6) implement

bioswales as a preferred method for stormwater management in future construction projects, and (7) adjust the Campus Master Plan to increase prioritization of wildlife habitat in future construction. The first two recommendations, which are high priority and low cost, should be implemented within the next 1-2 years. Changes to groundskeeper training and road salt use, which are medium priority and relatively low cost, should be implemented within the next 5 years. Changing our construction practices and the Campus Master Plan are long term goals that may incur significant costs, but that could result in substantial long-term benefits to biodiversity on OU's campus.

Recommended direct actions to preserve and enhance biodiversity on OU's campus

We identified eleven direct actions that should be implemented within the next five years, none of which should incur more than moderate costs to the university. The highest priority and lowest cost proposals are to: (1) reconfigure the Campus Beautification Fund into a repository for donations from community members interested in supporting native plantings on campus, (2) apply for external funds to support land management and conservation efforts on campus, and (3) encourage faculty to incorporate invasive plant management and ecological restoration efforts into academic courses. These actions should be implemented within the next 1–2 years.

Another high priority action that should be implemented within the next 1-2 years, but which will require a modest financial investment, is to conduct a professional assessment of wildlife habitats on OU's campus and generate a detailed habitat inventory map. We recommend contracting with an outside organization, such as the Michigan Natural Features Inventory (MNFI), to assist with this assessment. This is a high priority action because having a detailed habitat inventory map of OU's campus will provide important baseline information that will facilitate many of our other recommendations, such as seeking external funding for restoration projects, identifying high-value habitats where new construction should be avoided, developing a Wildlife Habitat Management Plan for OU's campus, establishing legal protection for the Biological Preserve, and supporting outdoor research and teaching activities on OU's campus.

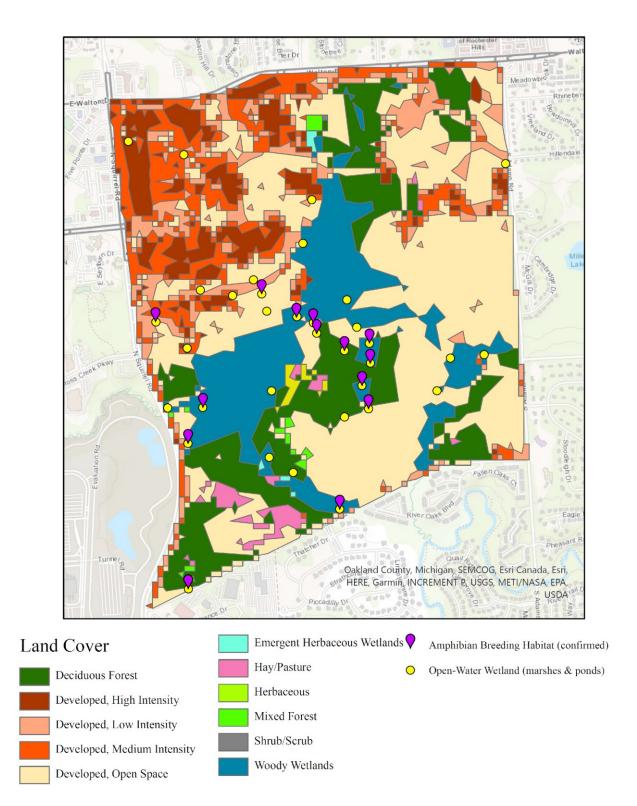
Multiple proposed direct actions focus on increasing the visibility and usage of the Biological Preserve by establishing legal protections, developing a system of clearly marked trails, increasing its online presence, and erecting educational signs and outdoor kiosks. These actions will help to educate the OU community about the extent and diversity of wildlife habitat on OU's campus, and they will facilitate increased use of the Biological Preserve by students and faculty for outdoor research projects, outdoor activities for courses in ecology and environmental science, and recreational activities for students and faculty.

To help engage the entire Oakland University community in OU's efforts to preserve and enhance wildlife habitats on campus, we propose a "Re-Wilding OU" initiative to promote efforts to preserve and enhance wildlife habitat on campus. This initiative should ideally be organized by the new Sustainability Officer and involve coordinated action by Facilities, Advancement, CDEC, University Communications & Marketing (UCM), academic departments (e.g., Biological Sciences, Chemistry, Communication), and groups of interested students and faculty (e.g., Campus Alliance for Sustainability and the Environment). This initiative would increase the visibility of restoration efforts on campus by creating and posting informational signs, creating and maintaining an online presence via OU's website and social media, organizing events to support and promote the effort (e.g., volunteer days), and raising funds to support native plantings and restoration projects on campus.

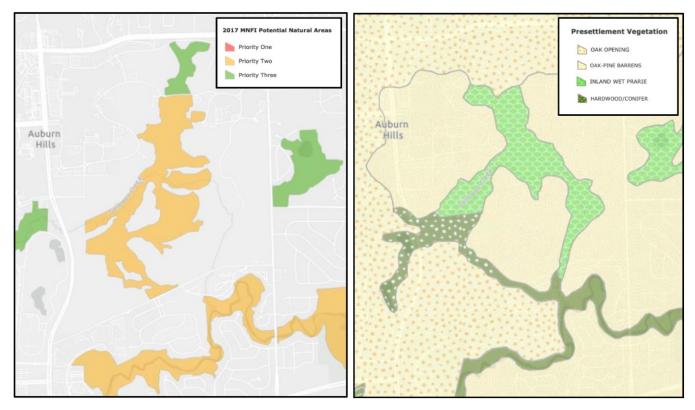
Table 1. Recommendations 1–11: changes to organizational leadership and university policies to facilitate approval of proposals and encourage decisions to protect and enhance biodiversity on OU's campus. For each action, we indicate its priority level, time frame to start (Short: 1–2 yrs; Long: 5–10 yrs), estimated cost per year (Medium: > \$5000; High: > \$50,000), and individuals or groups responsible for taking action.

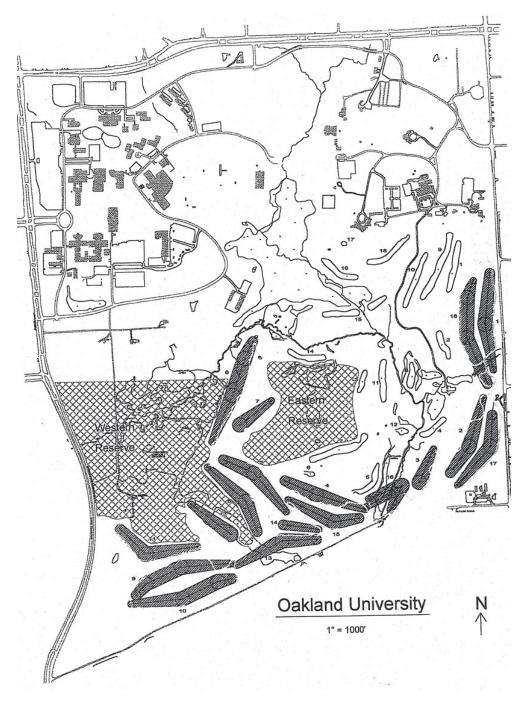
Category	Acti	on	Priority	Time frame	Cost	Responsibility
Leadership	1.	Create a standing Biodiversity Subcommittee of the Campus Development & Environment Committee (CDEC), focused on maintaining and enhancing biodiversity on campus. This subcommittee should have a composition similar to the current Campus Tree Advisory Ad Hoc Committee, and its charge could include responsibilities currently held by this ad hoc committee. This subcommittee could also serve as a first point of contact for student or faculty proposals aimed at preserving biodiversity on campus.	High	Short †	None	CDEC to create; Provost to appoint members
	2.	Establish a clear process for reviewing proposals by faculty and/or students to conduct landscaping projects on main campus. Guidelines for proposal preparation should be drafted to clarify: (1) who should proposers contact first to discuss details? (2) where should proposals be submitted (e.g., CDEC)? (3) which administrators would need to sign off on the proposal and in what order? which details must be included for full proposal review by CDEC (e.g., location, site layout, timing, funding and/or labor, long-term maintenance plan, contact info for responsible party)?	High	Short †	None	Biodiversity Subcommittee of CDEC (new), Facilities
	3.	Appoint committees (and/or faculty directors plus advisory councils) to oversee management of the Biological Preserve and the East Campus Field Station, with responsibility to coordinate use by students & faculty, work with Facilities to make decisions about land use and management, coordinate applications for outside funding to support academic activities, and protect biodiversity in these high-value wildlife habitats.	High	Short * †	Low	Provost; CAS Deans Office
	4.	Recruit a Sustainability Officer to coordinate sustainability initiatives on campus and initiate/coordinate grant proposals related to sustainable campus development.	High	Short †	High	President; Provost
Policies	5.	Identify low-use or low-visibility mowed areas that could be allowed to revert to natural landscapes via ecological succession. Reallocate funds from mowing to other types of landscape management, such as invasive species control.	High	Short * †	None	Facilities; Stakeholders
	6.	Develop a written policy document to guide decision-making by groundskeepers and their supervisors, which should include: (1) prioritizing natural landscapes instead of using lawn as our "default" ground cover; (2) prioritizing native plant species when making landscaping decisions throughout main campus and the golf course; (3) developing and protecting riparian buffer zones around wetlands including streams, lakes, ponds, and marshland.	High	Short	None	Facilities; CDEC
	7.	Promote training opportunities for groundskeepers aimed at reducing use of chemical fertilizers and pesticides on campus.	Medium	Medium †	Low	Facilities
	8.	Partner with organizations like MI Green Industry Association and the MI Botanical Society to expand groundskeeper access to training opportunities focused on preserving and enhancing wildlife habitat.	Medium	Medium †	Low	Facilities
	9.	Investigate and implement alternative options to reduce the use of salt for de-icing roads.	Medium	Medium †	Medium	Facilities
	10.	Implement bioswales as a preferred method for stormwater management in future construction projects.	Medium	Long †	Low or Medium	Facilities, CDEC
	11.	Re-visit the Campus Master Plan and adjust plans to increase prioritization of wildlife habitat in future construction, based on recently slowed growth in student enrollments and recent acquisitions of off-campus buildings.	Medium	Long	Medium	President; Provost; Facilities; CDEC

* Action has already been initiated; † Ongoing effort once started; CDEC = Campus Development & Environment Committee; MSU = Michigan State University


Table 2. Recommendations 12–22: direct actions to protect and enhance biodiversity on OU's campus. For each action, we indicate its priority level, time frame to start (Short: 1–2 yrs; Long: 5–10 yrs), estimated cost per year (Medium: > \$5000; High: > \$50,000), and individuals or groups responsible for taking action.

Action	Priority	Time frame	Cost	Responsibility
12. Reconfigure the Campus Beautification Fund into a repository for donations from community members interested in supporting plantings of native trees and shrubs on campus. Consider changes to the name or description of this fund to communicate a commitment to native plantings. Partner with Advancement and Communications & Marketing to raise funds and elevate the visibility of this initiative.	High	Short	None	Advancement; Facilities; UCM
13. Apply for external funds to support land management and conservation efforts, including invasive plant removal, ecological restoration, and controlled burns. Develop partnerships with local groups such as the Oakland County Sustainability Office and the Clinton River Watershed Council (CRWC) to write grant proposals and implement projects. Potential grants are available through the Fish and Wildlife Service Partners Program, the Competitive State Wildlife Grant (C-SWG) Program, the National Fish and Wildlife Foundation, the National Oceanic and Atmospheric Administration, and the Great Lakes Restoration Initiative.	High	Short †	Low	Sustainability officer (new); Facilities; Student & faculty groups
14. Incorporate invasive plant management and ecological restoration efforts into academic courses, to create service-learning opportunities for students.	High	Short †	Low	Faculty instructors; Biological Preserve Committee; Facilities
15. Contract with the U.S. Fish & Wildlife, Michigan Natural Features Inventory (MNFI, a nonprofit extension of Michigan State University), or similar organization to conduct a professional assessment of wildlife habitats on OU's campus and generate a detailed habitat inventory map. The 2017 MNFI assessment (Fig. 3) was based largely on pre-settlement vegetation types and is therefore multiple decades out of date. Obtaining an updated habitat inventory will be valuable for future conservation planning.	High	Short	Medium	Sustainability officer (new); Biodiversity Subcommittee (new)
 Partner with local organizations (e.g., Feral Flora, Plantwise, Natural Community Services, MSU Landscape Services) to design and install wildlife friendly alternatives to traditional landscaping. 	Medium	Short †	Medium	Sustainability officer (new); Biodiversity Subcommittee (new); Facilities
17. Increase legal protection for the Biological Preserve by establishing a conservation easement and/or by establishing an officially recognized Arboretum on all or part of the Preserve.	Medium	Medium	None	OU Legal; Biological Preserve Committee; CDEC
18. Organize a "Re-Wilding OU" initiative, with a primary goal of converting highly-managed (e.g., mowed) land into wildlife habitat. Partner with Advancement and Communications & Marketing to raise funds and elevate the visibility of this initiative.	Medium	Medium †	Low	Sustainability officer, Facilities, UCM, Biodiversity subcommittee (new), Academic departments, Student & faculty groups
19. Recruit and organize student groups to help establish, map, and maintain a system of clearly marked trails throughout the Biological Preserve.	Medium	Medium †	Low	Biological Preserve committee (new)
20. Work with the Partners for Fish and Wildlife program (U.S. Fish & Wildlife Service) to obtain assistance for planning, implementing, and funding habitat management and restoration, including identification of new local partners.	Medium	Medium †	Low or Medium	Sustainability officer (new); Facilities
21. Increase visibility of Biological Preserve by increasing its online presence, and/or by erecting educational signs and outdoor kiosks.	Medium	Medium †	Medium	Biological Preserve committee (new)
22. Develop and implement a Wildlife Habitat Management Plan for the OU campus. This should be done in consultation with a professional organization (e.g., Michigan Natural Features Inventory, Plantwise LLC, MSU Landscape Services, Cardno, Natural Community Services).	Medium	Medium	Medium	Sustainability officer (new); Standing Biodiversity Subcommittee (new)


[†] Ongoing effort once started; ; CDEC = Campus Development & Environment Committee; MSU = Michigan State University; UCM = University Communications & Marketing


Figure 1. Photos of OU biodiversity and activities involving the OU Biological Preserve. From top left: white tailed deer (Dr. Sandra Troxell-Smith); short-tailed shrew (Troxell-Smith); Blanding's turtle (Megan Jamison); monarch butterfly caterpillar (Dr. Mary Jamieson); eastern bumble bee (Jamieson); students collecting tree data (Dr. Keith Berven); students sampling Galloway Creek (OU Ecology Club); Dr. Scott Tiegs identifying aquatic invertebrates (OU Ecology Club); 2021 controlled burn (Dr. Tiegs).

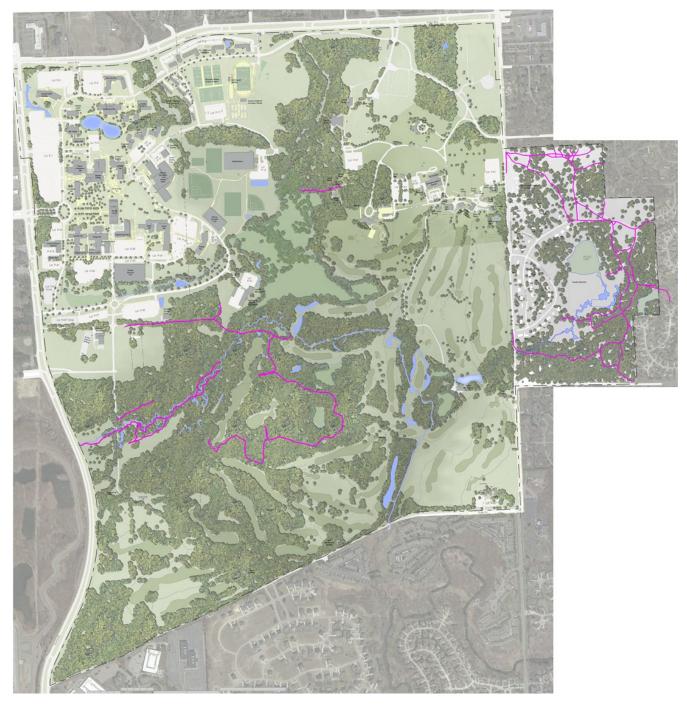

Figure 2. Map of habitat types on the Oakland University campus, based on the 2016 National Land Cover Database. Also highlighted are high-value wetland habitats, including many with documented use by breeding amphibians.

Figure 3. Michigan Natural Features Inventory (MNFI) map (2017) of high priority natural areas (left). The 2017 MNFI assessment was based in part on available data for pre-settlement vegetation types, as shown in the associated map (right). The Oak Opening natural communities is an imperiled habitat based on global conservation rankings (NatureServe G1 status). Oak-Pine Barrens and Inland Wet Prairies are both globally vulnerable natural communities (NatureServe G3 conservation status).

Figure 4. Map of the Oakland University campus from the 2000 memo of the Campus Development and Environment Committee to the OU Senate, delineating the boundaries of the Eastern and Western parts of the OU Biological Preserve. Also highlighted are numbered positions of golf course holes. Approximate locations of Katke-Cousins holes are indicated by open (white) shapes with free-drawn borders, and R & S Sharf holes are indicated by shaded polygons.

Figure 5. Map of Oakland University and the adjoining faculty subdivision, highlighting networks of existing trails through the OU Biological Preserve and the faculty subdivision (magenta lines). The positions and shapes of golf course holes are also highlighted in green. Map provided by Facilities.

Figure 6. Historic aerial imagery of Oakland University's campus in 1985 and 1999, for comparison with Figures 2 & 3. Notable changes in land cover include development of the second golf course in the 1999 map, and natural succession from pastureland to deciduous forest and woody woodlands in the Western Biological Preserve and in patches between golf holes in south campus. Images acquired using Google Earth.

Appendix 1. List of 595 confirmed wild animal, plant, and fungi species observed on Oakland University's campus, highlighting the diversity of wildlife present. This list is not a comprehensive survey of biodiversity on campus, since it only includes species observed during the course of research or teaching activities conducted by OU faculty and students. Superscript numbers highlight the many species observed on OU's Biological Preserve (1) or at the Student Organic Farm (2).

VERTEBRATE ANIMALS:

Amphibians (7):

Ambystoma laterale; Blue-spotted salamander² Anaxyrus americanus; America toad^{1,2} Hyla versicolor; Gray treefrog¹ Lithobates clamitans; Green frog¹ Lithobates sylvaticus; Wood frog¹ Pseudacris crucifer; Spring peeper¹ Pseudacris triseriata; Western chorus frog¹

Birds (143):

Accipiter cooperii; Cooper's hawk¹ Accipiter striatus; Sharp-shinned hawk¹ Actitis macularius; Spotted sandpiper1 Agelaius phoeniceus; Red-winged blackbird¹ Aix sponsa; Wood duck¹ Ammospiza leconteii; LeConte's sparrow¹ Anas platvrhvnchos: Mallard duck¹ Archilochus colubris; Ruby-throated hummingbird¹ Ardea alba; Great egret¹ Ardea herodias; Great blue heron¹ Baeolophus bicolor; Tufted titmouse¹ Bombycilla cedrorum; Cedar waxwing¹ Branta canadensis; Canada goose¹ Bubo virginianus; Great horned owl¹ Buteo jamaicensis; Red-tailed hawk¹ Buteo lineatus; Red-shouldered hawk1 Buteo platypterus; Broad-winged hawk¹ Butorides virescens: Green heron¹ Cardellina canadensis; Canada warbler¹ *Cardellina pusilla*; Wilson's warbler¹ Cardinalis cardinalis; Northern cardinal¹ *Cathartes aura;* Turkey vulture¹ Catharus fuscescens; Veery¹ Catharus guttatus; Hermit thrush¹ Catharus minimus; Gray-cheeked thrush¹ Catharus ustulatus: Swainson's thrush¹ Certhia americana; Brown creeper¹ *Chaetura pelagica*; Chimney swift¹ Charadrius vociferus; Killdeer¹ Chordeiles minor; Common nighthawk¹ Cistothorus palustris; Marsh wren¹ Colaptes auratus; Northern flicker¹ *Columba livia;* Rock pigeon¹ Contopus cooperi; Olive-sided flycatcher¹ *Contopus virens;* Eastern wood-pewee¹

Corthylio calendula; Ruby-crowned kinglet¹ Corvus brachyrhynchos; American crow¹ Cvanocitta cristata: Bluejav¹ *Cygnus olor*; Mute swan¹ Dolichonyx oryzivorus; Bobolink¹ Drvobates pubescens; Downy woodpecker¹ Dumetella carolinensis; Gray catbird¹ Empidonax minimus; Least flycatcher¹ Empidonax traillii; Willow flycatcher¹ *Eremophila alpestris*; Horned lark¹ Euphagus carolinus; Rusty blackbird¹ Falco columbarius; Merlin¹ Fulica americana: American coot¹ Gallinago delicata; Wilson's snipe¹ Gavia immer; Common loon¹ *Geothlypis trichas;* Common yellowthroat¹ Grus canadensis; Sandhill crane¹ Haemorhous mexicanus: House finch¹ Haemorhous purpureus; Purple finch¹ Haliaeetus leucocephalus; Bald eagle¹ *Hirundo rustica*; Barn swallow¹ *Hylocichla mustelina*; Wood thrush¹ Icterus galbula; Baltimore oriole¹ *Icterus spurius*; Orchard oriole¹ Junco hyemalis; Dark-eyed junco¹ Larus delawarensis; Ring-billed gull¹ Larus smithsonianus; Herring gull¹ Leiothlypis celata; Orange-crowned warbler¹ Leiothlypis peregrina; Tennessee warbler¹ Leiothlypis ruficapilla; Nashville warbler¹ Leuconotopicus villosus; Hairy woodpecker¹ Megaceryle alcvon; Belted kingfisher¹ Megascops asio: Eastern screech owl¹ Melanerpes carolinus; Red-bellied woodpecker¹ Melanerpes erythrocephalus; Red-headed woodpecker¹ *Meleagris gallopavo*; Wild turkey¹ *Melospiza georgiana*; Swamp sparrow¹ *Melospiza lincolnii*; Lincoln's sparrow¹ *Melospiza melodia*; Song sparrow¹ *Mniotilta varia*; Black-and-white warbler¹ Molothrus ater; Brown-headed cowbird¹ Myiarchus crinitus; Great crested flycatcher¹ Nannopterum auritum; Double-crested cormorant¹ Oporornis agilis; Connecticut warbler¹ Pandion haliaetus; Osprey¹ Parkesia motacilla: Louisiana waterthrush¹ *Parkesia noveboracensis*; Northern waterthrush¹ *Passer domesticus*; House sparrow^{1,2}

Passerculus sandwichensis: Savannah sparrow¹ Passerella arborea; American tree sparrow¹ *Passerella iliaca*; Fox sparrow¹ Passerina cyanea; Indigo bunting¹ Pheucticus ludovicianus; Rose-breasted grosbeak¹ Pipilo ervthrophthalmus: Eastern towhee¹ *Piranga olivacea*; Scarlet tanager¹ Plectrophenax nivalis; Snow bunting¹ Poecile atricapillus; Black-capped chickadee¹ Polioptila caerulea; Blue-gray gnatcatcher¹ *Pooecetes gramineus*; Vesper sparrow¹ *Quiscalus quiscula*; Common grackle¹ *Regulus satrapa*; Golden-crowned kinglet¹ Sayornis phoebe; Eastern phoebe¹ Scolopax minor; American woodcock¹ Seiurus aurocapilla; Ovenbird¹ Setophaga americana; Northern parula¹ Setophaga caerulescens; Black-throated blue warbler¹ Setophaga castanea; Bay-breasted warbler¹ Setophaga coronata; Yellow-rumped warbler¹ Setophaga fusca; Blackburnian warbler¹ Setophaga magnolia; Magnolia warbler¹ Setophaga palmarum; Palm warbler¹ Setophaga pensylvanica; Chestnut-sided warbler¹ Setophaga petechia; Yellow warbler¹ Setophaga pinus; Pine warbler¹ Setophaga ruticilla; American redstart¹ Setophaga striata; Blackpoll warbler¹ Setophaga tigrina; Cape may warbler¹ Setophaga virens: Black-throated green warbler¹ Sialia sialis; Eastern bluebird¹ Sitta canadensis; Red-breasted nuthatch¹ Sitta carolinensis; White-breasted nuthatch¹ Spatula discors; Blue-winged teal¹ Sphyrapicus varius; Yellow-bellied sapsucker¹ Spinus pinus: Pine siskin¹ Spinus tristis; American goldfinch¹ Spizella pallida; Clay-colored sparrow¹ *Spizella passerina*; Chipping sparrow¹ Spizella pusilla; Field sparrow¹ Stelgidoptervx serripennis; North rough-winged swallow¹ Sturnella magna; Eastern meadowlark¹ Sturnus vulgaris; European starling¹ Tachycineta bicolor; Tree swallow¹ Thryothorus ludovicianus; Carolina wren¹ Toxostoma rufum; Brown thrasher¹ Tringa solitaria; Solitary sandpiper¹ *Troglodytes aedon*; House wren¹ *Troglodytes hiemalis*; Winter wren¹ *Turdus migratorius*; American robin^{1,2} Tyrannus tyrannus; Eastern kingbird¹ Vermivora cyanoptera; Blue-winged warbler¹ Vireo flavifrons; Yellow-throated vireo1 Vireo gilvus; Warbling vireo¹ Vireo olivaceus; Red-eyed vireo¹

Vireo philadelphicus; Philadelphia vireo¹ Vireo solitarius; Blue-headed vireo¹ Zenaida macroura; Mourning dove¹ Zonotrichia albicollis; White-throated sparrow¹ Zonotrichia leucophrys; White-crowned sparrow¹

Fish (22):

Ameiurus melas; Black bullhead catfish¹ Campostoma anomalum; Central stoneroller¹ Catostomus commersonii; White sucker¹ Culaea inconstans; Brook stickleback¹ *Cyprinus carpio*; Common carp¹ Esox lucius; Northern pike¹ *Etheostoma caeruleum*; Rainbow darter¹ *Etheostoma nigrum*; Johnny darter¹ Hypentelium nigricans: Northern hogsucker¹ Lepomis cvanellus; Green sunfish¹ Lepomis macrochirus; Bluegill sunfish¹ Luxilus cornutus; Common shiner¹ Micropterus salmoides; Largemouth bass¹ Noturus flavus; Stonecat catfish¹ Oncorhynchus mykiss; Rainbow trout¹ Percina caprodes; Common logperch¹ Pimephales notatus; Bluntnose minnow¹ Pimephales promelas; Fathead minnow¹ Rhinichthys atratulus; Eastern blacknose dace¹ Salmo trutta; Brown trout1 Semotilus atromaculatus; Common creek chub¹ Umbra limi; Central mudminnow¹

Mammals (15):

Blarina brevicauda; Northern short-tailed shrew¹ Canis latrans; Coyote¹ Didelphis virginiana; Opossum¹ Glaucomys volan; Southern flying squirrel¹ Marmota monax; Groundhog Mephitis mephitis; Striped skunk¹ Neogale vison; Mink¹ Odocoileus virginianus; White-tailed deer¹ Ondatra zibethicus; Muskrat Procyon lotor; Common raccoon¹ Sciurus carolinensis; Eastern gray squirrel Sciurus niger; Fox Squirrel Sylvilagus floridanus; Eastern cottontail rabbit^{1,2} Tamias striatus; Eastern chipmunk ^{1,2} Tamiasciurus hudsonicus; American red squirrel¹

Reptiles (4):

Chelydra serpentina; Snapping turtle¹ *Emydoidea blandingii*; Blanding's turtle¹ *Storeria occipitomaculata*; Red-bellied snake¹ *Thamnophis sirtalis*; Common garter snake¹

INVERTEBRATE ANIMALS:

Crustaceans (3):

Armadillidium; Pillbugs *Decapoda*; Crayfish¹ *Isopoda*; Sowbug¹

Insects (180):

Acrididae; Short-horned grasshoppers¹ Aeshnidae: Darner dragonfly¹ Agapostemon sericeus; Silky Striped Sweat Bee2 Anasa tristis; Squash bug² Anatrytone logan: Delaware Skipper2 Andrena alleghaniensis; Allegheny Mining Bee2 Andrena crataegi; Hawthorn Mining Bee2 Andrena cressonii: Cresson's Mining Bee2 Andrena hirticincta; Hairy-banded Mining Bee2 Andrena miserabilis; Miserable Mining Bee2 Andrena nasonii; Nason's Mining Bee2 Andrena vicina; Neighborly Mining Bee¹ Ancyloxypha numitor; Least Skipper1,2 Apis mellifera; Honey bee^{1,2} Athericidae: Water snipe flv¹ Augochlora pura; Pure green sweat bee^{1,2} Augochlorella aurata; Golden Sweat Bee1,2 Augochloropsis fulgida; Green Metallic Bee2 Bicyrtes quadrifasciatus; Bombus auricomus; Black-and-gold bumble bee² Bombus bimaculatus: Two-spotted bumble bee² Bombus citrinus: Lemon cuckoo bumble bee² Bombus griseocollis; Brown-belted bumble bee² *Bombus impatiens*; Eastern bumble bee^{1,2} Bombvlius major; Greater bee fly² Burnsius communis; Common checkered skipper² Callibaetis picta; Small minnow mayfly¹ Caloptervgidae; Broad winged damselfly¹ *Calopteryx maculata*; Ebony jewelwing¹ *Celastrina ladon*; Spring azure¹ Ceratina calcarata; Wide-legged little carpenter bee² Ceratina dupla; Common eastern little carpenter bee² Ceratina mikmaqi; Mikmaq little carpenter bee² Ceratina strenua; White-striped little carpenter bee² *Cercyonis pegala*; Common wood-nymph¹ Chironomidae; Midge¹ Chrysochus auratus; Dogbane leaf beetle² *Cisseps fulvicollis*: Yellow-collared scape moth¹ Coelioxys alternata; Alternate cuckoo leafcutter bee² Coenonympha tullia; Ringlet² Colletes latitarsis; Ground-cherry plasterer bee² *Coenagrionidae*; Narrow winged damselfly¹ Coenonympha california; Common ringlet¹ Colias eurytheme; Orange sulphur Colias philodice; Clouded sulphur² Colias sp.; Clouded yellows¹

Corixidae; Water boatman¹ Cosmopepla lintneriana; Twice-stabbed stink bug Ctenucha virginica; Virginia ctenucha moth¹ Cupido comyntas; Eastern tailed blue² Curculionidae; Weevils¹ Danaus plexippus; Monarch butterfly^{1,2} Dryopidae; Long toed water beetles¹ *Elmidae*; Riffle beetles¹ Enodia anthedon; Epargyreus clarus; Silver-spotted skipper² *Ervnnis*; Duskywings¹ Erythemis simplicicollis; Eastern pondhawk¹ *Euodynerus*; Potter wasp¹ Euphydryas phaeton; Baltimore checkerspot¹ Euphyes conspicua; Black dash² Galgula partita; Wedgling moth Gerridae; Water striders¹ *Gomphidae*; Club tailed dragonfly¹ Halictus; Furrow bees² Harmonia axyridis; Multicolored Asian lady beetle² Halictus confusus; Confused sweat bee² Halictus ligatus; Ligated gregarious sweat bee² Halictus rubicundus; Polymorphic sweat bee² Hemaris diffinis; Snowberry clearwing² Herminiinae; Litter moths¹ *Hesperiidae*; Skippers^{1,2} Hoplitis pilosifrons; Hairy-faced summer mason bee² Hoplitis producta; Prolonged summer mason bee² Hoplitis truncata; Square-tail mason bee² Hvdropphilidae: Water scavengar beetles¹ Hydropsychidae; Net-spinning caddisfly¹ Hylaeus hyalinatus; Hyaline yellow-faced bee² Hylaeus modestus; Modest yellow-faced bee² Hylaeus sparsus; Carrot yellow-faced bee² Junonia coenia; Common buckeye Lampvridae: Firefly beetles¹ Lasioglossum anomalum; Anomalous sweat bee² Lasioglossum bruneri; Bruner's sweat bee² Lasioglossum succinipenne; Amber-winged sweat bee² Lasioglossum coriaceum; Leathery sweat bee² Lasioglossum cressonii; Cresson's sweat bee² Lasioglossum elissiae; Ellis's sweat bee² Lasioglossum ephialtum; Nightmare sweat bee² Lasioglossum foxii; Fox's sweat bee² Lasioglossum hitchensi; Hitchens's sweat bee² Lasioglossum illinoense; Horseshoe sweat bee² Lasioglossum imitatum; Bristle sweat bee² Lasioglossum leucocomum; White-haired golden sweat bee² Lasioglossum leucozonium: White-banded sweat bee² Lasioglossum lineatulum; Lineolated sweat bee² Lasioglossum near epialtum; Lasioglossum near laevissimum; Very smooth sweat bee² Lasioglossum pectorale; Dull-breasted sweat bee² Lasioglossum pilosum; Hairy sweat bee²

Lasioglossum smilacinae; Mayflower sweat bee² Lasioglossum admirandum; Admirable sweat bee² Lasioglossum paradmirandum; Stunning sweat bee² Lasioglossum timothyi; Timothy's sweat bee² Lasioglossum versans; Friendless sweat bee² Lasioglossum versatum: Experienced sweat bee² Lasioglossum vierecki; Viereck's sweat bee² Leptoceridae; Long-horned caddisfly¹ *Lethe eurydice*; Smoky-eyed brown butterfly¹ Libellula luctuosa; Widow skimmer¹ Libellula pulchella; Twelve-spotted skimmer Libellulidae; Skimmer dragonfly¹ *Limenitis archippus*; Viceroy^{1,2} *Limenitis arthemis*; Red-spotted purple butterfly Lomographa sp.; Moth genus¹ Lon hobomok; Hobomok skipper¹ *Lophocampa carvae*; Hickory tussock moth Lycaena phlaeas; American copper² Lygaeus turcicus; False milkweed bug² Meconema thalassinum; Drumming katydid Megachile exilis; a leafcutter bee² Megachile mendica; Beggar leafcutter bee² Megachile texana; Texas leafcutter bee² Megisto cymela; Little wood satyr¹ Melissodes agilis; Agile long-horned bee² Melissodes bimaculatus; Two-spotted long-horned bee² Melissodes illatus; Valiant long-horned bee² Melissodes subillatus; Vigorous long-horned bee² Melissodes wheeleri; Callirhoe bee²

Myrmeleontinae; Ant lions Nomada armatella; Armed cuckoo nomad bee² Nomada articulata; Articulated cuckoo nomad bee² Nomada pygmaea; Pygmy cuckoo nomad bee² Nepidae: Water Scorpion *Nomada*: Nomad bees² Nymphalis antiopa; Mourning cloak¹ Odontocorynus salebrosus; Weevil species¹ Osmia atriventris; Maine blueberry bee² Osmia conjuncta; Eastern snail shell mason bee² Osmia distincta; Distinct mason bee² Osmia pumila; Dwarf mason bee² Osmia taurus; a mason bee² Ophion sp.; Ichneumon wasp Papilio cresphontes; Eastern giant swallowtail² Papilio glaucus; Eastern tiger swallowtail Papilio polyxenes; Black swallowtail^{1,2} Papilio troilus; Spicebush swallowtail Peponapis pruinosa; Squash bee² Perdita octomaculata; Eight-spotted miner bee² *Phyciodes tharos*; Pearl crescent¹ *Pieris rapae*; Cabbage white butterfly^{1,2} Plathemis lydia; Common whitetail¹ Poanes massasoit; Mulberry wing² Poanes viator; Broad-winged skipper²

Polistes dominula; European paper wasp^{1,2} Polistes fuscatus; Dark paper wasp^{1,2} Polites peckius; Peck's skipper² Polygonia comma; Eastern comma¹ Pompeius verna; *Prochoerodes lineola*: Maple spanworm moth Psychomorpha epimenis; Grapevine epimenis moth¹ Pyrrharctia isabella; Isabella tiger moth² Rhaphidophoridae; Camel crickets Satvrium acadica; Acadian hairstreak¹ Satyrodes eurydice; Marsh eyed brown² Scarabaeidae; Scarabs¹ Simulida; Black flv¹ Sphaerophoria; Globetails¹ Speyeria cybele; Great spangled fritillary² Sphecodes johnsonii; Johnson's cuckoo sweat bee² Sphex ichneumoneus; Great golden digger wasp^{1,2} Strangalia luteicornis; Flower longhorn beetle¹ Sympetrum; Meadowhawks¹ Syrphini; Hoverflies¹ *Thymelicus lineola*; European skipper^{1,2} Veliidae; Small water striders¹ Vanessa atalanta: Red admiral² *Xanthotype*; Crocus geometer moths¹ *Xylocopa virginica*; Eastern carpenter bee^{1,2}

Millipedes (1):

Cylindroiulus; Millipede

Snails (2):

Bithyniidae; Mud snail¹ *Helisoma spp;* Rams horn snail¹

Spiders (3):

Hentzia palmarum; Common hentz jumping spider² *Mecaphesa sp.;* Crab spider *Phidippus audax*; Bold jumping spider²

<u>Worms (2):</u>

Lumbricus terrestris; Common earthworm *Oligochaeta*; Freshwater oligochaete¹

PLANTS & FUNGI:

Fungi (12):

Agaricus; Field and button mushrooms Antrodia; Antrodia mushroom Apiosporina morbosa; Black knot Calvatia gigantea; Giant puffball Cerioporus sp.; Dryad's saddle¹ Coprinus comatus; Shaggy mane¹ Hydnoporia olivacea; Brown-toothed crust fungus Lepiota; Lepiota mushroom² *Marasmius oreades*; Fairy ring marasmius² *Phallus rugulosus;* Wrinkly stinkhorn² *Stereum;* Hairy curtain crust fungus *Trametes gibbosa;* Lumpy bracket¹

Herbaceous plants (143):

Achillea millefolium: Common varrow^{1,2} Ageratina altissima; White snakeroot¹ Agrimonia parviflora; Small-flowered agrimony¹ Alliaria petiolata; Garlic mustard1, Allium vineale; Wild garlic Ambrosia artemisiifolia; Common ragweed Apocynum cannabinum; Hemp dogbane¹ Aquilegia canadensis; Red columbine² Arctium; Burdocks Asclepias incarnata: Swamp milkweed^{1,2} Asclepias syriaca; Common milkweed^{1,2} Asclepias tuberosa; Butterfly milkweed^{1,2} Berberis thunbergii; Japanese barberry Berteroa incana; Hoary alyssum² Bryopsida; Mosses Calvstegia; False bindweeds Cerastium: Mouse-ear chickweeds Cerastium fontanum; Mouse-eared chickweed¹ *Cichorium intybus*; Chicory^{1,2} *Cirsium arvense*; Creeping thistle^{1,2} Cirsium discolor; Field thistle¹ *Cirsium vulgare*; Bull thistle^{1,2} Colchicum; Naked ladies Convallaria majalis; European lily of the valley *Convolvuleae*; Morning glory family Coreopsis lanceolata; Sand coreopsis² *Cyperus*; Flat sedges Daucus carota; Queen Anne's lace^{1,2} Dianthus armeria; Deptford pink¹ Dicranum scoparium: Broom moss¹ Dipsacus fullonum; Wild teasel Echinacea pallida; Pale purple coneflower² Echinacea powwow; Coneflower powwow² *Echinacea purpurea*; Purple coneflower² *Elymus spp.*; Wild ryes and wheat grasses¹ Epilobium coloratum; Purpleleaf willowherb¹ Equisetum arvense; Field horsetail¹ Erechtites hieraciifolius; Fireweed Erigeron annuus; Daisy fleabane2 *Erigeron strigosus*: Daisy fleabane¹Eupatorium perfoliatum; Common boneset1 Euphorbia corollata; Flowering spurge Euthamia graminifolia; Flat-topped goldenrod¹ *Eutrochium maculatum*; Spotted Joe-Pye weed^{1,2} Galium mollugo; Hedge bedstraw¹ Geranium maculatum; Wild geranium¹ Geranium sanguineum; Bloody crane's-bill Glechoma hederacea; Ground ivy

Helenium autumnale; Common sneezeweed² Helianthus annuus; Common sunflower Helianthus divaricatus; Woodland sunflower¹ Heliopsis helianthoides; False sunflower² Hemerocallis fulva; Orange day-lily Hieracium lachenalii: Common hawkweed¹ Hieracium spp.; Hawkweeds *Houttuynia cordata*; Chameleon plant Hypericum perforatum; St. John's-wort¹ Hypericum prolificum; Shrubby St. John's-wort¹ Impatiens capensis; Common jewelweed¹ Iris versicolor; Northern blue flag¹ Lamiaceae; Mint family Leonurus cardiaca; Motherwort² Leucanthemum vulgare; Ox-eye daisv^{1,2} *Liatris aspera*: Rough blazing star² Liatris cylindracea: Cylindrical blazing star Liatris spicata; Dense blazing star¹ Lotus corniculatus; Bird's-foot trefoil¹ Lupinus perennis; Sundial lupine² Lythrum; Loosestrife Medicago lupulina; Black medic^{1,2} Mimulus ringens; Allegheny monkeyflower1 *Monarda fistulosa;* Bee balm^{1,2} Monotropa uniflora; Ghost pipes¹

Oenothera biennis; Evening primrose^{1,2} Onoclea sensibilis; Sensitive fern¹ Oxalis corniculata; Creeping woodsorrel Oxalis dillenii; Slender yellow woodsorrel¹ Oxalis stricta; Upright yellow woodsorrel¹ Packera; Ragwort¹ Penstemon digitalis; Foxglove beardtongue1, Penstemon hirsutus; Hairy beardtongue^{1,2} Persicaria maculosa; Lady's thumb Phlox pilosa; Prairie phlox² Phragmites australis; European reed Physalis virginiana; Ground cherry² Physostegia virginiana; Obedient plant² *Plantago lanceolata*; Ribwort plantain^{1,2} Plantago major; Greater plantain^{1,2} Podophyllum peltatum; Mayapple Potentilla recta; Sulphur cinquefoil¹ Potentilla simplex; Common cinquefoil^{1,2} *Prunella vulgaris*; Common selfheal^{1,2} Pseudognaphalium obtusifolium; Sweet everlasting² Pycnanthemum virginianum; Virginia mountain mint^{1,2} *Ranunculus;* Buttercups¹ Ranunculus acris; Common buttercup¹ Ratibida pinnata; Gray-headed coneflower² Rosa multiflora; Multiflora rose¹ Rudbeckia hirta; Black-eyed Susan^{1,2} Rudbeckia lacinata; Cutleaf-coneflower² Rumex crispus: Curly dock Salvia nemorosa; Woodland sage²

Sanguinaria canadensis; Bloodroot¹ Scilla; Wood hyacinth *Securigera varia*; Purple crownvetch¹ Silene latifolia; White campion2 Silphium terebinthinaceum; Prairie dock2 Sisvrinchium angustifolium: Blue-eved grass¹ Solanum carolinense; Carolina horsenettle Solanum emulans; Eastern black nightshade² Solidago canadensis; Canada goldenrod1,2 Solidago gigantea; Giant goldenrod¹ Solidago juncea; Early goldenrod¹ Solidago rigida; Stiff goldenrod2 Solidago rugosa; Wrinkle-leaved goldenrod¹ Symphyotrichum; American asters² *Symphyotrichum laeve*; Smooth blue aster^{1,2} Symphyotrichum lanceolatum; Panicled aster Symphyotrichum lateriflorum; Calico aster^{1,2} Symphyotrichum novae-angliae; New England aster^{1,2} Symplocarpus foetidus; Eastern skunk cabbage¹ Taraxacum erythrospermum; Red-seeded dandelion Taraxacum officinale: Common dandelion1.2 Tradescantia ohiensis; Ohio spiderwort2 Trifolium hybridum; Alsike clover¹ *Trifolium pratense*; Red clover^{1,2} *Trifolium repens*; White clover^{1,2} Tussilago farfara; Colt's-foot¹ Typha; Cattails Verbascum thapsus; Great mullein Verbena hastata; Blue vervain1 Verbena urticifolia: White vervain¹ Veronia missurica; Ironweed2 Veronicastrum virginicum; Culver's root2 Vicia tetrasperma; Smooth tare¹ *Viola sp.;* Violets Zizia aurea; Golden alexander^{1,2}

Trees & Shrubs (58):

Acer negundo; Box elder¹ Acer platanoides; Norway maple Acer rubrum; Red maple¹ Acer saccharinum; Silver maple¹ Acer saccharum; Sugar maple¹ Amelanchier sp.; Serviceberry¹ Betula alleghaniensis; Yellow birch Carpinus caroliniana; American hornbeam¹ Carva cordiformis: Bitternut hickory¹ Carya glabra; Pignut hickory¹ Carya ovata; Shagbark hickory *Catalpa speciosa*; Northern catalpa Celtis occidentalis; Common hackberry Cornus drummondii; Roughleaf dogwood Cornus racemosa; Gray dogwood Cotoneaster; Cotoneasters Crataegus laevigata; Midland hawthorn¹ Cupressus; Cypress

Elaeagnus umbellata; Autumn olive¹ Fagus grandifolia; American beech¹ Forsythia intermedia; Forsythia Fraxinus americana; White ash¹ Fraxinus pennsylvanica; Green ash¹ *Gleditsia triacanthos*: Honey locust Hamamelis sp.; Witch hazel¹ Juglandaceae; Walnut Juniperus; Juniper Ligustrum obtusifolium; Border privet *Ligustrum sinense*; Chinese privet Ligustrum vulgare; Common Privet Lonicera; Honeysuckles Magnolia soulangeana; Saucer magnolia Malus sp.; Crab apple¹ Ostrva virginiana; Hop hornbeam¹ Picea abies: Norway spruce *Pinaceae*: Pine Pinus strobus; Eastern white pine¹ Podocarpus macrophyllus; Buddhist pine Populus deltoides; Cottonwood¹ *Populus grandidentata;* Big-tooth aspen¹ Prunus serotina; Black cherry¹ Prunus virginiana; Chokecherry¹ Pyrus calleryana; Callery pear *Ouercus alba*: White oak¹ *Quercus bicolor*; Swamp white oak *Quercus macrocarpa*; Bur oak¹ *Quercus rubra*; Northern red oak¹ *Ouercus velutina:* Black oak¹ *Rhamnus cathartica*; Common buckthorn¹ Rosa blanda; Smooth rose Rosa multiflora; Multiflora rose Rubus occidentalis; Black raspberry Sassafras albidum; Sassafras¹ *Symphoricarpos orbiculatus*; Coralberry Tilia americana; American basswood¹ *Ulmus americana*; American elm¹ *Ulmus rubra*; Slippery elm¹ Viburnum sieboldii; Siebold's viburnum¹

Appendix 2. Courses that rely on the biodiversity and natural areas of OU's campus.

- BIO 1201 Biology laboratory
- BIO 3312 Field botany
- BIO 3330 Ecology
- BIO 3332 Field biology
- BIO 3351 Animal behavior lab
- BIO 3360 Organic farming
- BIO 3361 Applied organic farming
- BIO 3362 Permaculture
- BIO 3363 Permaculture lab
- BIO 4310 Conservation biology
- BIO 4321 Medical parasitology lab
- BIO 4336 Population and Community Biology
- BIO 4381 Ecological problem solving lab
- BIO 4350 Topics in behavioral biology
- BIO 4970 Scientific Inquiry and Communication
- BIO 4995 Independent research
- CHM 4100 Environmental Chemistry
- CHM 4130 Environmental Aquatic Chemistry
- CHM 4996 Independent Research
- ENV 3080 Introduction to Environmental Science
- ENV 3700 Principles of Soil Science
- ENV 3750 Introduction to Apiculture and Sustainability
- ENV 4800 Biogeochemical cycling
- ENV 4850 Environmental Fate and Transport
- ENV 4950 Environmental Science Internship

Appendix 3. Publications by OU researchers and students* involving natural areas on OU's campus.

- 1. *Scherr, K.D., and Jamieson, M.A. 2021. Abiotic and biotic drivers of strawberry productivity across a ruralurban gradient. In press: Basic and Applied Ecology
- Boyero, L., M.O. Gessner, R.G. Pearson, E. Chauvet, J. Pérez, J., S.D. Tiegs, A.M. Tonin, F. Correa-Araneda10, N. López-Rojo and M.A.S. Graça. 2021. Global Patterns of Plant Litter Decomposition in Streams. In: Boyero L., Swan C. and C. Canhoto (Eds.), Leaf Litter Breakdown in Freshwater Ecosystems
- Ferreira, V., Elosegi, A, Tiegs, S.D., von Schiller, D., and R. Young. 2020. Organic-Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers – a Systematic Review. Water 12: 3523.
- *Parkinson, E., *Lawson, J. and S.D. Tiegs. (2020). Artificial Light at Night at the Terrestrial-Aquatic Interface: Effects on Predators and Fluxes of Insect Prey. PLOS1
- *Wilson, C.J., and Jamieson, M.A. 2019. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLOS ONE 14 (12), e0225852-e0225852.
- Fitch, G., *Wilson, C.J., Glaum, P., Vaidya, C., Simao, and Jamieson, M.A. 2019. Does urbanization favour exotic bee species? Implications for the conservation of native bees in cities. Biology Letters 15: 20190574.
- Jamieson, M.A., Carper, A.L., *Wilson, C.J., Scott, V.L., and Gibbs, J. 2019. Geographic bias in bee community research limits understanding of species distribution and response to anthropogenic disturbance. Frontiers in Ecology and Evolution 7: 194.
- Tiegs, S.D., and 149 other authors. (2019). Global Patterns and Drivers of Ecosystem Functioning in Rivers and Riparian Zones. Science Advances 5, eaav0486.
- Stephens*, JP, KA Altman*, KA Berven, SD Tiegs, TR Raffel. 2017. Bottom-up and trait-mediated effects of resource quality on amphibian parasitism. Journal of Animal Ecology 86 (2), 305-315
- Jackson, M., O. Weyl, F. Altermatt, I. Durance, N. Friberg, A. Dumbrell, J. Piggott, S.D. Tiegs, K. Tockner, A. Lehmann, A. Narwani, C. Krug, Leadley and G. Woodward. 2016. Recommendations for the Next Generation of Global Freshwater Biomonitoring Tools. Advances in Ecological Research 55:615-636.
- 11. A.B. Stoler, M.N. Golembieski*, J.P. Stephens*, T.R. Raffel. 2016. Differential consumption and assimilation of leaf litter by wetland herbivores:

alternative pathways for decomposition and trophic transfer. Freshwater Science 35 (1), 178-18

- *Wensink, S. and S.D. Tiegs. 2016. Shoreline Hardening Alters Freshwater Shoreline Ecosystems. Freshwater Science 35:764-77.
- Griffiths, N.A., and S.D. Tiegs. 2016. Organic-matter Decomposition along a Temperature Gradient in a Forested Headwater Stream. Freshwater Science 35:518-533.
- Stephens*, JP, KA Berven, SD Tiegs, TR Raffel . 2015. Ecological stoichiometry quantitatively predicts responses of tadpoles to a food quality gradient. Ecology 96 (8), 2070-2076
- Tiegs, S.D., J.E. Clapcott, N.A. Griffiths and A.J. Boulton. 2013. A Standardized Cotton-strip Assay for Measuring Organic-matter Decomposition in Streams. Ecological Indicators 32:131-139.
- Stephens*, JP, KA Altman*, KA Berven, SD Tiegs, TR Raffel. 2017. Bottom-up and trait-mediated effects of resource quality on amphibian parasitism. Journal of Animal Ecology 86 (2), 305-315
- Jackson, M., O. Weyl, F. Altermatt, I. Durance, N. Friberg, A. Dumbrell, J. Piggott, S.D. Tiegs, K. Tockner, A. Lehmann, A. Narwani, C. Krug, Leadley and G. Woodward. 2016. Recommendations for the Next Generation of Global Freshwater Biomonitoring Tools. Advances in Ecological Research 55:615-636.
- A.B. Stoler, M.N. Golembieski*, J.P. Stephens*, T.R. Raffel. 2016. Differential consumption and assimilation of leaf litter by wetland herbivores: alternative pathways for decomposition and trophic transfer. Freshwater Science 35 (1), 178-18
- *Wensink, S. M.; Hoffman, J. R.; Gamboa, G. J., W. Konenig. 2013. Simulated Intraspecific Usurpations in Paper Wasps: Different Reproductive Tactics Affect Foreign Brood Destruction in *Polistes fuscatus* and *Polistes dominulus*. Ethology 119: 745-750
- 20. Gamboa, G. J, C. R. Donnelly*. 2013. A ten-year comparative study of the population dynamics and parasitoidism in the native paper wasp *Polistes fuscatus* and the invasive *P. dominulus*. Insected Sociaus 60:49-56.
- 21. *Greiner, H.G., D.R. Kashian and S.D.Tiegs. 2012. Impacts of Invasive Asian (<u>Amynthas hilgendorfi</u>) and European (<u>Lumbricus rubellus</u>) Earthworms in a North American Temperate Deciduous Forest. Biological Invasions 14:2017-2027.
- *Greiner, H.G., *A.M.T. Stonehouse, and S.D.Tiegs.
 2011. Cold Tolerance among Composting Earthworm Species to Evaluate Invasion Potential. <u>American</u> <u>Midland Naturalist</u> 166:349-35
- 23. *Greiner, H.G., D.M. Costello and S.D.Tiegs. 2010. Allometric Estimation of Earthworm Ash-Free Dry

Mass from Diameters and Lengths of Select Megascolecid and Lumbricid Species. <u>Pedobiologia</u> 53:247-252.

- 24. Gamboa, G. J., J. L.Savoyard*, L.M. Panek*. 2011. The disappearance of subordinate foundresses in paper wasps: Eviction by nestmates or reproductive strategy? Canadian Journal of Zoology 77(12):1928-1933
- Gamboa, G. J., K.A. Stump. 2011. The timing of conflict and cooperation among cofoundresses of the social wasp *Polistes fuscatus* (Hymenoptera: Vespidae). Canadian Journal of Zoology 74(1):70-74
- 26. Gamboa, G.J., T. Wacker*, K.G. Duffy, S. Dobson, T.G. Fischwild*. 2011. Defence against intraspecific usurpation by paper wasp cofoundresses (*Polistes fuscatus*, Hymenoptera: Vespidae). Canadian Journal of Zoology 70(12):2369-2372
- Gamboa, G. J., R. L. Foster, K. W. Richards. 2011. Intraspecific nest and brood recognition by queens of the bumble bee, Bombus occidentalis (Hymenoptera: Apidae). Canadian Journal of Zoology 65(12):2893-2897
- Ryan*, R.E., T. J. Cornell, * G. J. Gamboa. 2010. Nestmate Recognition in the Bald-faced Hornet, *Dolichovespula maculata* (Hymenoptera: Vespidae. Ethology 69(1):19 - 26)
- Gamboa G. J., T. Wacker*, A. Scope*, T. J. Cornell*, J. S. Sherman. 2010.The Mechanism of Queen Regulation of Foraging by Workers in Paper Wasps (*Polistes fuscatus*, Hymenoptera: Vespidae). Ethology 85(4):335 - 343
- Gamboa, G.J. 2008. Comparative timing of brood development between multiple- and single-foundress colonies of the paper wasp, *Polistes metricus*. Ecological Entomology 5(3):221 - 225
- 31. Liebert A. E., G. J. Gamboa, N. E. Stamp*, T.R. Curtis, K. M. Monnet*, S. Turillazzi, P.T. Starks, S. Starks. 2006. Genetics, behavior and ecology of a paper wasp invasion: *Polistes dominulus* in North America. Annales Zoologici Fennici 43(5):595-624
- 32. Gamboa, G.J. 2004. Kin recognition in eusocial wasps. Annales Zoologici Fennici 41(6)
- 33. Gamboa, G.J., L.A. Austin, K.M. Monnet*. 2005. Effects of different habitats on the productivity of the native paper wasp *Polistes fuscatus* and the invasive, exotic paper wasp P. *dominulus* (Hymenoptera: Vespidae). Great Lakes Entomologist 38(3):170-176
- 34. Gamboa, G. J., Noble*, M. A., Thom*, M. C., Togal, J. L., R. Srinivasan, B.D. Murphy. 2004: The comparative biology of two sympatric paper wasps in Michigan, the native *Polistes fuscatus* and the invasive *Polistes dominulus* (Hymenoptera, Vespidae). — Insectes Soc. 51: 153-157.
- 35. Silagi, S.A., G. J. Gamboa, C. R. Klein, M. A. Noble. 2003. Behavioral differences between two recently sympatric paper wasps, the native *Polistes fuscatus*

and the invasive *Polistes dominulus*. Great Lakes Entomologist 36(3):99-104

- 36. Gamboa, G. J., Greig, E. I. & Thorn, M. C. 2002: The comparative biology of two sympatric paper wasps, the native Polistes fuscatus and the invasive *Polistes dominulus* (Hymenoptera, Vespidae). Insectes Soc. 49: 45^19.
- Savoyard, J.L., G.J. Gamboa, 1999. Cofoundress value as a predictor of the timing of conflict in the social wasp, Polistes fuscatus (Hymenoptera Vespidae), Ethology Ecology & Evolution 11: 77-83.
- Gamboa, G. J., H.K. Reeve, D.W. Pfennig. 2003. The Evolution and Ontogeny of Nestmate Recognition in Social Wasps. Annual Review of Entomology 31(1):431-454
- 39. Gamboa, G.J., E.I. Greig*, M.C. Thom*. 2002. The comparative biology of two sympatric paper wasps, the native *Polistes fuscatus* and the invasive *Polistes dominulus* (Hymenoptera, Vespidae). Insectes Sociaux 49(1):45-49.
- Van Hooser*, C. A., G. J. Gamboa, T. G. Fishwild*.
 2002. The function of abdominal stroking in the paper wasp, Polistes fuscatus (Hymenoptera Vespidae).
 Ethology Ecology and Evolution April 2002(2):141-148
- Panek*, L.M., G. J. Gamboa. 2001. Queens of the Paper Wasp *Polistes fuscatus* (Hymenoptera: Vespidae) Discriminate among Larvae on the Basis of Relatedness. Ethology 106(2):159 - 170
- 42. Panek*, L.M., G. J. Gamboa, K.E. Espelie. 2001. The Effect of a Wasp's Age on Its Cuticular Hydrocarbon Profile and Its Tolerance by Nestmate and Non-Nestmate Conspecifics (*Polistes fuscatus*, Hymenoptera: Vespidae). Ethology 107(1):55 63
- Cummings, D., G.J. Gamboa, B.J. Harding. 1999. Lateral Vibrations by Social Wasps Signal Larvae to Withhold Salivary Secretions (*Polistes fuscatus*, Hymenoptera: Vespidae). Journal of Insect Behavior 12(4)
- 44. Harding, B.J., G.J. Gamboa. 1998. The sequential relationship of body oscillations in the paper wasp, *Polistes fuscatus* (Hymenoptera : Vespidae). Great Lakes Entomologist 31(3-4):191-194
- Savoyard, J. L., G. J. Gamboa, D. Cummings, R.L. Foster. 1998. The communicative meaning of body oscillations in the social wasp, *Polistes fuscatus* (Hymenoptera, Vespidae. Insectes Sociaux 45(2):215-230)
- 46. Gamboa, G. J. 1996: Kin recognition in social wasps.
 In: Turillazzi, S. & West-Eberhard, M. J. (eds.), Natural history and evolution of paper-wasps: 161-177. Oxford University Press, Oxford.
- 47. Gamboa, G. J. & Stump, K. A. 1996: The timing of conflict and cooperation among cofoundresses of the

social wasp *Polistes fuscatus* (Hymenoptera: Vespidae). — Can. J. Zoo. 74: 70-74.

- Gamboa, G.J., T. A. Grudzien, K.E. Espelie, E.A. Bura*. 1996. Kin recognition pheromones in social wasps: Combining chemical and behavioural evidence. Animal Behaviour 51(3):625-629
- Espelie, K.E., G. J. Gamboa, T.A. Grudzien, E.A. Bura*. 1994. Cuticular hydrocarbons of the paper wasp,Polistes fuscatus: A search for recognition pheromones. Journal of Chemical Ecology 20(7):1677-87
- Bura*, E.A., G.J. Gamboa. 1994. Kin recognition by social wasps: asymmetric tolerance between aunts and nieces. Animal Behaviour 47(4):977–979
- Fischwild, T. G., G. J. Gamboa. 1992. Colony defence against conspecifics: caste-specific differences in kin recognition by paper wasps, *Polistes fuscatus*. Animal Behaviour 43(1):95-102
- Gamboa, G.J. R.L. Foster, J.A. Scope, A. M. Bitterman*. 1991. Effects of stage of colony cycle, context, and intercolony distance on conspecific tolerance by paper wasps (*Polistes fuscatus*). Behavioral Ecology and Sociobiology 29(2):87-94.
- 53. Gamboa, G. J., Foster*, R. L., Scope*, J. A. & Bitterman*, A. M. 1991: Effects of stage of colony cycle, context, and intercolony distance on conspecific tolerance by paper wasps (*Polistes fuscatus*). Behav. Ecol. Sociobiol. 29: 87-94.
- 54. Fischwild*, T. G., R. A. Schemidt*, K. M. Jankens*, K. A. Berven, G. J. Gamboa, C. M. Richards. 1990. Sibling Recognition by Larval Frogs (*Rana pipiens, R. sylvatica, and Pseudacris crucifer*). Journal of Herpetology 24(1):40-44.
- 55. Gamboa, G.J., T. Wacker*, J.A. Scope*, T.J. Cornell*, J.S. Shellman Sherman, 1990. The mechanism of queen regulation of foraging by workers in paper wasps (*Polistes fuscatus*, Hymenoptera: Vespidae). Ethology 85:335-343.
- Gamboa, G.J. 1988. Sister, aunt-niece, and cousin recognition by social wasps. Behavior Genetics 18(4):409-23
- Reeve*, H.K., G.J. Gamboa, 1987. Queen Regulation of Worker Foraging in Paper Wasps: a Social Feedback Control System (*Polistes fuscatus*, Hymenoptera: Vespidae). Behaviour 102(3):147-167.
- Gambia, G.J., J. Klahn*, A.O. Parman*, R..E..Ryan*. 1987. Discrimination between nestmate and nonnestmate kin by social wasps (*Polistes fuscatus*, Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology 21(2):125-128.
- Syan*, R.E., G.J. Gamboa. 1986. Nestmate Recognition Between Males and Gynes of the Social Wasp *Polistes fuscatus* (Hymenoptera: Vespidae). Annals of the Entomological Society of America 79(4):572-575.

- Gamboa, G.J., H.K. Reeve*, I.D. Ferguson*, T. Wacke*r. 1986. Nestmate recognition in social waSPS: the origin and acquisition of recognition odours. Animal Behaviour 34(3):685-695.
- Gamboa, G.J. 1986. The Evolution and Ontogeny of Nestmate Recognition in Social Wasps. Annual Review of Entomology 31(1):431-454
- 62. Larch*, C.M. and A.K. Sakai. 1985. Oak forest succession in the Oakland University Nature Trails Area, Oakland county, Michigan. The Michigan Botanist 24: 210-32.
- Shellman Sherman, J. G. J. Gamboa. 1985. Male social wasps (*Polistes fuscatus*, hymenoptera: Vespidae) recognize their male nestmates. Animal Behaviour 33(1):331-333.
- 64. Ryan, R., G. Forbes, G.J. Gamboa. 1984. Male social wasps fail to recognize their brothers (*Polistes fuscatus*, Hymenoptera: Vespidae)
- 65. Bornais, K.M., C.M. Larch*, G.J. Gamboa, R. B. Daily. 1983. Nestmate discrimination among laboratory overwintered foundresses of the paper wasp, *Polistes fuscatus* (Hymenoptera: Vespidae). The Canadian Entomologist 115(6):655-65