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ABSTRACT 
 
 
 
ROBUST NON-LINEAR LYAPUNOV DEEP LEARNING CONTROL DESIGN FOR 

CHAOTIC SYSTEMS 
 

by 
 

AMR SALAH MAHMOUD 
 

 
Adviser:  Mohamed Zohdy, Ph.D. 
 
 
 Despite their operational success, machine learning controllers lack theoretical 

guarantees in terms of system stability. In contrast, classic model-based controller design 

uses principled approaches such as Linear Quadratic Regulator (LQR) to synthesize 

stable controllers with verifiable proofs. In addition, deep learning controllers encounter 

feedback timing bottlenecks that increase exponentially with the system complexity. 

Deep learning is also dependent on the quality and diversity of the dataset to produce 

unbiased findings; therefore, the prediction of deep learning is not guaranteed. As a 

result, in this research, we develop and implement a guaranteed stability solution for 

safety critical and chaotic systems through the integration of Lyapunov Stability theory 

and deep machine learning. Three control methods are researched, leading to the 

development of the Deep Lyapunov-stable controller: the deep learning methodology, the 

Lyapunov control function, and controller parameters. In this research, we provide a 

generic method for synthesizing a Deep Lyapunov-stable control and a way to 

simultaneously confirm its stability. A unique Lyapunov control function is devised and 

shown to be effective in managing Duffing, Van der Pol, and Zohdy-Harb nonlinear 
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systems, but with restrictions on the system's oscillation frequency, initial conditions and 

disturbances. Subsequently, Dynamic Lyapunov Deep Learning is introduced to alleviate 

the Lyapunov control’s shortcomings. Developing a deep learning architecture in 

combination with a customized Lyapunov control resolves the temporal delay and 

Lyapunov parameters calibration concern. Different datasets are also presented before 

establishing the one with the best accuracy. In addition to the dataset, the architecture of 

the deep learning model has a significant effect on the model's accuracy. A process for 

relearning is intended to accommodate the introduction of new system dynamics. Based 

on the correlation study, we also designed an optimization technique to improve the 

integration of the deep learning layer and controller layer. The proposed integration of 

Deep Learning and Lyapunov Control, referred to as Lyapunov Deep Learning (LDL) 

control, is applied in MATLAB / SIMULINK to the magnetic levitation chaotic non-

linear system to demonstrate its effectiveness in addressing sudden changes in system 

behavior, the environment, and demands in comparison to other methods of control. 

 
 
 



vii 

TABLE OF CONTENTS 
 
 

 
ACKNOWLEDGMENTS iv 
 
ABSTRACT v 
 
LIST OF TABLES xi 
 
LIST OF FIGURES xii 
  
 
CHAPTER ONE 
INTRODUCTION  1 
 
 1.1 Fundamentals of Complex Non-Linear System 1 
   
  1.1.1 Duffing System 3 
   
  1.1.2 Van der Pol System 3 
 
  1.1.3 Navier-Stokes Equations in Fluid Dynamics 4 
   
  1.1.4 Lotka-Volterra Equations 5 
 
  1.1.5 Lorenz Chaotic Systems 5 
 
 1.2 An Overview of Nonlinear Control 6 
  
  1.2.1 Gain Scheduling 8 
   
  1.2.2 Adaptive Control 8 
  
  1.2.3 Model Predictive Control 8 
 
 1.3 Lyapunov Control Function 11 
 
 1.4 Thesis Chapter Outline 12 
 
CHAPTER TWO 
LITERATURE REVIEW AND THESIS CONTRIBUTION 14 
 
 2.1 Traditional Non-Linear Control 14 
 



viii 

TABLE OF CONTENTS—Continued 
 
 
 
 2.2 Model Predictive Control 16 
 
 2.3 Genetic Algorithms 19 
 
 2.4 Machine Learning Control 20 
 
 2.5 Contribution 23 
 
CHAPTER THREE 
LYAPUNOV STABILITY THEORY 25 
 
 3.1 Non-Linear Oscillators 25 
 
 3.2 Duffing Lyapunov Control and Analysis 27 
 
 3.3 PID Controlled Duffing System 28 
 
 3.4 Van der pol Lyapunov Control and Analysis 29 
  
 3.5 PID Controlled Van der pol System 31 
 
 3.6 Zohdy-Harb Lyapunov Control and Analysis 31 
 
 3.7 PID Controlled Zohdy Harb System 34 

CHAPTER FOUR 
NN PREDICTIVE CONTROL 36 
 
 4.1 Types of Machin Learning Control 38 
 
 4.2 Genetic Algorithms 39 
 
 4.3 Reinforcement learning 42 
 
 4.4 Neural Network Control 44 
  
 4.5 Model Predictive Control 46 
 
 4.6 NN Predictive control Zohdy-Harb System 47 
 
 4.7 Applying NN Predictive control Duffing 51 



ix 

TABLE OF CONTENTS—Continued 
 
 
 
 4.8 Applying NN Predictive control Van der pol 52 
 
CHAPTER FIVE 
LYAPUNOV DEEP LEARNING CONTROL 55 
 
 5.1 Machine Learning Lyapunov Control 56 
 
 5.2 Duffing System 58 
 
 5.3 Deep Neural Network Architecture 60 
 
  5.3.1 Dataset (Trail 1) 62 
   
  5.3.2 Dataset (Trail 12) 64 
 
  5.3.3 Dataset (Trail 116) 66 
 
 5.4 Feature Engineering 67 
 
 5.5 Deep Neural Network Architecture 68 
 
  5.5.1 Vanishing Gradient Problem 68 
 
  5.5.2 Batch Normalization 69 
 
  5.5.3 Long Short-Term Memory 69 
  
  5.5.4 Dataset (Trail 144) 70 
 
 5.6 Lyapunov Deep Learning Control on Zohdy-Harb 71 
 
CHAPTER SIX 
MAGNETIC LEVITATION APPLICATION 77 
 
 6.1 Magnetic Levitation System Dynamics 79 
 
  6.1.1 State Space Representation 81 
 
 6.2 Design of the Lyapunov Controller 82 
 
 



x 

TABLE OF CONTENTS—Continued 
 
 
 
 6.3 Deep Learning Algorithm 83 
 
  6.3.1 Customized Deep Learning Architecture 85 
 
  6.3.2 Parameterized Complexity and Dynamic Programming 86 
  
 6.4 Maglev Dynamic LDL Control Results 89 
 

6.5 Correlation Study and DL Algorithm Application Results 94 
 
CHAPTER SEVEN 
CONCLUSION AND FUTURE WORK 99 
 
 7.1 Conclusion 99 
 
 7.2 Future work 101  
  
REFERENCES   102 



xi 

LIST OF TABLES 
 
 
 
Table 1 Duffing Oscillator parameters table 27 
 
Table 2 Van der pol Oscillator parameters table 29 
 
Table 3 Zohdy-Harb oscillator parameters table 32 
 
Table 4 Maglev system parameters 90 
 
Table 5 Lyapunov controller parameters 90 
 
Table 6 Person equation parameter table  95 
 
 
 
 
 



xii 

LIST OF FIGURES 
 
 
 
Figure 1 Relationship between Dynamic, Nonlinear and Chaotic systems 2 
 
Figure 2 Genetic Algorithms Applied to Reinforcement Learning Tasks 20 
 
Figure 3 Phase plane solution of Duffing System under Lyapunov control 28 
 
Figure 4 Phase Plane Solution of Duffing System under PID control 29 
 
Figure 5 Phase plane solution for Van der pol system under Lyapunov  
 control  30 
 
Figure 6 Phase plane solution for Van der pol system under PID control 31 
 
Figure 7 Phase plane solution of Zohdy-Harb system under Lyapunov  
 control 33 
 
Figure 8 Position output compared to reference signal under Lyapunov  
 control 33 
 
Figure 9 Phase plane solution for PID controlled Zohdy-Harb System 34 
 
Figure 10 Position Output of PID controlled Zohdy-Harb System 35 
 
Figure 11 Magnetic levitation system controller setup 45 
 
Figure 12 Neural Network Components 46 
 
Figure 13 Model Predictive Control process 47 
 
Figure 14 (Left) Network Architecture and (right) Mean Square  
 Error Diagram as the NN is trained  48 
 
Figure 15 The Phase plane solution under NNMPC on Zohdy-Harb  
 System 49 
 
Figure 16 The position output (blue) compared to the reference Sine  
 curve in (red) under NNPC 50 
 
Figure 17 The Phase plane solution result under NNPC on Duffing  
 System 51 
 



xiii 

LIST OF FIGURES—Continued 
 
 
 
Figure 18 The position output (blue) compared to the reference curve in  
 (red) under MPC 52 
 
Figure 19 The Phase plane solution result under model predictive control  
 on Van der pol System 53 
 
Figure 20 The position output (blue) compared to the reference curve in  
 (red) under MPC Duffing System 53 
 
Figure 21 Network Algorithm 58 
 
Figure 22 Network retraining flow chart 59 
 
Figure 23 Neural network Architecture initial design 60 
 
Figure 24 Dataset utilized in trail 1 63 
 
Figure 25 The training and validation RMSE comparison of the dataset  
 in trail 1 64 
 
Figure 26 Dataset utilized in trail 12 65 
 
Figure 27 The training and validation RMSE comparison of the dataset in  
 trail 12 65 
 
Figure 28 The training and validation RMSE comparison of the dataset in  
 trail 116 66 
 
Figure 29 The training and validation RMSE comparison of the dataset in  
 trail 144 71 
 
Figure 30 The system error goes to infinity as shown when the algorithm  
 is not applied 72 
 
Figure 31 The system error after using the neural network 73 
 
Figure 32 Error uptick at t = 0.8867 due to the disturbance introduction 74 
 
Figure 33 The Algorithm reacting to the sudden change by adjusting  
 Beta1 74 
 



xiv 

LIST OF FIGURES—Continued 
 
 
 
Figure 34 The Algorithm reacting to the sudden change by adjusting  
 Beta2 75 
 
Figure 35 Phase diagram after finding the optimal system parameters 75 

 
Figure 36 Magnetic levitation system 81 
 
Figure 37 Magnetic levitation system controller setup 85 
 
Figure 38 Dynamic Deep Learning Algorithm 88 
 
Figure 39 Custom Deep Learning NN Architecture layers 89 
 
Figure 40 Phase portrait of the Maglev system with a reference sinusoidal  
 wave of 40 rad/sec frequency under Lyapunov control 91 
 
Figure 41 Lyapunov controlled position with reference to sinusoidal wave  
 of 40 rad/sec frequency 91 
 
Figure 42 Phase portrait of the Maglev system with a reference sinusoidal  
 wave of 40 rad/s frequency under PID control 92 
 
Figure 43 PID controlled position with reference to sinusoidal wave of  
 40 rad/s 92 
 
Figure 44 Lyapunov controlled position with reference to sinusoidal wave  
 of 4000 rad/s 93 
 
Figure 45 The position with reference to a combined signal of sinusoidal  
 and step function under PID control 94 
 
Figure 46 Pearson correlation chart between the parameters and error 95 
 
Figure 47 Maglev system with a reference sinusoidal wave of 4000 rad/sec  
 under DLDL 96 
 
Figure 48 DLDL controlled position with reference to sinusoidal wave  
 of 4000 rad/s frequency 97 
 
Figure 49 The position with reference to a combination of sinusoidal and  
 step function 97



1 

CHAPTER ONE 
 

INTRODUCTION 
 
 
 

In this research, we focus on advancing the field of nonlinear controllers. Over the 

past decade, researchers have concentrated on the linearization of nonlinear systems and 

the use of linear controllers such as PID with the hope that it will perform well enough 

for pole placement, control, root-locus, or other linear techniques to work. This might be 

attributed to the ease of implementation and the low time requirement of linear control. 

Controllers that require linearization, such as PID or LQR techniques lose some of the 

best properties of the system while linearizing. On the other hand, nonlinear controllers 

overcome this disadvantage by using the nonlinear model. New technologies have been 

increasing in complexity in an exponential manner in response to the market's 

overwhelming need for greater functionality, performance, and bandwidth there, for as 

much functionality as possible is integrated in new designs. As such, linear controllers 

will no longer be able to provide the desired outcome as complexities increase and 

demand for efficiency and lossless design increase. 

 

1.1 Fundamentals of Complex Non-Linear Systems 

In order to understand the best method to control a system, we should begin by 

understanding what modern complex nonlinear systems require. While it is simple to 

define linear functions, the term nonlinear encompasses anything else. As Stanislaw 

Ulam, a famous scientist in the field of mathematics and nuclear physics once explained, 

“Using a term like nonlinear science is like referring to the bulk of zoology as the study 
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of non-elephant animals.”[1]. As Figure 1 shows, most Dynamic Systems are non-linear 

in nature and most Nonlinear systems are Chaotic in nature.  

 

 

Figure 1 Relationship between Dynamic Systems, Nonlinear and Chaotic systems 

Nonlinearity frequently emerges from the collective behavior of even the simplest 

systems, it is insufficient to combine the effects of the components merely linearly. 

Emergent phenomena, including chaos, solitons, fractals, and meta/multi-stability, are 

produced by the interactions between the components. Even if the underlying physics is 

deterministic, the ensuing dynamics can be very unpredictable and result in the formation 

of non-equilibrium patterns. 

Methods of solution or analysis for problems involving nonlinear differential 

equations are situation specific. Lotka–Volterra, Navier–Stokes, Duffing and Van Der 

Pol equations are examples of nonlinear differential equations. One of the most 

challenging aspects of nonlinear issues is that it is typically impossible to combine 

Linear Non-linear 

Chaotic Non-
Chaotic 

Dynamic System 
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existing solutions to create new ones. A family of linearly independent solutions may be 

utilized through the superposition principle to derive generic solutions for linear 

problems, for instance. This is shown by one-dimensional heat transfer with Dirichlet 

boundary conditions, whose solution is represented as a time-dependent linear 

combination of sinusoids with varying frequencies; this makes solutions extremely 

versatile. Identifying several exact solutions to nonlinear equations is feasible, but the 

absence of a superposition principle precludes the creation of additional solutions. A 

further distinction between linear and nonlinear systems is that nonlinear dynamics can 

only be solved by using computers and simulating the dynamics. Nonlinear systems 

dynamics are several, but we present a few examples below, some of which will be 

utilized later in this research. 

1.1.1 Duffing System 

For the purpose of simulating damped and driven oscillators, a nonlinear second-

order differential equation known as the Duffing equation is used. The Duffing system is 

named after Georg Duffing (1861–1944) [2]. In addition to being an example of a highly 

complex chaotic system, the frequency response of the Duffing system also exhibits the 

phenomena of jump resonance, which is a form of frequency hysteresis behavior. The 

Duffing equation describes the nonlinear oscillations of a mass connected to a nonlinear 

spring and a linear damper. Duffing Dynamic Differential Equation is presented in 1. 

                                𝑥̈ + 𝜑𝑥̇ + 𝛿𝑥 + 𝛾𝑥ଷ = 𝑐𝑜𝑠 𝑡 + 𝑢                                          (1) 

1.1.2 Van der pol System 

The Van der Pol oscillator was devised by Balthasar van der Pol, a Dutch 

electrical engineer and scientist at Philips. Van der Pol discovered stable oscillations, 



4 

which he subsequently termed relaxation oscillations. In addition, Van der Pol and his 

colleague, van der Mark, reported in the September 1927 edition of Nature that, at 

particular driving frequencies, an irregular noise could be heard, which was subsequently 

determined to be the outcome of deterministic chaos. Van der pol Dynamic Differential 

Equation is presented in 2. 

ẍ + φ(1 − xଶ)ẋ + x = cos t + u                                     (2) 

1.1.3 Navier–Stokes Equations in Fluid Dynamics 

The motion of viscous fluid substances may be understood via the use of a set of 

partial differential equations known as the Navier–Stokes equations. Claude-Louis 

Navier, a French engineer and scientist, and George Gabriel Stokes, a mathematician, 

both contributed to the naming of this phenomenon. Over the course of many decades, 

beginning in 1822 and continuing through 1842–1850, the ideas were gradually evolved 

[2, 3]. For Newtonian fluids, the Navier–Stokes equations quantitatively express 

momentum and mass conservation. Occasionally, they are accompanied with a state 

equation that links pressure, temperature, and density. The Navier–Stokes equations are 

valuable because they describe the physics of numerous phenomena that are of 

importance to science and engineering. They can be utilized to represent weather, ocean 

currents, water flow in a pipe, and air flow around a wing. The full and simplified 

Navier–Stokes equations aid in the design of aircraft and automobiles, the study of blood 

flow, the design of power plants, and the analysis of pollution, among several other 

applications. They can be used to research and model magnetohydrodynamics when 

combined with Maxwell's equations. 
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1.1.4 Lotka–Volterra Equations 

In 1910, Alfred J. Lotka was the first person to describe the Lotka–Volterra 

predator–prey model as a component of the concept of autocatalytic chemical processes. 

This model was developed by Lotka and Volterra [4]. It is common practice to utilize 

first-order nonlinear differential equations when attempting to describe the dynamics of 

biological systems involving the interaction of two species, one of which acts as a 

predator while the other acts as prey. These equations are sometimes referred to as the 

predator–prey equations since they are generally recognized by that name. When 

attempting to represent the dynamics of natural populations of predators and prey, many 

models, including the Lotka–Volterra model and the Rosenzweig–MacArthur model, 

have been used.  

Concerning the reliability of models that are dependent on prey or ratios, there has 

been a great deal of disagreement. It is generally accepted that Richard Goodwin carried 

out the first application of the Lotka–Volterra Equations 3 in either 1965 or 1967 [4]. In 

the hypothetical system, predators thrive so long as there is an ample supply of prey, but 

they run out of their food supply and finally die out. The number of animals that are 

hunted will eventually increase since there will be fewer predators. These activities 

continue in a cycle of population growth followed by population decrease. 

ୢ୶

ୢ୲
= αx − βxy

ୢ୷

ୢ୲
= δxy − γy

                                                           (3) 

1.1.5 Lorenz Chaotic System 

Edward Lorenz, a mathematician, and meteorologist initially explored the Lorenz 

system, a set of ordinary differential equations. The model is known for having chaotic 
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solutions for parameter values and beginning circumstances. An accumulation of chaotic 

solutions to the Lorenz system is what is known as the Lorenz attractor. The "butterfly 

effect" originates from the real-world implications of the Lorenz attractor, which state 

that in a chaotic physical system, in the absence of perfect knowledge of the initial 

conditions, even a disturbance in the air caused by a butterfly flapping its wings, our 

ability to predict its future course will always fail[5, 6]. This idea has made its way into 

popular culture, where it is used to describe the inability to accurately forecast the 

behavior of a system. This illustrates that physical systems may be completely 

predictable while yet keeping the unpredictability that is fundamental to their nature. 

When plotted in phase space, the shape of the Lorenz attractor itself looks like a butterfly. 

This resemblance is most apparent when looking at the attractor in its entirety. In its 

current form, the model may be represented by a set of three ordinary differential 

equations that are collectively referred to as the Lorenz equations. 

 

1.2 An Overview of Nonlinear Control 

Two frequent characteristics of novel control challenges are that the system's 

attractive operating range is not always close to equilibrium, necessitating explicit 

consideration of nonlinear effects in order to build a good controller. Even though 

physical modeling enables the precise identification of well-defined nonlinear systems 

the controller must contend with a large degree of uncertainty, owing mostly to due to a 

lack of familiarity with the system's specifications and an inability to measure the status 

of the entire system. This issue demonstrates the critical requirement for the development 

of controller tools that take on unpredictable nonlinear system behavior. When 
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considered conceptually, they may be generally categorized into Analytically and 

computationally oriented. An analytical model of the system, and controller design is the 

result of a methodical procedure that ensures a desired behavior. Because stability is a 

necessary but not sufficient requirement for this technique, it is commonly referred to as 

robust stabilization. It encompasses Lyapunov-based approaches, gain-assignment 

methods, and conventional robust and adaptive tools. On the other hand, computationally 

focused approaches do not require an analytical model and may be built based on a 

numerical model of the system to be controlled—for example, produced by the collection 

of vast quantities of data to approximate its behavior. The most visible examples of this 

school include neural network-based control, fuzzy control, and intelligent control. 

Recently, a second class of computationally focused methodologies has gained 

prominence, which is based on analytical models of the system. To attempt to replicate 

the evolution of linear systems. To account for nonlinear effects in theory, piecewise 

linear models are offered. Typically, an optimal control objective is defined, and the 

controller design challenge is to demonstrate that the optimization is possible for the 

given numerical values of the system model, e.g., that it can be translated into linear 

matrix inequalities and a control signal can be numerically produced. Two disadvantages 

exist with the optimum control strategy. To begin, the solutions are vulnerable to plant 

uncertainty, such as a lack of complete state measurement and parametric uncertainty, 

which are prevalent concerns in the majority, if not all, actual applications. Second, 

calculation of the optimal control law is only achievable for low-dimensional systems, 

casting doubt on the method's application to nonlinear systems. Additionally, there is not 

necessarily a compelling rationale, other than mathematical convenience, for expressing 
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the intended behavior of a dynamical system in terms of an optimization scalar criteria. 

While computationally oriented techniques benefit from rapidly developing computer 

technology, they focus on providing answers to specific issues rather than on explaining 

why, how, and when these solutions work. Therefor in this research we aim to 

comprehend the underlying process by which the system operates. The information is 

contained in the dynamics of the nonlinear system and disclosed by a thorough nonlinear 

analysis.  

1.2.1 Gain Scheduling 

Gain scheduling is a typical method for regulating nonlinear systems whose 

dynamics vary across operating conditions. Gain scheduling is utilized when a single set 

of controller gains does not offer the necessary performance and stability throughout the 

whole range of plant operating circumstances. 

1.2.2 Adaptive Control 

Adaptive control is an active field in the design of control systems to account for 

uncertainty. The major distinction between adaptive controllers and linear controllers is 

the adaptive controller's capacity to change itself to deal with unforeseen model 

uncertainties. Direct and indirect adaptive control are the two primary classifications. 

Indirect approaches estimate the plant's parameters and then utilize the predicted model 

data to calibrate the controller. Direct techniques are those in which the estimated 

parameters are utilized directly by the adaptive controller. 

1.2.3    Model Predictive Control 

MPC models anticipate the change in the system's dependent variables that will 

result from changes in the independent variables. The setpoints of regulatory PID 
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controllers (pressure, flow, temperature, etc.) or the final control element are often 

controller-adjustable independent variables (valves, dampers, etc.). We make use of 

independent variables that are not subject to the influence of the controller here in the 

role of disturbances. The dependent variables in these processes are additional 

measurements that either represent control goals or process constraints. 

Model predictive control may be broken down into many subtypes, one of which 

is known as nonlinear model predictive control, or NMPC for short. NMPC makes use of 

nonlinear system models for prediction. The iterative solution of optimal control 

problems with a limited prediction horizon is required in NMPC, just as it is in linear 

MPC. In linear MPC, these problems have a convex solution, however in nonlinear MPC, 

the convexity of these problems is not guaranteed. Both the theoretical framework of 

NMPC stability and the numerical solution face challenges as a result of this[7]. 

Typically, the numerical solution of NMPC optimum control problems is based 

on direct optimal control techniques employing Newton-type optimization procedures in 

one of the following variants: direct single shooting, direct multiple shooting, or direct 

collocation. 

NMPC algorithms often make use of the similarity between successive optimum 

control problems. This allows for an efficient initialization of the Newton-type solution 

approach by a properly shifted estimate from the previously calculated optimum solution. 

As a result, a significant amount of computation time may be saved as a result of this. 

Path following algorithms are algorithms that never attempt to iterate any optimization 

problem to the point where it converges, but instead only take a few iterations towards 
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the solution of the most recent NMPC problem, before proceeding to the next one, which 

is suitably initialized; see, exploit the similarity of subsequent problems even further[8]. 

NMPC is increasingly being applied to applications with high sampling rates, 

such as in the automotive industry, or even when the states are spread in space, thanks to 

the breakthroughs that have been made in controller hardware and computational 

algorithms, such as preconditioning. In the past, NMPC applications were predominantly 

used in the process and chemical industries, which had relatively slow sampling rates 

(Distributed parameter systems). 

Recent aerospace applications of NMPC include tracking optimum terrain-

following/avoidance trajectories in real time[9]. 

Model predictive control algorithm utilizes the following functions: 

 An optimization algorithm 

 A cost function J 

 A dynamic model of the process 

 Sliding mode control 

Sliding Mode Control is an approach to nonlinear control that modifies the 

dynamics of a nonlinear system by applying a discontinuous control signal [10]. This 

control signal causes the system to slide over a cross-section of the system's normal 

behavior, which in turn modifies the dynamics of the system. Legislation to govern the 

input received from the state is not a time-continuous function. Instead, it can transition 

from one continuous structure to another in accordance with the position it now occupies 

in the state space. Control using a sliding mode is thus an example of control using a 

variable structure. The sliding-mode-control rule toggles between states according to the 
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sign of this distance as the criterion for transition. Since the control rule for the sliding 

mode is discontinuous, the sliding surface will be reached in a finite amount of time. As a 

result, the sliding-mode control applies a constant force in the direction of the sliding 

mode, which is the direction in which the trajectories will approach the sliding surface. 

After a trajectory has contacted the surface, it will glide over the surface and may, for 

example, go back toward its point of origin. As a result, the switching function may be 

thought of as being comparable to a topographic map that has a contour line of constant 

height that trajectories are required to follow[11]. 

 

1.3 Lyapunov Control Function 

The need for increased autonomy and accuracy in robotics has forced the 

development of new methods of control systems. The global output feedback issue for 

robots has proven to be particularly difficult. The design of setpoint and tracking 

controllers for nonholonomic systems was influenced by mobile robots with wheels. 

Other applications that have challenged control designers include rigid link flexible joints 

in the late 1990s and higher dimensional and continuum robots in more recent years. 

According to the indirect technique, also known as the linearization method, the stability 

features of a nonlinear system are almost identical to those of its linearized 

approximation when the system is located in close proximity to a point where it has 

achieved equilibrium. The approach provides the theoretical foundation for utilizing 

linear control for physical systems, which are always essentially nonlinear. The physical 

systems themselves are always nonlinear. Because the direct approach is such an 

effective instrument for doing nonlinear system analysis, the term "Lyapunov analysis" 
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often but incorrectly refers to the direct method instead. Lyapunov-based approaches 

have the remarkable benefit of allowing both design and analysis inside a shared 

framework, with one step iteratively stimulating the other. 

The direct technique of Lyapunov is based on the physical principle that a system 

whose entire energy is being continually wasted must ultimately reach equilibrium. Given 

a scalar, nonnegative energy function V (t) for a system, it can be shown that if its time 

derivative V (t) 0, the system is stable in the sense of Lyapunov if the system states can 

be constrained for all future time to lie within a ball whose radius is proportional to the 

size of the initial system states[12].  

CLF is an extension of the concept of the Lyapunov function V(x) to systems with 

control inputs. The standard Lyapunov function determines if a dynamical system is 

stable or asymptotically stable. Lyapunov stability denotes that if the system begins in a 

state in domain D, that state will persist forever. Additionally, for asymptotic stability, 

the state must converge to x=0. The control-Lyapunov function is used to determine if a 

system is asymptotically stabilizable. For each state x, there exists a control u(x,t) such 

that the system can be brought to the zero state by applying the control u [11, 13, 14]. 

 

1.4 Thesis Chapter Outline 

Chapter Two: Provides an overview of the previous research completed in 

traditional linear control and why a transition in non-linear control is required to provide 

chaotic systems stability. Examples of research completed in non-linear controls are 

given with references to research results. A look into research completed in 

computational and data driven control types is provided with the previous results 
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obtained. Finally, a problem statement is clarified, and the contribution points are 

provided. 

Chapter Three: Control Lyapunov function is introduced and discussed in this 

chapter. The Lyapunov function developed is utilized as a feedback signal for the purpose 

of control. The controller results are discussed in the chapter when utilized with the 

highly chaotic Duffing, Van Der Pol and Zohdy-Harb system. The novel control function 

results are compared to PID control results [15]. 

Chapter Four: Machine Learning Control is introduced and discussed in detail in 

this chapter. In addition, the integration of Deep Machine Learning into Lyapunov 

control to develop a novel Intelligent Nonlinear control is described. The different 

datasets and architectures developed during the research of the machine learning control 

accuracy [16]. 

Chapter Five: To tackle the drawbacks of Deep Learning such as the 

computational and time expense the novel Dynamic Deep Learning Control is introduced 

in this chapter. The Dynamic Learning Lyapunov Control (DLLC) is utilized on the Mag 

lev application. Maglev systems face instability and disturbances in a sensitive 

environment. The results are discussed and the metho is shown to be successful in 

controlling and adapting to the maglev system [17]. 

Chapter Six: In this chapter we will conclude the thesis work and provide a 

summary of the work completed and results. A summary of proposals to future work will 

also be included in this chapter. 
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CHAPTER TWO 

LITERATURE REVIEW AND THESIS CONTRIBUTION 
 
 
 

2.1 Traditional Non-Linear Control 
 
Over the past few years there has been a significant growth of system 

complexities. Some complex systems desirable operating range is not close to 

equilibrium, demanding explicit consideration of nonlinear effects in order to design an 

effective controller. Even though physical modeling permits the exact identification of 

well-defined nonlinear systems, the controller must deal with a high degree of uncertainty 

due to a lack of knowledge with the system's specifications and an inability to monitor 

the system's status. This problem illustrates the vital need for the development of 

controller tools capable of handling unpredictable nonlinear system behavior. 

Conceptually, they can be classified into the following categories: Having an analytical 

and computational focus. A system's analytical model and controller design are the 

outcome of a systematic technique that ensures the desired performance. This technique 

is usually referred to as robust stabilization because stability is a necessary but 

insufficient criterion. It consists of Lyapunov-based strategies, gain-assignment 

techniques, and standard robust and adaptable tools [18]. 

In contrast, computationally focused techniques do not require an analytical 

model and can be constructed based on a numerical model of the system to be controlled, 

such as one generated by the collection of huge quantities of data approximating the 

system's behavior. The most prominent examples are control based on neural networks, 

fuzzy control, and intelligent control. Recently, other computationally focused techniques 
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based on analytical models of the system has gained importance. Piecewise linear models 

are available to account for nonlinear effects in theory. Typically, an optimal control 

objective is specified, and the controller design challenge is to demonstrate that the 

optimization is possible for the given numerical values of the system model, it can be 

translated into linear matrix inequalities and a numerical control signal can be generated. 

There are two downsides to the optimal control approach [19]. The solutions are 

susceptible to plant uncertainty, such as a lack of comprehensive state measurement and 

parametric uncertainty, which are prominent problems in the vast majority of, if not all, 

practical applications. Second, the optimal control law can only be calculated for low-

dimensional systems, casting doubt on the applicability of the method to nonlinear 

systems. In addition, describing the anticipated behavior of a dynamical system in terms 

of an optimization scalar criterion does not necessitate a persuasive justification, other 

than mathematical convenience. While computationally focused strategies benefit from 

fast advancing computer technology, they are more concerned with giving solutions to 

specific problems than with explaining why, how, and when these solutions work. 

Therefore, the purpose of this research is to know the system's basic operating 

mechanism[18]. The information is included in the nonlinear system's dynamics and is 

revealed through a comprehensive nonlinear analysis. 

Adaptive control is an active field in the design of control systems to account for 

uncertainty. The major distinction between adaptive controllers and linear controllers is 

the adaptive controller's capacity to change itself to deal with unforeseen model 

uncertainties. Direct and indirect adaptive control are the two primary classifications. 

Indirect approaches estimate the plant's parameters and then utilize the predicted model 
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data to calibrate the controller. Direct techniques are those in which the estimated 

parameters are utilized directly by the adaptive controller [20]. 

Consider the difficulty of controlling a nonlinear multivariable system that is 

constrained in its input and state by a combination of physical and operational 

constraints. The well-known systematic nonlinear control approaches, such as feedback 

linearization, lead to beautiful solutions; nevertheless, they are dependent on complicated 

design processes that do not scale well to large systems and are not intended to manage 

constraints in a systematic way[21]. 

 

2.2 Model Predictive Control 

MPC models anticipate the change in the system's dependent variables that will 

result from changes in the independent variables. Nonlinear model predictive control, or 

NMPC, is a subtype of model predictive control that employs nonlinear system models 

for prediction[22]. The iterative solution of optimal control problems with a limited 

prediction horizon is required in NMPC, just as it is in linear MPC. In linear MPC, these 

problems have a convex solution, however in nonlinear MPC, the convexity of these 

problems is not guaranteed. Both the theoretical framework of NMPC stability and the 

numerical solution face challenges as a result of this [8]. 

The numerical solution of NMPC optimum control problems is based on direct 

optimal control techniques employing Newton-type optimization procedures in one of the 

following variants: direct single shooting, direct multiple shooting, or direct collocation. 

NMPC algorithms often make use of the similarity between successive optimum control 

problems. This makes it possible to effectively initiate the Newton-type solution 
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approach by making a guess that is correctly offset from the previously calculated ideal 

solution. As a result, a significant amount of time may be saved throughout the 

calculation process. There is completed research into path following algorithms or real-

time iterations that never attempt to iterate any optimization problem to convergence [9, 

23].   

Non-linear Model Predictive Control (NMPC) is increasingly being applied to 

applications with high sampling rates, such as in the automotive industry, or even when 

the states are distributed in space, thanks to advancements in controller hardware and 

computational algorithms, such as preconditioning. An illustration of such an application 

is the situation in which the states are dispersed over space. NMPC applications were 

used most often within the process industries, which had lower sample rates [24]. 

Recent aerospace applications of NMPC include tracking optimum terrain-

following/avoidance trajectories in real time. An optimization algorithm minimizing the 

cost function J using the control input u. An example of a quadratic cost function is given 

by [24]:  

J =  ∑ wଡ଼౟
(r୧ − x୧)

ଶ + ∑ w୳౟
∆u୧

ଶ୒
୧ୀଵ

୒
୧ୀଵ                                        (4) 

𝑥௜: 𝑖
௧௛ controlled variable 

𝑟௜: 𝑖
௧௛ reference variable 

𝑢௜: 𝑖
௧௛ manipulated variable 

𝑤௫೔
: weighting coefficient reflecting the relative importance of 𝑥௜ 

𝑤௨೔
: weighting coefficient penalizing relatively big changes in 𝑢௜ 
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2.2 Sliding mode control 

SMC is an approach to nonlinear control that modifies the dynamics of a 

nonlinear system by applying a discontinuous control signal (or, more formally, a set-

valued control signal) that causes the system to "slide" over a cross-section of the 

system's normal behavior [25]. This causes the dynamics of the system to be altered in a 

way that is not linearly predictable. Legislation to govern the input received from the 

state is not a time-continuous function. Instead, it is able to transition from one 

continuous structure to another in accordance with the position it now occupies in the 

state space. Sliding mode control is hence an example of variable structure control [10].  

The numerous control structures are built such that trajectories always advance 

toward a neighboring region with a different control structure; hence, the end trajectory 

will not reside wholly inside a single control structure. It will instead glide along the 

perimeters of the control structures. A sliding mode describes the motion of the system as 

it moves along these limitations, and the geometrical locus that is generated by the 

boundaries is referred to as the sliding surface. Any variable structure system, such as a 

system that is subject to SMC, may be seen as a special instance of a hybrid dynamical 

system within the framework of modern control theory. This is because the system flows 

through a continuous state space in addition to discrete control modes. Lyapunov control 

has been shown to be capable of effectively controlling extremely chaotic non-linear 

oscillators [26]. One of the key factors that contribute to the success or failure of any sort 

of control plan is the controller and system parameters. As a consequence of this, 

researchers have studied a number of different strategies in order to determine the 
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particular attributes that, once maximized, would give the greatest potential outcomes for 

the system [20].  

 

2.3 Genetic Algorithms 

The genetic algorithm is a technique for solving optimization issues that is based 

on natural selection as presented in Figure 2. This approach is used to solve both limited 

and unconstrained optimization problems [27]. At each stage of the process, the genetic 

algorithm chooses members of the existing population to serve as parents, and then 

employs those people to generate the offspring that will comprise the subsequent 

generation. The population evolves toward the best possible answer as time passes and 

new generations are born. Genetic algorithms can be used to solve a variety of 

optimization problems that are not well suited for standard optimization algorithms. 

These problems include complications in which the objective function is discontinuous, 

nondifferentiable, stochastic, or highly nonlinear. Genetic algorithms can be applied to 

solve these problems by using a population of individuals with these characteristics. The 

evolutionary algorithm may be used to solve issues in mixed integer programming, 

described as a kind of programming in which certain components can only have integer 

values [28].  

Employing GAs comes with several drawbacks, the most notable of which are the 

inability to rapidly converge on a final solution and the incapacity to adapt to unknown 

system dynamics or unforeseen perturbations. 
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Figure 2 Genetic Algorithms Applied to Reinforcement Learning Tasks 

Researchers investigated an array of methods, all with the goal of finding one that 

wouldn't compromise the system's adaptability while still capable of dealing with 

undetermined aspects of the system. A strategy that combines Fuzzy Control with GAs 

was investigated in [20], although system linearization is necessary in order to employ 

the method described in [20]. 

 

2.4 Machine Learning Control 

The application of machine learning as a means of improving controller 

performance is yet another strategy that has lately become the subject of investigation. 

Most recently, there has been the development of neural Lyapunov control, which 

proposes the utilization of deep learning in order to locate the control and Lyapunov 

functions that are predicted to stabilize the system. The method described in [29] and [30] 

is appropriate for the task of determining which system settings would initially get the 

system to a state of stability while simultaneously lowering the amount of error it 

produced. The method described in [29] and [30] has a flaw in that it presupposes the 

system to be deterministic, time invariant, and affine in the control input. but in a real-life 
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scenario, external perturbations could lead to the failure of the system at any time while it 

is operating [31], [32]. The method that is described in [33], [34], and [35] makes an 

effort to forecast the control and Lyapunov functions that would result in the stability of 

the system, but it does so only under certain conditions in which the dynamics of the 

system are of a deterministic character.  

Deep learning-based systems have a number of benefits, including the ease with 

which complex patterns may be detected, the ability to adapt and learn towards 

unknowns, and a higher degree of accuracy in predicting the outputs when compared to 

shallow neural networks. On the other hand, these systems also have a number of 

drawbacks, including the inability to adapt and learn towards unknowns and the inability 

to predict the outputs with a high degree of accuracy. One of these downsides is the fact 

that cyber-physical systems that are based on deep learning face a number of obstacles. 

For instance, in order to provide conclusions that are objective, DNNs put an emphasis on 

acquiring data that is accurate as well as diverse. In addition, DNNs do not provide any 

guarantees or assurances on the safety or applicability of a suggested solution or the 

findings of the study [17]. The solution to the problem of set bias was to provide the 

DNN extra data; however, this caused a delay in the amount of time that was necessary 

for the DNN to determine which method was most effective. Therefore, Finding the 

correct balance between more in-depth architectures and more practical regularization 

methods is one of the most difficult aspects of using DNN in CPS. This is one of the 

primary issues. 

In spite of the fact that Lyapunov Control traditional methods are effective in 

managing system behaviors of a medium complexity, they are vulnerable when dealing 
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with cyber–physical systems of a high complexity [36]. It has been demonstrated that the 

control Lyapunov function, abbreviated as CLF, may be utilized to successfully regulate 

complex nonlinear duffing and Van der Pol systems [15, 33, 37]. The utilization of 

nonlinear controllers allows for a lossless control strategy to be implemented, which 

helps to prevent the linearization of the system. Additionally, the incorporation of deep 

learning enables the continual modification and selection of system and control 

parameters. Machine learning has been utilized in previous research in conjunction with 

what is typically referred to as a cost function; however, one of the drawbacks discovered 

was the amount of time required for the DNN to relearn during the process of updating 

the data set and also the time requirement to come up with the appropriate solution [38, 

39]. This was found to be one of the most time-consuming aspects of the process. In 

addition, the number of needed parameters as well as the size of the dataset had an effect 

on the accuracy of the DNN as well as the amount of time it took to discover a solution, 

as shown in [40]. 

The deep learning data driven integration is presented to allow the non-linear 

component to adapt with the system unknown and unknown parameters. In addition, it is 

presented as a result of the ongoing trend of advancements in technology and microchips, 

the complexity of systems will continue to increase. According to an article that was 

published in the journal of the National Academies in 2016, it was stated that "today's 

practice of system design and implementation is often ad hoc and unable to support the 

level of complexity, scalability, security, safety, interoperability, and flexible design and 

operation that will be required to meet future needs.". While earlier research in [41, 42] 

focused on using machine learning to toggle the control law between two or more 
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possibilities, the current study will focus on the integration of Deep Learning while 

maintain the safety and fidelity of the nonlinear analytical controller. 

Deep Learning is found to present some restrictions when it comes to 

computational and time expense [38]. This study also presents the usage of the Pearson 

correlation, as well as the practice of giving precedence to parameters with strong 

correlation to the system error. In addition, we place an emphasis on the application of 

parameterized complexity in order to analyze the dataset. This allows us to reduce the 

amount of depth that the DNN has while still producing correct results during the 

retraining process. An individualized structure composed of layers is presented in this 

research where the components can be repeated while maintaining the number of nodes 

in a single layer. To the best of our knowledge, the incorporation of the concept that was 

indicated earlier has not been covered in any of the earlier research that has been 

published.  

 

2.5 Contribution 

In this study, we research the use of Lyapunov control functions as a means to 

controlling highly chaotic systems. A novel Lyapunov controller is developed for each 

system under investigation. We further investigate the integration of deep machine 

learning into the Lyapunov control parameter selection, but it is found that over the shelf 

deep learning architectures were not able to converge to a feasible solution within the 

required time. Therefore, a novel deep learning architecture accompanied with an 

algorithm is developed.  
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The feature impact and dataset impact on the controller are studied. To tackle the 

drawbacks of Deep Learning such as the computational and time expense a method is 

proposed based on the parameterized complexity theory. The method evaluates the 

dataset's complexity and adjusts the DNN's depth accordingly. Other numerical aspects of 

the input instance, such as the correlation between the dataset parameters collected while 

the CPS system is operating or the rise or reduction in memory occupation, are examined 

in addition to the input instance's length when assessing the system's complexity. The 

initial data set consists of parameter modifications and their respective output effects. The 

deep neural network (DNN) collects an updated dataset and executes it based on the 

initial CPS information. Through a neural architecture search and meta-learning, we 

uncover compact high-performance deep learning architectures. Customized neural 

network architecture minimizes training time and computational requirements. If the 

delta error between the actual system error and the anticipated system error generated by 

the DNN after parameter substitution is more than 0.40, a new data set is recorded. The 

system begins adding to its current data set while retaining 40% of the older data set in 

memory. To tackle the deep learning computational and time expense with the increase of 

parameters a unique function for calculating the number of NN layers needs to relearn the 

effect of parameter modification on the model. 

The presented Dynamic Deep Learning Control is proven to be successful in 

tackling the timing latency compared to regular Deep Learning Lyapunov Control and 

with the improved adaptiveness and ability tackle disturbances compared to Lyapunov 

control and PID control. 
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CHAPTER THREE 

LYAPUNOV STABILITY THEORY 
 
 
 

Given a control system, the first and most crucial concern regarding its features is 

whether it is stable or unstable, as an unstable control system is often ineffective and 

potentially hazardous. Qualitatively, a system is considered stable if beginning the system 

near its target operating point implies that it will remain near the point indefinitely. Every 

control system, whether linear or nonlinear, entails a stability issue that must be 

thoroughly investigated. The theory proposed by the Russian mathematician Aleksandr 

Mikhailovich Lyapunov in the late 19th century is the most practical and general method 

for studying the stability of nonlinear control systems. The 1892 publication The General 

Problem of Motion Stability by Lyapunov contains two approaches for stability analysis 

[43]. The linearization method and the direct method. The linearization method concludes 

about the local stability of a nonlinear system at an equilibrium point based on the 

stability properties of its linear approximation. The direct technique is not limited to local 

motion, and it finds the stability features of a nonlinear system by building a scalar 

function for the system and analyzing the time variation of that function. A control-

Lyapunov function is an extension of the Lyapunov function to systems with control 

inputs.  

3.1 Non-Linear Oscillators 

There are a variety of uses for Duffing and Van der Pol Oscillators. For instance, 

the Duffing oscillator has been utilized to detect chirp signals [44]. It is also utilized 

extensively in the signal communication domain, such as in the secure communication 
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field [45] and weak signal identification [46]. As demonstrated by [47], it has also made 

its way into marine applications, such as ship propeller blade number recognition. 

Despite having fewer application examples than the Duffing oscillator, the Van der Pol 

oscillator has found its way into several sectors, including the medical industry, where it 

was utilized to represent the heart pulse, as demonstrated in [48]. As demonstrated in 

[49], another illustration is the application of the Van der Pol oscillator in the simulation 

of dust density wave fields. On the control of a Duffing Oscillator, some effort has been 

expended [50] employed a fuzzy sliding controller. The control methods were based on 

the Lyapunov stability theorem, and simulation results demonstrated that the system 

could be successfully controlled despite the existence of chaos. Using impulsive 

parametric perturbations, [51] proposed chaos control for a Duffing system. Using 

numerical simulations, the authors validated the viability of the suggested method, which 

is based on the Melnikov method [52]. The researchers of [53] studied the dynamic 

properties of a Van der Pol system with extra delay. The authors discovered that Hopf 

bifurcation arises from trivial equilibrium when the delay exceeds critical values. The 

authors then determined the link between the critical values and the system parameters. 

The authors supported their claims with numerical evidence. [54] investigated 

chaos management in a Van der Pol system with a nonlinear force and two forcing 

excitations. The authors demonstrated their findings by numerical simulation. 

By altering the phase difference and magnitude of the second excitation force, the 

scientists determined that chaotic motions are controllable. Lastly, Van der Pol system 

control was also accomplished utilizing bifurcation. 
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3.2 Duffing Lyapunov Control and Analysis 

The mathematical model presented in equation 2 presents the Duffing Oscillator.  

                                  ẍ + φẋ + δx + γxଷ = cos t + u                                          (5) 

The Duffing oscillator can be regarded as a forced oscillator with a spring. This 

spring is dubbed a hardening spring when 𝛾 > 0 and a softening spring when 𝛾 < 0, This 

interpretation is acceptable only for small x. (Thompson and Stewart, 2002). 

Table 1 Duffing Oscillator parameters table 

𝜱 controls the amount of damping 

𝜹 controls the linear stiffness 

𝜸 controls the amount of non-linearity in the restoring force 

 

Equation 5 depicts a forced Duffing oscillator in conjunction with an actuator. 

Error (e) is defined as e =  𝑧ௗ௘௦ −  𝑧 and therefor, the 2nd derivative of the error e is 𝑒̈ =

 𝑧̈ௗ௘௦ − 𝑧̈. Figure 3 presents the stable output of the Duffing phase solution under 

Lyapunov control. 

A control Lyapunov candidate is selected such that  

                                                   R =  
ଵ

ଶ
 (βଵe + βଶė)                                            (6) 

                              Ṙ =  (βଵe + βଶė). (βଵė + βଶë)                                      (7) 

                                                  Ṙ =  −δR                                                        (8) 

                             βଶë + βଵė = z̈ୢୣୱ − z̈ + βଵė                                        (9) 

 

Substituting in equation 6 we get 
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                                 βଶ(z̈ୢୣୱ − z̈) + βଵė = −
ஔ

ଶ
(βଵe + βଶė)                        (10) 

Through substitution in 𝑧̈ 

                         βଶ(z̈ୢୣୱ + φẋ + δx + γxଷ − u) + βଵė = −
ஔ

ଶ
(βଵe + βଶė)      (11) 

To find the control law u 

                              u =
ஔ

ଶ

ஒభ

ஒమ
e +

ஔ

ଶ
ė + z̈ୢୣୱ + φẋ + δx + γxଷ +

ஒభ

ஒమ
ė −

ୡ୭ୱ ୲

ஒమ
        (12) 

 

Figure 3 Phase plane solution of Duffing System under Lyapunov control 

 

3.3 PID Controlled Duffing System 

PID control is utilized in comparison to Lyapunov control to show Lyapunov’s 

superiority in terms of control. Figure 4 PID control is shown to lag behind in managing 

the error for high frequency inputs. 
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Figure 4 Phase Plane Solution of Duffing System under PID control 

 

3.4 Van der pol Lyapunov Control and Analysis 

The mathematical model presented in equation 13 presents the Van der pol 

Oscillator.  

                                        𝑥̈ + 𝜑(1 − 𝑥ଶ)𝑥̇ + 𝑥 = 𝑐𝑜𝑠 𝑡 + 𝑢                               (13) 

The Van der pol oscillator can be regarded as a non-conservative, non-linearly 

damped oscillator that changes over time based on the second-order differential equation 

in 13. Figure 5 presents the stable output of the Van der pol phase solution under 

Lyapunov control. 

Table 2 Van der pol Oscillator parameters table 

𝜱 controls the amount of damping 
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A control Lyapunov candidate is selected such that  

                                                     𝑅 =  
ଵ

ଶ
 (𝛽ଵ𝑒 + 𝛽ଶ𝑒̇)                                        (14) 

                              𝑅̇ =  (𝛽ଵ𝑒 + 𝛽ଶ𝑒̇). (𝛽ଵ𝑒̇ + 𝛽ଶ𝑒̈)                                    (15) 

                                                     𝑅̇ =  −𝛿𝑅                                               (16) 

                                    𝛽ଶ𝑒̈ + 𝛽ଵ𝑒̇ = 𝑧̈ௗ௘௦ − 𝑧̈ + 𝛽ଵ𝑒̇                                  (17) 

Substituting in equation 14 we get 

                                 𝛽ଶ(𝑧̈ௗ௘௦ − 𝑧̈) + 𝛽ଵ𝑒̇ = −
ఋ

ଶ
(𝛽ଵ𝑒 + 𝛽ଶ𝑒̇)                             (18) 

Through substitution in 𝑧̈ 

           𝛽ଶ(𝑧̈ௗ௘௦ + 𝜑(1 − 𝑥ଶ)𝑥̇ + 𝑥 − 𝑐𝑜𝑠 𝑡 − 𝑢) + 𝛽ଵ𝑒̇ = −
ఋ

ଶ
(𝛽ଵ𝑒 + 𝛽ଶ𝑒̇)      (19) 

To find the control law u 

     𝑢 = 𝑧̈ௗ௘௦ + 𝜑(1 − 𝑥ଶ)𝑥̇ + 𝑥 − 𝑐𝑜𝑠 𝑡 +
ఉభ

ఉమ
𝑒̇ +

ఋ

ଶ

ఉభ

ఉమ
𝑒 +

ఋ

ଶ
𝑒̇                      (20) 

 

Figure 5 Phase plane solution for Van der pol system under Lyapunov control 
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3.5 PID Controlled Van der pol System 

PID control is utilized in comparison to Lyapunov control to show Lyapunov’s 

superiority in terms of control. Figure 6 PID control is shown to lag in managing the error 

for high frequency inputs. 

.  
Figure 6 Phase plane solution for Van der pol system under PID control 

 

3.6 Zohdy-Harb Lyapunov Control and Analysis 

The mathematical model presented in equation 21 presents the Zohdy-Harb 

Oscillator [55].                                        

                        𝑥̈ + 𝛿𝑥̇ + 𝜑(𝑥ଶ𝑥̈ + 𝑥̇ଶ𝑥) + 𝛾𝑥ଷ = 𝑃𝑐𝑜𝑠 𝛺𝑡 + 𝑢                        (21) 

The Zohdy-Harb oscillator integrates both nonlinearities of stiffness and damping, 

hence producing a more complicated and chaotic behavior to regulate. The system 

parameters that contribute to the control of damping and stiffness are described below. 

Figure 7 presents the stable output of the Zohdy-Harb phase solution under Lyapunov 
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control and Figure 8 presents the position output successfully following a sinusoidal 

wave. 

Table 3 Zohdy-Harb Oscillator parameters table 

𝜱 controls the amount of damping and stiffness 

𝜸 controls the amount of non-linearity in the restoring force 

 

Equation 21 depicts a Zohdy-Harb oscillator in conjunction with an actuator. 

Error (e) is defined as e =  𝑧ௗ௘௦ −  𝑧 and therefor, the 2nd derivative of the error e is 𝑒̈ =

 𝑧̈ௗ௘௦ − 𝑧̈. 

A control Lyapunov candidate is selected such that  

                            𝑅 =  
ଵ

ଶ
 (𝛽ଵ𝑒 + 𝛽ଶ𝑒̇)                                        (22) 

                              𝑅̇ =  (𝛽ଵ𝑒 + 𝛽ଶ𝑒̇). (𝛽ଵ𝑒̇ + 𝛽ଶ𝑒̈)                                    (23) 

                                                     𝑅̇ =  −𝛿𝑅                                               (22) 

                                    𝛽ଶ𝑒̈ + 𝛽ଵ𝑒̇ = 𝑧̈ௗ௘௦ − 𝑧̈ + 𝛽ଵ𝑒̇                                  (23) 

Substituting in equation 22 we get 

                                 𝛽ଶ(𝑧̈ௗ௘௦ − 𝑧̈) + 𝛽ଵ𝑒̇ = −
ఋ

ଶ
(𝛽ଵ𝑒 + 𝛽ଶ𝑒̇)                        (24) 

Through substitution in 𝑧̈ 

   𝛽ଶ(𝑧̈ௗ௘௦ + 𝜑𝑥̇ + 𝛼(𝑥ଶ𝑥̈ + 𝑥̇ଶ𝑥) + 𝛾𝑥ଷ − 𝑢 − 𝑐𝑜𝑠 𝑡) + 𝛽ଵ𝑒̇ = −
ఋ

ଶ
(𝛽ଵ𝑒 + 𝛽ଶ𝑒̇)        (25) 

To find the control law u 

        𝑢 =
ఋ

ଶ

ఉభ

ఉమ
𝑒 +

ఋ

ଶ
𝑒̇ + 𝑧̈ௗ௘௦ + 𝜑𝑥̇ + 𝛼(𝑥ଶ𝑥̈ + 𝑥̇ଶ𝑥) + 𝛾𝑥ଷ +

ఉభ

ఉమ
𝑒̇ −

௖௢௦ ௧

ఉమ
         (26) 
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Figure 7 Phase plane solution of Zohdy Harb system under Lyapunov control 

 

Figure 8 Position output compared to reference signal under Lyapunov control 
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3.7 PID Controlled Zohdy Harb System 

PID control is utilized in comparison to Lyapunov control to show Lyapunov’s 

superiority in terms of controls. Figure 9 and 10 PID control is shown to lag in managing 

the error. 

 

Figure 9 Phase plane solution for PID controlled Zohdy-Harb System 

 

Figure 10 Position Output of PID controlled Zohdy-Harb System 
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In this chapter we reviewed the results of utilizing PID control in comparison to 

Lyapunov control. Lyapunov control was shown to be superior in terms of robustness of 

control and adaptation to disturbances. On the other hand, Lyapunov control was found to 

include multiple parameters that require fine tuning in order to get the best outcome. 

Compared to the 3 PID control parameters that require tuning, Lyapunov control might 

have more than 5 parameters that require tuning and depending on the system complexity 

the number of parameters can increase. As such we propose and investigate in the next 

chapters the integration of machine learning to fine tune the controller parameters 

initially and to continue it tuning depending on the system output and changes. 
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CHAPTER FOUR 

NN PREDICTIVE CONTROL 
 
 
 

Data driven control or else known as Machine learning control (MLC) is an area 

of machine learning, intelligent control, and control theory that solves optimum control 

problems using machine learning techniques. Principal applications are complicated 

nonlinear systems for which linear control theory approaches cannot be applied [56]. 

MLC combines three well-established disciplines: the theory of closed-loop 

feedback control, machine learning and regression, and turbulent fluid flow-characteristic 

nonlinear dynamical systems [56]. Over the past several decades, control theory has 

matured into a science with a solid theoretical foundation and robust numerical 

techniques. Significant developments have enabled the robust management of systems 

with sensor noise, external disturbances, and model uncertainty. Modern techniques from 

control theory have changed the engineering sciences and the industrial scene. 

Controlling systems with significantly nonlinear dynamics resulting in broadband 

frequency spectra, a high-dimensional state space, and huge time delays still presents 

obstacles [57]. MLC begins to address these difficulties by discovering effective control 

rules utilizing powerful machine learning techniques. 

MLC has emerged with solutions to difficulties such as: 

 Control parameter identification: If the structure of the control rule is known but 

the parameters are unknown, MLC translates to parameter identification [56]. A 

genetic method for improving the coefficients of a PID controller [58] or discrete-

time optimal control is one example [27].  
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 Control design as a first-order regression problem: MLC approximates a generic 

nonlinear mapping from sensor signals to actuation commands if the sensor 

signals and optimum actuation command for each state are known. An illustration 

would be the calculation of sensor feedback from a known complete state 

feedback. A neural network is a typical method for performing this task[59].  

 MLC can also discover arbitrarily nonlinear control rules that minimize the cost 

function of the plant. In this instance, neither a model, the structure of the control 

law, nor the optimal actuation command are required. The optimization is based 

only on the plant-measured control performance (cost function). For this aim, 

genetic programming is a highly effective regression method.  

 Using reinforcement learning, the control rule may be continuously changed in 

response to measurable changes in performance (rewards).  

In addition to methodological commonalities with other data-driven controls like 

artificial intelligence and robot control, MLC controls include neural network control, 

genetic algorithm-based control, genetic programming control, and reinforcement 

learning control. MLC has been effectively used in a wide variety of nonlinear control 

challenges, allowing researchers to investigate unknown and frequently surprising 

actuation processes.  

Applications include: 

 Satellite’s ability to regulate their altitude [60].  

 Temperature regulation in the building  

 Feedback turbulence management is the eighth point[58, 61]  

 A vehicle that can be driven remotely while submerged in water[62]. 
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In this chapter we review the different types of machine learning control, present 

the data set and the results of utilizing only a data driven approach to non-linear control 

systems. 

 

4.1 Types of Machin Learning Control 

The review paper written by PJ Fleming and RC Purshouse provides a summary 

of a great number of further engineering MLC applications [63]. In the same vein as other 

generic nonlinear approaches, MLC does not come with any guarantees regarding its 

convergence, optimality, or resilience across a variety of operating circumstances. 

Numerous turbulence control issues cannot be well characterized by linear 

models, have enormous state spaces, and suffer from temporal delays between actuators 

and sensors due to nonlinear convective fluid dynamic processes. Consider the 

aerodynamic drag reduction of a vehicle having actuators at the rear, pressure sensors 

scattered throughout the vehicle, and intelligent feedback control logic. While the 

numerical simulation of the underlying dynamics given by the Navier–Stokes equations 

takes days or weeks to complete, the control system requires actuation decisions to be 

made on a scale that is measured in milliseconds. Reduced-order models that combine 

nonlinearities, multiscale phenomena, and actuation effects have evaded many serious 

attempts and are likely to stay elusive for decades. It is possible that there is no suitable 

paradigm for robust control design. The bulk of turbulence control experiments utilize 

open-loop forcing, such as periodic blowing, incrementally adjust an open-loop vii 

approach, or stabilize an underlying laminar solution, such as a laminar boundary layer 

on an aircraft wing. In numerical research, feedback control that responds in real time to 
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dominating flow structures is possible, although in real-world trials with turbulent flows, 

it is uncommon.  

 

4.2 Genetic Algorithms 

The population of possible solutions to an optimization issue may improve over 

time thanks to the use of a genetic algorithm. In general, potential solutions are encoded 

in binary as strings of 0s and 1s, although other encodings are also feasible. Each 

prospective solution includes a set of properties that may be modified and changed in 

some way [64]. 

Typically, evolution begins with a population of randomly created individuals and 

is an iterative process, with the population in each iteration being referred to as a 

generation. In every generation, the fitness of every member of the population is 

evaluated; fitness is typically the value of the objective function in the optimization 

problem being addressed. The fittest people are randomly picked from the present 

population, and their genomes are transformed to create a new generation. In the 

subsequent algorithm iteration, the new generation of candidate solutions is utilized. 

Commonly, the method finishes after either a maximum number of generations has been 

created or a suitable fitness level for the population has been attained. 

Standard genetic algorithms require a genetic representation of the solution 

domain and an evaluation function for the solution domain. Each possible solution is 

represented as an array of bits by convention. Similar functionality may be achieved with 

arrays of different kinds and structures. Due to their constant size, the components of 

these genetic representations may be readily aligned, which simplifies straightforward 
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crossover procedures. Variable length representations may also be employed; however, 

crossover implementation is more complicated in this instance. In genetic programming 

and evolutionary programming, tree-like and graph-like representations are investigated, 

but in gene expression programming, both tree-like and graph-like representations are 

investigated. After defining the genetic representation and fitness function, a genetic 

algorithm (GA) initializes a population of solutions and then improves it by repeatedly 

applying mutation, crossover, inversion, and selection operations. The population size 

varies based on the nature of the problem, but often encompasses many hundreds or 

thousands of potential solutions. Typically, the starting population is produced at random, 

providing for the whole spectrum of viable solutions. Sometimes, solutions are in regions 

where optimum solutions are likely to be discovered. 

On the other hand, there are restrictions associated with the employment of a 

genetic algorithm in comparison to other optimization algorithms. Such as in artificial 

evolutionary algorithms, repeated fitness function assessment for complicated situations 

is often the most prohibitive and restricting component. Finding the ideal solution to 

complicated, high-dimensional, multimodal issues sometimes necessitates very costly 

assessments of fitness function. In real-world situations, such as structural optimization 

challenges, the whole simulation of a single function evaluation might take several hours 

to many days. Typical optimization techniques cannot address such problems. In this 

situation, it may be essential to forego an accurate assessment in favor of a 

computationally efficient approximation. Evidently, combining approximation models 

may be one of the most promising ways to employ GA persuasively to tackle complicated 

real-world issues. 
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Genetic algorithms are not very good at scaling effectively with increasing 

complexity. Thus, when the number of elements subjected to mutation is high, the size of 

the search space typically increases exponentially[65]. This makes it incredibly 

challenging to apply the method to issues such as the design of an engine, a home, or an 

airplane. For such issues to be amenable to evolutionary search, they must be represented 

in the simplest manner feasible. Consequently, evolutionary algorithms often encode 

ideas for fan blades rather than engines, building forms rather than complete construction 

plans, and airfoils rather than whole aircraft designs[66]. The second concern of 

complexity is how to preserve parts that have evolved to represent excellent solutions 

from additional damaging mutation, especially when their fitness evaluation depends on 

their ability to mix effectively with other parts. The best solution is relative to other 

options. In consequence, the stop condition is not always evident in every issue. 

In genetic algorithms and genetic programming, diversity is essential since 

crossing across a homogenous population does not provide novel solutions. Due to a 

larger dependence on mutation, variety is not required in evolutionary strategies and 

programming. 

It is challenging to operate on dynamic data sets, since genomes converge early 

on towards answers that may no longer be viable for subsequent data. Increasing genetic 

diversity and preventing early convergence are two strategies that have been proposed as 

potential solutions to this problem. These strategies can be implemented in one of two 

ways: either by increasing the probability of mutation whenever the solution quality 

decreases, or by periodically introducing entirely new, randomly generated elements into 

the gene pool. The so-called "comma technique" is another method that may be used to 
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implement evolution strategies and programming. In this method, parents are not kept 

and new parents are only selected from their children. This may be more effective for 

solving dynamic issues. There is no method for a genetic algorithm to converge on a 

solution when the sole fitness measure is a single right/wrong measure. In such 

circumstances, a random search may identify a solution just as rapidly as a GA. 

Nonetheless, if the success/failure experiment may be repeated with different outcomes, 

the ratio of successes to failures is a valid fitness metric. 

Other optimization methods may be more effective than genetic algorithms in 

terms of speed of convergence for certain optimization issues and problem cases. 

Alternative and complementary algorithms include evolutionary techniques, evolutionary 

programming, simulated annealing, Gaussian adaptation, hill climbing, swarm 

intelligence, and approaches based on integer linear programming. Evolution techniques 

are also known as evolutionary programming. The degree of familiarity with the problem 

is a factor in determining whether genetic algorithms may be used to it; problems that are 

well-known often have better, more specialized solutions. 

 

4.3 Reinforcement learning 

Reinforcement learning (RL) is a subfield of machine learning concerned with 

determining how intelligent agents should operate in an environment to maximize the 

concept of cumulative reward. Reinforcement learning is one of the three fundamental 

paradigms of machine learning, along with supervised learning and unsupervised 

learning[67]. 
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Reinforcement learning differs from supervised learning in that it does not need 

the presentation of labeled input/output pairings or the explicit correction of suboptimal 

behaviors. Instead, the emphasis is on striking a balance between exploration and 

exploitation. Combining the benefits of supervised and RL algorithms, partially 

supervised RL algorithms may incorporate the benefits of both types of algorithms[68]. 

Typically, the environment is given in the form of a Markov decision process 

(MDP), since several reinforcement learning methods for this context use dynamic 

programming approaches[69]. The primary distinction between classical dynamic 

programming techniques and reinforcement learning algorithms is that the latter do not 

presuppose prior knowledge of an accurate mathematical model of the MDP and target 

big MDPs for which precise approaches become impractical. 

The issues of reinforcement learning have also been explored in the theory of 

optimal control, which is more concerned with the existence and characterization of 

optimum solutions and methods for their accurate calculation than it is with learning or 

approximation, particularly in the absence of a mathematical model of the environment. 

This is because learning or approximation is difficult to achieve when there is no 

mathematical model of the environment. In the fields of economics and game theory RL 

refers to a technique that may be used to illustrate how equilibrium could develop despite 

the presence of restricted rationality. The utilization of samples to maximize performance 

and the use of function approximation to cope with huge environments are the two 

components that contribute to the effectiveness of reinforcement learning. Because of 

these two fundamental aspects, reinforcement learning may be implemented in vast 

settings in the following contexts: 
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There is a model of the environment accessible, but there is no analytical solution 

currently available. The only method to get data about the environment is to engage in 

activity inside it[70]. The first two of these issues might be seen as planning issues, while 

the third could be interpreted as an authentic learning issue. On the other hand, 

reinforcement learning transforms both planning difficulties into challenges of machine 

learning: 

 Nonlinear 

 Unknown dynamics 

 High Dimensional 

 Limited measurements 

 

4.4 Neural Network Control 

Neural network control or Data-driven control systems are a large class of control 

systems in which the identification of the process model and/or the design of the 

controller are totally dependent on experimental plant data[71]. 

In many control applications, attempting to develop a mathematical model of the 

plant is a difficult and time-consuming task that requires the involvement of process and 

control experts. This issue is circumvented by data-driven approaches, which fit a system 

model to the experimental data collected and select it from a particular model class. This 

model can then be used by the control engineer to develop a suitable controller for the 

system. However, it is still challenging to construct a simple yet trustworthy model for a 

physical system that incorporates only the system dynamics that are relevant to the 

control specifications such as in Figure 11. Without requiring a specified model of the 
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system, direct data-driven approaches permit tuning of a controller belonging to a certain 

class. On this basis, it is also possible to simply weight process dynamics of interest 

within the control cost function, while excluding dynamics of no relevance[72]. 

 

Figure 11 System Controller Setup 

A neural network may be conceptualized as a mathematical function that 

translates an input set to a desired output set. Neural networks are composed of the 

following elements Figure 12: 

 One input layer, x, 

 One or more hidden layers, 

 One output layer, ŷ, 

 A set of weights and biases between each layer, W and b, 

 Activation function for each hidden layer, σ. 

Plant 

NN Model 

Learning 
Algorithm 

u x 

- +
Error 𝑦௠ 
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Figure 12 Neural Network Components 

 

4.5 Model Predictive Control 

Model Predictive Control works by iteratively optimizing a plant model over a 

finite time horizon. As shown in Figure 13 the plant state is sampled at time t, and a cost-

minimizing control strategy for a relatively short time horizon in the future is determined 

using a numerical minimization algorithm at [t, t+T] [73]: 

        J = ∑  ே
௜ୀଵ 𝑤஺೔

(𝑟௜ − 𝑥௜)ଶ + ∑  ே
௜ୀଵ 𝑤௕೔

𝛥𝑢௜
ଶ                                  (27) 

x୧: Variable under control at value i 

r୧: Variable under refrence at value i 

u୧: Variable under actuation at value i 

w୅୧: weighting coefficient for x୧  

wୠ୧: weighting coefficient for u୧  
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An online calculation is utilized to investigate state trajectories originating from 

the current state and determined through the solution of Euler-Lagrange equations a cost-

minimizing control strategy until time t+T. Only the first step of the control strategy is 

executed, after which the plant state is sampled again and the calculations are completed, 

beginning with the new current state, providing a new control and anticipated state path. 

The prediction horizon continues to move forward therefore the given name receding 

horizon [74]. 

 

Figure 13 Model Predictive Control process 

 

4.6 NN Predictive control Zohdy-Harb System 

The neural network predictive controller on the other hand employs a neural 

network model of a nonlinear plant to forecast future plant performance. The controller 

then determines the control input that will optimize the performance of the plant over a 
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defined future time horizon. Model predictive control begins with the identification of the 

neural network plant model. The controller then uses the plant model to anticipate future 

performance. 

Training a neural network to reflect the forward dynamics of the plant is the initial 

stage of model predictive control. The prediction error between plant output and neural 

network output is employed as the training signal for the neural network. The procedure 

is depicted in the following Figure 14: 

 

 

 

 

Figure 14 (Left) Network Architecture and (right) Mean Square Error Diagram as 
the NN is trained 
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The NN predictive control method is based on the receding horizon technique. 

The neural network model predicts the plant response over a specified time horizon. The 

p reductions are used by a numerical optimization program to determine the control 

signal that minimizes the following performance criterion over the specified horizon. 

where N1, N2, and Nu define the horizons over which the tracking error and the control 

increments are evaluated. The u′ variable is the tentative control signal, yr is the desired 

response, and ym is the network model response. The ρ value determines the contribution 

that the sum of the squares of the control increments has on the performance index. 8000 

training samples were collected for training the network. 45 nodes with 1 hidden layer 

NN. A sampling interval of 0.2 seconds. The training parameters were 200 training 

epochs with Levenberg-Marquardt backpropagation method. The Levenberg-Marquardt 

technique was created to approximate second-order training speed without requiring the 

Hessian matrix to be calculated. When the performance function takes the shape of a sum 

of squares, it is referred to as a sum of squares performance function as is typical in 

training feedforward networks. Figures 15 and 16 present the NNPC output where the 

max error difference is 27 mm. On the other hand, when the scalar γ equals zero, this is 

effectively Newton’s approach, which makes use of an estimated Hessian matrix. When a 

big value is used for, the calculation changes to a gradient descent with a short step size. 

This approximation to the Hessian matrix is used by the Levenberg-Marquardt method in 

the subsequent Newton-like update: 

                       𝑥ௌାଵ = 𝑥ௌ − [𝐽்𝐽 + 𝛾𝐼]ିଵ𝐽்𝑒                                            (28) 

 



50 

 
 

Figure 15 The Phase plane solution result under NNPC on Zohdy-Harb System 

 
 

Figure 16 The position output (blue) compared to the reference Sin curve in (red) 
 

Since Newton’s approach is both quicker and more precise in the vicinity of an 

error minimum, the goal is to make the transition to Newton’s method as soon as 

practically practicable. Therefore, after each successful step, is dropped (which results in 

a reduction in the performance function) and is only increased if a tentative step would 
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result in an increase in the performance function. In this manner, the performance 

function will consistently be improved during the course of the algorithm’s iterations.  

 

4.7 Applying NN Predictive control on Duffing System 

In this section, we apply the NN predictive controller method to the Duffing 

nonlinear system and study the results compared to the PID and Lyapunov controller. 

Figure 17 presents the phase plane solution when applying NN predictive controller on 

the Duffing non-linear system where the system is shown to be unable to maintain precise 

output compared to reference Sine signal. Figure 18 presents the system as it doesn’t 

accurately follow the reference signal as designed. The error increases at 14 seconds with 

the introduction of the duffing system nonlinear dynamics. Compared to PID and 

Lyapunov control NNPC performed the poorest in terms of accuracy and robustness.  

 

4.8 Applying NN Predictive control Van der Pol 

In this section, we apply the NN predictive controller method to the Van der pol 

nonlinear system and study the results compared to the PID and Lyapunov controller. 

Figures 19 and 20 show the simulation results when applying NN predictive control on 

Van Der Pol control. The controller was able to perform better in terms of accuracy 

compared to Duffing and Zohdy-Harb system but still the controller robustness and 

accuracy is substandard to PID and Lyapunov control.  



52 

 
 

Figure 17 The Phase plane solution result under NNPC on Duffing System 
 

 
 

Figure 18 The position output (blue) compared to the reference curve in (red) under 
NNPC 
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Figure 19 The Phase plane solution result under NNPC on Van der Pol System 
 

 
 

Figure 20 The position output (blue) compared to the reference curve in (red) under 
NNPC Duffing System 
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In this chapter we present the different approaches to data driven control. NN 

predictive control is applied on Duffing, Van der Pol and Zohdy-Harb systems. The 

approach is shown to be successful in learning the system model but when a sinusoidal 

input signal with high frequency is provided for control this approach was found to be 

unsuccessful. The results in this chapter would provide a comparison point to the 

integration of Deep Learning with Lyapunov nonlinear control. 
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CHAPTER FIVE 

LYAPUNOV DEEP LEARNING CONTROL 
 
 
 

In the previous chapter we examined different types of machine learning control 

and their benefits and drawbacks compared to conventional linear and non-linear control 

systems such as PID and Lyapunov control. In this chapter we present a resolution that 

would combine the upside of both conventional non-linear Lyapunov control and data 

driven machine learning control.  The initial selection of system and controller settings 

does not always ensure continuing system stability and performance. This is primarily 

because of the introduction of unanticipated system disruptions or the absence of 

knowledge regarding the system's dynamics. In this study, we provide an innovative 

method for identifying early failure signs of non-linear highly chaotic systems and, as a 

result, make predictions about those systems. The strategy proposed keeps a constant 

watch on the signals coming from the system and the controller. The re-calibration of the 

system's parameters as well as the controller's is activated in response to a predetermined 

set of conditions designed to ensure the continued reliability of the system while 

minimizing any impact on its operating speed, expected result or minimum amount of 

computing power necessary. The parameter values that would work best are those that the 

deep neural model predicts. Combat the system instability that is to be anticipated. In 

order to provide evidence of the viability of the suggested strategy, it is implemented in 

the context of the combination of Duffing-Van der pol oscillators that is non-linear and 

complicated. Additionally, the strategy is evaluated using a variety of simulated 

conditions. System and controller settings are either initially chosen wrongly or, 



56 

alternatively, system parameters are altered while the system is operating, or new system 

parameters are introduced. While the program is being executed, the dynamics of the 

system are introduced so that efficiency and response time may be measured. 

 

5.1 Machine Learning Lyapunov Control 

In the Lyapunov Control method an exhaustive search issue may be used to 

describe the process of picking the appropriate controller parameters for the purpose of 

reducing the error produced by the model. In the Duffing Lyapunov Control and Analysis 

in Chapter 3 the following control law was deduced 

       
ఋ

ଶ

ఉభ

ఉమ
𝑒 +

ఋ

ଶ
𝑒̇ + 𝑧̈ௗ௘௦ + 𝜑𝑥̇ + 𝛿𝑥 + 𝛾𝑥ଷ +

ఉభ

ఉమ
𝑒̇ −

௖௢௦ ௧

ఉమ
                            (29) 

There is a significant effect on the controller output and error with the change of 

parameters 𝛽ଵ, 𝛽ଶand 𝛿. With PID control there are only 3 parameters to be tunned while 

with non-linear controllers such as Lyapunov while the output presents a much lower 

error there are several parameters that require tunning to reach peak controller 

performance. In this chapter we present a model for integrating deep machine learning 

with Lyapunov non-linear control. Initially, the model is executed while the error rate of 

the system is tracked. If the error is more than the set threshold, the neural network is 

asked to find control parameters that, given the present state of the system, would result 

in a reduction in the error produced by the system. The algorithm that governs the entire 

operation is outlined in the following paragraphs. The network shown in Figure 20 is first 

trained, and then it is used to make predictions about future Betas. These predictions 

include Beta 1 (β1) and Beta 2 (β2) if the system error (sys err) reaches a specific 
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threshold (0.8). The network is then provided with the present state of the system in terms 

of time (t), location (p), and velocity (v), as well as the randomly generated (β1) and its 

corresponding (β2), and it forecasts the amount of error that will occur in the system. If 

the anticipated error is lower than the actual error of the system, then the system is 

updated with the newly generated Betas that are theorized to minimize the error. This 

happens only if the expected error is lower than the actual error of the system. 

At the end of each cycle, the newly created Betas and the system parameters that 

correspond to them are saved. After every 100 iterations, the system is checked for 

disturbances by computing the average of the system error that occurred over the 

preceding 100 iterations (avg sys err). If the current error is more than the threshold 

value, the system is considered to be perturbed. . In order to combine both types of 

control Figure 21 and Figure 22 describe the incorporation of the data received from the 

MLC as an input to the Lyapunov controller. The network is retrained using a subset of 

the old data (Memo) utilized in the training process by using the prior system average 

(prev sys avg). Prior training in addition to the information gathered from the preceding 

one hundred repeated attempts (new data). The reason for continuing to use the previous 

data as well as the additional information is to help avoid forgetting anything catastrophic 

such referred to in footnote [75]. The practice of recalling information from one's past is 

commonly referred to as memory that can update itself on its own and was first shown 

and experimented with in [76], [77], and [78]. The point being made here is that even in 

situations where there are disturbances; they may not last for very long, though, and as a 

consequence of this, we don't want the network to lose its capacity to forecast the system 

error in the event that the system settings are restored. To return to the norm after the 
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network was retrained on many occasions. A Memory ten percent of the previous training 

data to maintain network output safety. 

 

Figure 21 Network Algorithm 

5.2 Duffing System 

The mathematical model presented in equation 31 presents the Duffing Oscillator.  

                                       ẍ + φẋ + δx + γxଷ = cos t + u                                   (30) 

To find the control law u 

                        u =
ஔ

ଶ

ஒభ

ஒమ
e +

ஔ

ଶ
ė + z̈ୢୣୱ + φẋ + δx + γxଷ +

ஒభ

ஒమ
ė −

ୡ୭ୱ ୲

ஒమ
              (31) 

In this section we combine the Lyapunov control discussed in chapter 3 to the 

deep learning machine learning architecture discussed in chapter 4 Figure 22. The 
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combination of both types of control would yield a highly adaptable Deep Learning non-

linear control. Initially, the model is executed multiple times with varying 𝛽ଵ& 𝛽ଶ. The 

system error, velocity, displacement, and time are then gathered and utilized to construct 

a dataset. The dataset is applied to train the predictor model. If the current state of the 

system and the Betas that are being used result in a high error, a new pair of Betas are 

used on the predictor model to predict the behavior of the system; if the new Betas are 

predicted to result in a reduction of the error, then use them; otherwise, continually 

recommend new 𝛽ଵ& 𝛽ଶ. The trained predictor model forecasts the error for any given set 

of 𝛽ଵ& 𝛽ଶ proposed by the algorithm. Several iterations of the Deep Neural Network 

Architecture and Dataset were made before reaching the architecture and dataset with the 

highest accuracy and least error. In this section we are going to present the different 

iterations to selection and results of each iteration. Since four hundred and sixty different 

iterations were made only iterations with significant impact to design will be presented. 

Figure 23 depicts the architecture of the final Deep Neural Network. There are 5 distinct 

blocks that make up the network. It was discovered that the performance of the DNN is 

negatively impacted by using a lesser number of layers but using a higher number of 

layers had no impact on the performance but did have a negative impact on the DNN's 

efficiency. A block is made up of three layers: a fully connected convolution layer, a 

batch normalization layer, and a rectified linear unit (RELU) in Equation 32. The fully 

connected convolution layer comes first. 

                          output = max(0.0,input)                                                 (32) 

Because it ensures that activations are neither excessively high or low, the batch 

normalization layer enables us to employ greater learning rates.



 

 
 

Figure 22 Network retraining flow chart 
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5.3 Deep Neural Network Architecture 

 

Figure 23 Neural network Architecture initial design 

Input Data 

Error 
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The RELU is almost a linear function since it is a piece-wise linear function that 

is composed of two linear components. This makes it very close to being a linear 

function. This feature increases its capability to preserve many of the properties that 

make linear models easy to optimize with gradient-based methods and the properties that 

make linear models generalize well. In addition, this feature increases its capability to 

preserve many of the properties that make linear models easy to optimize. In addition to 

the fully connected convolution layer, the final block consists of a dropout layer as well 

as a regression layer that is used to anticipate error.  

The issue of overfitting was the motivation behind the development of the 

regularization technique known as dropout [79]. The overfitting problem occurs when the 

neural network learns every minor detail in the training data. Because of this behavior, 

the network will have a high level of accuracy when processing the data used for training, 

but it will have a very low level of accuracy when processing the data used for testing. 

This indicates that the network is unable to generalize on data that was not anticipated. 

The dropout technique is being considered as a potential solution to this issue. The 

dropout approach will randomly ignore a certain number of the layer's outputs. As a 

consequence of this, every update that is made to a layer while it is being trained is done 

so with a different "perspective" on the layer that is configured. The mean squared error 

loss is what is calculated by the regression layer. In equation 34, a function known as F is 

taught to the network through training. 

                                  F : (t, x, v, β1, δ ) → e                                                     (32) 

Where t is time, x is the position, v is the velocity, β1 and δ are controller parameters. 
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5.3.1 Dataset (Trail 1) 

During the first trail of building the Deep Neural Network training dataset the 

following parameters were collected 

1. Time  

2. Velocity Output 

3. Stability 

The parameter δ is changed after each time reset and restart of the system. 

Datapoints were collected at a one millisecond intervals. The dataset consisted of 10,000 

data points divided into a training portion of sixty percent and a validation portion of 

forty percent as presented in Figure 24.  

 
 

Figure 24 Dataset utilized in trail 1 
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Consistent revisions to the dataset were made according to the error rate of 

change and error gradient re-calculated every 10 seconds to activate the Deep Learning 

Network error estimation. 250 Epochs per learning iterations with 3 iterations in total. 

The lack of data features was the main attribute found to affect the outcome. Over the 

next dataset collection, we will focus on the number of features collected and their effect 

on the error output. 

 
 

Figure 25 The training and validation RMSE comparison of the dataset in trail 1 
 

5.3.2 Dataset (Trail 12): 

In trail 12 the number of epochs is reduced to 50 with 3 iterations due to the lack 

of learning during the remaining epochs during the previous trials. The following 

parameters were sampled at ten millisecond intervals: 

1. Time 

2. Control Signal (u) 
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3. Position Output 

4. Velocity Output 

5. Output Error (Numeric) 

6. 𝛽ଵ & 𝛽ଶ 

 
 

Figure 26 Dataset utilized in trail 12 
 

The Root Mean Square Error (RMSE) is a good measure of the distribution of 

prediction points from the regression line. 

                                       RMSE = ට
∑  ొ

౟సభ (୶౟ି୶ො౟)మ

୒
                                                  (33) 
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Figure 27 The training and validation RMSE comparison of the dataset in trail 12. 
 

As shown in Figure 26 since the validation data and training data are overlapping 

at the end points no overfitting or underfitting has occurred in trail B. 

5.3.3 Dataset (Trail 116): 

In trail 116 the number of epochs is reduced to 30 epochs with 3 iterations. The 

time element is excluded from the dataset to ascertain the relation between the parameters 

and error directly without the time dimension. The following parameters were sampled at 

ten millisecond intervals: 

1. Control Signal (u) 

2. Position Output 

3. Velocity Output 

4. Output Error (Numeric) 

5. 𝛽ଵ & 𝛽ଶ 
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Figure 28 The training and validation RMSE comparison of the dataset in trail 116 
 

Removing the time input had a worsening effect compared to previous trails. 

Time was found to be required to allow the DNN to learn the effect of time on the system 

dynamics. As time goes by in an oscillatory system motion repeats itself but for 

continuously changing dynamics repetition is not a factor. Therefore, time would be 

included in the following trials. 

 

5.4 Feature Engineering 

Over the previous trials we have learned that the rate of learning of the network is 

not improving with regular data manipulation of adding and removing more data points. 

Therefor more research was required into what is called feature engineering. Feature 

engineering entails modifying the facts into forms that have a stronger connection to the 

fundamental objective that is to be taught. Adding value to your existing data and 

improving the efficiency of your machine learning models are both possible outcomes of 
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feature engineering when it is carried out correctly. On the other side, if you use poor 

features, you might need to construct models that are significantly more complicated in 

order to attain the same level of performance. 

5.4.1 Handling Outliers 

In a dataset, outliers are numbers that stand out because they are abnormally 

outside the bound of a series or maintained output and are not likely to occur in typical 

circumstances. Because these outliers have the potential to negatively affect the network 

prediction, different approaches are employed to handle outliers such as: 

 Elimination: Where the datapoints in the distribution that contain outliers are 

eliminated from further consideration. However, if there are any outliers across 

numerous variables, those datapoints are left as is to maintain the data integrity. 

 Capping is when the maximum and minimum values are capped and then replaced 

with an arbitrary number, or a value drawn from a variable distribution. Capping 

can also be referred to as limiting. 

5.4.2 Scaling 

Feature scaling also referred to as feature normalization involves adjusting the 

scales of features using the following scaling technique: 

Min-Max Scaling: This method includes rescaling all of a feature's values within 

the range of 0 to 1 in order to achieve the desired results.  

                                                     Xᇱ =
ଡ଼ିଡ଼ౣ౟౤

ଡ଼ౣ౗౮ିଡ଼ౣ౟౤
                                               (34) 

As presented in equation 37, Xmax and Xmin are the maximum and the minimum 

values of the feature respectively. The value that was at the lowest end of the original 
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range will be assigned the value 0, the value that was at the highest end of the range will 

be assigned the value 1, and the values in the middle will be scaled properly. This 

technique was employed in the parameter values beta 1 and beta 2. 

 

5.5 Deep Neural Network Architecture 

5.5.1 Vanishing Gradient Problem 

The vanishing gradient problem is observed when training a deep neural network 

and the recurrent neural network is unable to transport valuable gradient information 

from the output terminal of the model to the layers near the input terminal[80]. As a 

consequence of this, models with many layers either cannot learn from the dataset they 

are given or prematurely converge on a solution that is not optimal. In general, models 

with many layers are unable to learn from datasets. 

5.5.2 Batch normalization 

Batch normalization is a strategy that is used to make the training of artificial 

neural networks quicker and more stable. This is accomplished by normalizing the inputs 

to the layers of the network by re-centering and re-scaling the data. In 2015, Sergey Ioffe 

and Christian Szegedy were the ones who initially proposed the resolution. There is much 

debate over the factors that contribute to its success[81]. It was thought that it may help 

minimize the problem of internal covariate shift, which is when parameter initialization 

and changes in the distribution of the inputs of each layer alter the learning rate of the 

network. It was believed that it could do this. As of late, a number of researchers have 

posited that batch normalization does not, in fact, lessen the effect of internal covariate 



70 

shift; rather, it smooths the objective function, which ultimately results in an 

improvement in performance [82]. 

5.5.3 Long short-term memory 

The term "long-short term memory" (LSTM) is derived from the idea that a 

regular recurrent neural network (RNN) possesses both "long-term memory" and "short-

term memory." It is analogous to how physiological changes in synaptic strengths store 

long-term memories that the connection weights and biases in the network change once 

per episode of training. On the other hand, the activation patterns in the network change 

once per time-step, which is analogous to how the moment-to-moment change in electric 

firing patterns in the brain stores short-term memories[83].The "long short-term memory" 

(LSTM) architecture is intended to give RNNs with a short-term memory that is durable 

enough to withstand thousands of timesteps. Because there may be gaps of undetermined 

length between significant occurrences in a time series, LSTM networks are ideally 

suited for the tasks of categorizing, processing, and making predictions using data from 

time series. The vanishing gradient problem that can arise during the training of 

conventional RNNs inspired the development of LSTMs as a solution to the issue. When 

compared to RNNs, hidden Markov models, and other sequence learning approaches, 

LSTM's relative insensitivity to gap length is an advantage that makes it superior un a 

variety of applications[84]. 

5.5.4 Dataset (Trail 144): 

In trail 144 the methods in sections 5.4 and 5.5 are employed. The time element is 

reincluded in the dataset. The following parameters were sampled at ten milliseconds: 

1. Control Signal (u) 



71 

2. Position Output 

3. Velocity Output 

4. Output Error (Numeric) 

5. 𝛽ଵ & 𝛽ଶ 

The root mean square error in Figure 28 is shown to decrease by 1 during the 

validation of the dataset compared to trail 116. 

 
 

Figure 29 The training and validation RMSE comparison of the dataset in trail 144 
 

5.6 Lyapunov Deep Learning Control on Zohdy-Harb 

In this section we review the results of applying Lyapunov Deep Learning on the 

Zohdy-Harb non-linear system. The mathematical model presented in equation 38 

presents the Zohdy-Harb Oscillator [55].                                        

                            ẍ + δẋ + φ(xଶẍ + ẋଶx) + γxଷ = Pcos Ωt + u                       (35) 
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And the Lyapunov control law is found in equation 39 

 u =
ஔ

ଶ

ஒభ

ஒమ
e +

ஔ

ଶ
ė + z̈ୢୣୱ + φẋ + α(xଶẍ + ẋଶx) + γxଷ +

ஒభ

ஒమ
ė −

ୡ୭ୱ ୲

ஒమ
                  (36) 

The Deep NN in Figure 23 and the training data in Figure 29 are utilized to 

control the control Lyapunov parameters 𝛽ଵ𝑎𝑛𝑑 𝛽ଶ. The system is shown in Figure 30 to 

become unstable and fail within 0.3 seconds after simulation start due to the use of unfit 

Beta 1 = 100 and Beta 2 = 0.6, whereas in Figure 31 we show that the proposed deep 

neural network aids the Lyapunov controller in finding the control law parameters 

leading to system stabilization and keeping the system error under the set threshold. 

 
 

Figure 30  The system error goes to infinity as shown when the algorithm is not applied 
 
The findings demonstrate the neural network's efficiency in forecasting the error 

given the beta1 and beta2, as well as the algorithm's effectiveness in preventing the 

system from failing and continuously improving its performance by maintaining the 
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system error as low as feasible. Maintaining a constant beta1 and beta2, on the other 

hand, leads in large system error and the system may finally fail. 

 
Figure 31 The system error after using the neural network 

 
5.6.1 Introduction of step disturbance 

To expand on the suggested solution's ability to deal with mid-system instability 

or unexpected changes. Figure 32 presents the decline in error at 0.8867 on the 

intervention of the DL algorithm in changing the control parameters. The system is 

introduced to step disturbance at 1 sec while the system is running. The deep network 

was able to anticipate the appropriate parameters to re-establish system and controller 

stability within 0.4 ms, as seen in Figures 33 and 34. Figure 35 shows that Lyapunov 

Deep Learning is shown to successfully react to changes in the system disturbances or 

during unknown initial conditions. 
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Figure 32: Error uptick at t = 0.8867 due to the disturbance introduction 
 

 
 

Figure 33 The Algorithm reacting to the sudden change by adjusting Beta1 
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Figure 34 The Algorithm reacting to the sudden change by adjusting Beta2 

 

 
Figure 35 Phase diagram after finding the optimal system parameters 
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In this chapter we presented the deep learning network architecture and the 

method of integration with Lyapunov Control. We also explore the different phases of 

dataset development. Initial datasets included separate records for each model run and the 

stability of the system during that run would be the output of the DNN, but the accuracy 

of such dataset was proven to insufficient to update the parameters and the direction to 

take into account. Therefore, after further research and development a new combined 

dataset was proposed with the variation of the controller parameters combined with the 

error. The final dataset was found to substantially bring down the average validation 

RMSE to 0.225 which is a leap compared to previous results of 1.6. Therefor the dataset 

at trail 144 was selected to act as the template for upcoming model development.    
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CHAPTER SIX 

MAGNETIC LEVITATION APPLICATION 
 
 
 

Magnetic levitation (maglev) has emerged as a viable solution to the current 

demand for faster and more effective modes of transportation, and its contact-free 

technology is already finding uses in space and the military in addition to allowing for 

high speed, safe transit alternatives to railways. The demand for faster and more efficient 

modes of transportation is expected to continue growing in the coming years. 

Measurements of position, velocity, and acceleration are gathered so that a magnetic 

levitation system's feedback control loop can function properly. Following the 

completion of the appropriate measurements and processing, the signals are then 

introduced into a feedback loop. It is necessary to utilize contactless transducers in a 

Maglev system in order to accurately record position, velocity, and acceleration [85]. A 

Lyapunov nonlinear control can be used to monitor the output of the transducer, and the 

distance that separates the item and the rails can be adjusted. Efficiency is one of the 

most essential design criteria that has been taken into consideration because batteries 

have a finite quantity of power and are employed in applications related to transportation 

both now and in the future. Energy harvesting, also known as energy scavenging, is the 

process of gathering and transforming energy from the surrounding environment into 

usable electrical energy. This process was incorporated into the Maglev system described 

in [86-88]. During the course of the previous decade, several sources of energy, such as 

wind, solar radiation, thermal radiation, vibrations, and, most recently, magnetic energy 

harvesters, were successfully recycled in an effective manner. Magnetic energy harvester 
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systems require a controller, actuators, and coils in order to collect and manage the 

energy that is recovered from the magnetic field. Coils are also required. In order to 

function properly, the coil-magnet components of the harvester must comply with 

Faraday's law of electromagnetic induction [89]. 

As a result of the ongoing trend of advancements in technology and microchips, 

the complexity of CPS systems will continue to increase. According to an article that was 

published in the journal of the National Academies in 2016, it was stated that "today's 

practice of CPS system design and implementation is often ad hoc and unable to support 

the level of complexity, scalability, security, safety, interoperability, and flexible design 

and operation that will be required to meet future needs." [90]While earlier research in 

[41, 42] focused on using machine learning to toggle the control law between two or 

more possibilities, the current study will focus on this topic. 

As a result of the study in [16], we have come to the conclusion that 

computational solutions like deep learning have some restrictions when it comes to the 

amount of time that is available [38].  

This chapter presents the usage of the Pearson correlation, as well as the practice 

of giving precedence to parameters with strong correlation in connection to errors in the 

algorithm. In addition, we place an emphasis on the application of parameterized 

complexity in order to analyze the dataset. This allows us to reduce the amount of depth 

that the DNN has while still producing correct results. An individualized structure 

composed of layers is presented here. To the best of our knowledge, the incorporation of 

the concept that was indicated earlier has not been covered in any of the earlier research 

that has been published. In this chapter we also present a novel approach based on the 
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parameterized complexity theory to estimate the complexity of the dataset and 

accordingly change the depth of the DNN. Rather than quantifying the system complexity 

purely in terms of its input length, other numerical properties of the input instance are 

considered such as the correlation between the dataset parameters collected while the 

CPS system is running, or the memory occupation increase or decrease. The initial data 

set is a collection of parameter variations and their effects on the output. An updated 

dataset is collected via the deep neural network (DNN) and runs based on the initially 

defined CPS information. We identify high-performance compact deep learning 

architectures through a neural architecture search and meta learning. The neural network 

architecture is customized to minimize the training time and computational power 

required. A new data set is recorded if the delta error between the actual system error and 

the predicted system error generated by the DNN after the substitution with the proposed 

parameters is greater than 0.4. The system begins to add to its current data set while 

keeping in memory 40% of the older data set.   

A function to calculate the number of DNN layers required to relearn the 

parameters tuning effect on the model. In addition, a novel control Lyapunov function is 

presented, and the results are compared to a PID-controlled Maglev system from [91]. 

The proposed controller is shown to successfully stabilize the system under different 

disturbances and reference signal changes safely without going into an infinite loop. 

 

6.1 Magnetic Levitation System Dynamics 

In this section, a typical Magnetic Levitation system plant model is investigated, 

and the equations describing the system dynamics are presented [92]. Following that, the 
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energy harvesting portion of the model dynamics is described [93]. The following set of 

differential equations can be used to represent the nonlinear model. 

𝑚𝑥̈ − 𝜎𝑥̇ =
௜మ௞೎

(௫ି௫బ)మ
− 𝑚𝑔               (37) 

m: mass of the ball. 

g: gravity. 

x: displacement. 

𝑥̈: acceleration. 

i: current. 

σ: damping constant [N/m.s]. 

The displacement and current position of the ball in the magnetic field is 

controlled by electric current supplied and governed by Equation (2). 

   𝐹௦ =
ூ(௧)

௎(௧)
=

௞ೌ

ೞ்ାଵ
                             (38) 

i(t): current at time t. 

U(t): voltage at time t. 

Ka: coil inductance. 

Ts: time constant. 

The system in Equation (38) presents a traditional magnetic levitation system 

dynamic. While in the system in equation (40) presents an energy harvesting magnetic 

levitation model dynamics.  

       𝑥 + 𝑚𝑔 + 𝑥𝐾௠௔௚್
− 𝐾௠௔௚೟

+ 𝑆𝑞̇ + (𝑐௠ + 𝑐௘)𝑥̇ = 0                  (39) 

m: mass of the ball. 

g: gravity. 
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x: displacement. 

𝑥̈: acceleration. 

i: current. 

Alpha: magnetic force constant. 

   𝐿௦𝑞̈ + 𝑅௦𝑞̇ +
௤

஼ೞ
− 𝑆𝑥̇ = 𝑒𝑐𝑜𝑠 (𝜔𝑡)                 (40) 

v: voltage input. 

R: resistance. 

L: inductance 

6.1.1 State Space Representation 

The below state space equation is aimed towards controlling the position of the 

Ferrous ball.  In equation 39, Alpha is the summation of 𝑐௠ + 𝑐௘ and taking x1 = 

Displacement, x2 = Velocity, x3 = i. Therefore, Equations (37) and (38) can be written as 

a matrix format while considering position as output. 

 

Figure 36 Magnetic levitation system 
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𝑦௉௢௦௜௧௜௢௡ =  [1 0 0]                 (42) 

A variation in the y matrix is made to change the intended controlled output 

𝑦௏௘௟௢௖௜௧௬ =  [0 1 0]                        (43) 

𝑦஼௨௥௥௘௡௧ =  [0 0 1]                  (44) 

 

6.2 Design of the Lyapunov Controller 

Lyapunov control has proven successful in managing complex nonlinear 

oscillators to a certain extent of oscillator frequency ω = 2.5 Hz [15]. In order to improve 

the system stability at a higher ω, deep learning was introduced in [16]. The deep 

learning algorithm is taught the relationship between the system parameters change, the 

controller parameter change, and the output error slope. If the algorithm detects a sudden 

change in slop a parameter update is triggered, and the deep learning algorithm 

substitutes the current parameters with updated parameters that are expected to bring the 

system to stability. The application of control Lyapunov functions was developed by Z. 

Artstein and E. D. Sontag in the 1980s and 1990s[94]. Control Lyapunov functions are 

utilized to determine the stability of a system or a system ability to regain stability. A 

control Lyapunov function u is selected such that the function is globally positive definite 

and the time derivative of the control function 𝑢̇ is negative definite and globally 

exponentially stable. 

               u =
ଵ

ଶ
(ė + αe)ଶ                                  (45) 
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taking the time derivative of u 

           𝑢̇ = (𝑒̇ + 𝛼𝑒)(𝑒̈ + 𝛼𝑒̇)                  (46) 

                  𝑢̇ =
ఊ

ଶ
𝑢                                    (47) 

such that the error  

                  e = yd – y                                 (48) 

yd is the desired state and y is the actual state. upon substitution in 46 we get the 

control law U The Lyapunov function for the system in equation 37 is derived for the 

magnetic levitation model as 

                    U =
୩୫

ଶ
(ė ∗ αe) + αėm + gm + K୤୴ẋ −

୧మ∗୏ౙ

(୶ି୶౥)మ
+ ÿm                  (49) 

The Lyapunov function for the system in 39 is derived for the Energy Harvesting 

Magnetic Model as 

U = −yୢ̈ − αସÿ − ωସy + αଷ
୶̈ା୶ାனయ୶యା஑మ୷̇

ି஑భ
− N cos(θt) − αė −

୩

ଶ
(ė + αe)   (50) 

 

6.3 Deep Learning Algorithm 

The research presented in [36] showed that the controller parameters had a 

significant effect on the desired system outcome and inaccuracy. Consequently, the 

research in [16] effectively provided a deep learning strategy that would permit one of the 

controller parameters to change while the system is operating, thereby mitigating 

unexpected changes in system stability. One of the downsides discovered through the 

survey in [95] is that the system learning/re-learning process was found to be lengthy, 

and if more parameters require updates simultaneously to achieve system stability, it 

would take even longer due to the high variances in data in the data-set. The system 
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would fail because the updated parameters are not found within the allotted period. 

Researchers have demonstrated success with the Lyapunov stability function in dynamic 

DNN weights [96]. In addition, Optimization has gained popularity for locating network 

architectures that are computationally efficient to train while still performing well on 

certain classes of learning problems [92], [93], and [97] as well as for taking advantage of 

the fact that many datasets are similar and therefore information from previously trained 

models can be reused. Despite the fact that this tactic is frequently quite effective, the 

current deficit in studies, such as [98] concentrate additional emphasis on the memory 

footprint reduction of the model. Meta learning or neural architecture search is 

computationally costly on its own, as it requires training several models on a varied 

collection of datasets [92]. While the cost has been steadily decreasing over the past few 

years and is now almost on par with the cost of conventional training [98]. The size of the 

data set that was used to train the initial model is an important limitation that must be 

adhered to when learning. It has been demonstrated, for example, that the performance of 

image recognition is heavily influenced by image biases and that the performance of 

transfer learning drops by 45 percent when these biases are removed. Observes an 11%–

14% decline in performance [98], despite the use of one-of-a-kind data sets that were 

developed deliberately to emulate their training data. Switching to alternative forms of 

machine learning, some of which may still be undiscovered or underappreciated, is yet 

another strategy for getting over the computational constraints posed by deep learning. 

As a result, in this chapter, we combine various strategies in order to get around the data 

complexity link to computing cost. 
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Figure 37 Magnetic levitation system controller setup 

6.3.1 Customized Deep Learning Architecture 

The input layer of the network architecture begins by receiving a pre-collected 

data set consisting of 38,000 points. These points include the time, V(cost function), 

velocity, location, parameters (k, kfv, kc, α3), reference, and error. In the second step of 

the process, we build a convolution layer to compute the correlation between the different 

groups of input data. In contrast to a standard convolution layer, a completely connected 

convolution layer has a smaller impact on the correlation losses that occur. The third 

layer is a batch normalization layer, and its purpose is to both stabilize the learning 

process and cut down on the total number of training epochs that are necessary to 

properly train the network. It is necessary to have a fourth activation layer in order to 

stabilize the learning process and cut down on the number of training epochs that are 

needed to train deep neural networks. 

In order to fix the overfitting issue, a fifth dropout layer has been added. When 

networks have a high level of accuracy on the training data set but a very low level of 

accuracy on the test data set, this is an example of over-fitting. After everything else has 
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been finished, the regression layer is added so that the losses can be computed, and the 

node weights may be readjusted accordingly. The methods necessary to acquire the 

output are outlined in Algorithm 1, which can be found here. 

6.3.2 Parameterized Complexity and Dynamic Programming 

Parameterized complexity was developed with the intention of offering an 

alternative approach to the resolution of intractable computer issues [96]. Other 

numerical characteristics of the input are taken into account when determining the 

complexity of an algorithm, as opposed to basing it exclusively on the length of the data 

that it processes. For instance, the vertex cover problem is what's known as an NP-hard 

problem, which indicates that it cannot be solved in the traditional sense. This issue can 

be remedied in the amount of time that is equal to O(n^2) *f*k, provided that the run-

time is further defined in terms of the vertex cover size k. It is said that anything is 

tractable if the value of k is relatively low in contrast to the total number of problems that 

need to be solved. This refined idea of effectiveness is known as fixed-parameter 

tractability, and it has become a canon of computational complexity [99]. A difficult 

problem can be broken down into a series of simpler decision problems using dynamic 

programming. Typically, these include overlapping values that can be modified, but 

what's more important is that the local values can be mixed in a controlled manner.  

In most cases, the process will entail recursion of some kind [100, 101]. Using 

this line of reasoning, we have determined that there are two elements that contribute to 

the complexity of our data collection. The number of data points is represented by the 

factor n. On the other hand, factor f is defined as the number of parameters or features 

that are defined in the data set. As the correlation grows, the relationship between the 



87 

parameter and managing the error is easier to determine. The assumption made earlier led 

to the utilization of the time complexity is presented in equation 52. 

O(n^2) *f*k                                                           (51) 

Where n is the number of features and f is the number of test points and k is a 

constant of 2.8 x 10-4. Taking as an example the dataset with 37,000 data points and 7 

features, the projected run time for the DNN would be 37 minutes. It was discovered that 

five deep learning layers gave 97% accuracy after a run time of 6 minutes. In the Maglev 

system 100,000 datasets were collected. Therefore, the number of layers in the deep 

neural network was increased from 5 to 6 by adding one more fully connected 

convolution layer. This brought the accuracy of our predictions up to 97% or higher. 

Figure 38 presents the algorithm flow diagram for integrating the Maglev system 

model and Lyapunov control with the DNN running in the background with the continues 

stream of new data to support relearning. This integration is accomplished by combining 

the DNN with the continuous stream of new data. Figure 31 illustrates the created DNN 

architecture, in which 38,000 data points are shown propagating through the input and 

hidden layers as the system starts to acquire additional data points. Only 10% of the data 

set is updated if the DNN's ability to accurately predict errors starts to become less 

reliable in order to preserve the safety of the control method. Artificial intelligence works 

in unison with the control and the system at all times. If the error slope exceeds a 

predetermined threshold that is greater than or equal to one, the neural network is 

prompted to suggest new control parameters with the intention of lowering the overall 

error level of the system.  
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Figure 38 Dynamic Deep Learning Algorithm 

 

The network shown in Figure 39 is first trained, and then it is utilized to make 

predictions regarding new values for (k, kfv, kc, and α3). Memory usage, also known as 

self-refreshing memory, was initially described, and experimented with in [76-78]. This 

idea is often referred to as "self-refreshing memory." Even if perturbations do take place, 

it's possible that they won't last long enough for the network to lose its ability to foresee 

system errors if the system's parameters return to normal after the network has been 

retrained multiple times. This is the thinking behind this hypothesis. 
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Figure 39 Custom Deep Learning NN Architecture layers 

 

6.4 Maglev Dynamic LDL Control Results 

Initially The system is put through its paces with the Lyapunov control in place, 

as well as without the DNN. The findings are compared to those obtained from a system 

that utilized PID control but did not include the DNN. An input reference sine wave 

signal and an input frequency of 40 rad/s were used in the testing of both controllers. The 

findings are documented in the following Figures: (Figures 40–43). The system is found 

to be stable with the system parameters set to the values in Table 1 and the controller 

parameters set to the initial static values in Table 2, until the frequency of oscillations of 

the reference signal is increased over 4000 rad/sec, at which point the system error begins 
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to increase and both controllers have shown that their static parameters are unable to 

compensate for the change in. The system is found to be stable with the controller 

parameters set to the initial static values in Table 4.  

 

Table 4 Maglev system parameters 

Parameter Value 

Mass (Kg) 0.1 

Gravity (m/s2) 9.8 

Rs (Ohm) 1 

Cs(F) 0.5 

Ls (Henry) 0.4 

e 0.002 

S 0.4 

ω 2 

 
 

 
Table 5 Lyapunov controller parameters 

 

 

 

 

 

 

Parameter Value 

K 0.1 

α1 9.8 

Kfv 2 

Kc 0.001 
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Figure 40 Phase portrait of the Maglev system with a reference sinusoidal wave of 40 
rad/sec frequency under Lyapunov control 

 

 

Figure 41 Lyapunov controlled position with reference to sinusoidal wave of 40 rad/sec 
frequency 
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Figure 42 Phase portrait of the Maglev system with a reference sinusoidal wave of 40 
rad/s frequency under PID control 

 

 

Figure 43 PID controlled position with reference to sinusoidal wave of 40 rad/s 
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Figure 44 Lyapunov controlled position with reference to sinusoidal wave of 4000 rad/s  
 

 
It is demonstrated in Figure 45 that the PID controller is less effective while 

operating under switching signal conditions. As soon as the desired reference signal is 

altered from a sinusoidal to a step function, there is a discernible rise in the amount of 

output errors. This is because the constant parameters need to undergo some adjustments 

in order to accommodate the signal transformation. As a result, the use of deep learning is 

able to address abrupt changes in the reference signal, which is demonstrated in Section 

3.2, where the algorithm's reaction to the reference signal is displayed. 
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Figure 45 The position with reference to a combined signal of sinusoidal and step 
function under PID control 

 
 

6.5 Correlation Study and DL Algorithm Application Results 

Over time, the controller parameters were found to have varying effects on the 

error variation. As the dataset grew from 38,000 to 100,000 data points and the number of 

parameters under the purview of the DNN grew from one parameter K to five parameters 

(k, α, kfv, kc, α3), It was discovered that the parameter with the strongest correlation to the 

error had the most influence on the error reduction. Therefore, a Pearson correlation 

study between the effect of parameter change and error was conducted. Figure 46 depicts 

the Pearson correlation coefficient (PCC), which measures the linear correlation between 

two sets of data. This demonstrates that the ratio of the covariance of two variables to the 

product of their standard deviations always falls between -1 and 1 [88]. The priority is 
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then assigned proportionately to each parameter. The correlation data are updated 

whenever a fresh data set is introduced, or the deep learning network is prompted to 

retrain. The sequence in which the parameters are changed is also examined by altering 

the parameters in a variety of sequences while recording the error vector.  

𝑟 =
∑ (௫೔ି௫̅)(௬೔ି௬ത)೙

೔సభ

ට∑ (೙
೔సభ ௫೔ି௫̅)మ ∑ (೙

೔సభ ௬೔ି௬ത)మ
                                            (52) 

Table 6 Person equation parameter table 

 

 
Figure 46 Pearson correlation chart between the parameters and error 

r correlation coefficient 

xi values of the x-variable in a sample 

𝑥̅ mean of the values of the x-variable 

yi values of the y-variable in a sample 

𝑦ത mean of the values of the y-variable 
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As shown in Figure 46, the largest correlation is between K, and as the error in 

parameter K is varied, the error either decreases or increases depending on the state of the 

system; thus, the priority of change to control is given to k. To account for change, the 

correlation is continually calculated as described in the preceding paragraph. Figures 47 

and 48 illustrate the effect of using the Dynamic Lyapunov Deep Learning (DLDL) 

control to stabilize the output of a high-frequency system. Figure 49 depicts the transition 

of the reference signal from sinusoidal to step function and back to sinusoidal, with the 

inaccuracy between the reference and output position signals under control. In response 

to a change in the reference signal type, the deep learning network updates the controller 

parameter K from 20 to 2700. If the adjustment in K does not restore system stability, the 

algorithm evaluates the second-highest parameter correlation to the error, followed by the 

third-highest parameter correlation. 

 
Figure 47 Maglev system with a reference sinusoidal wave of 4000 rad/sec under DLDL 
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Figure 48 DLDL controlled position with reference to sinusoidal wave of 4000 rad/s 
frequency 

 

 

Figure 49 The position with reference to a combination of sinusoidal and step function 
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In this chapter we presented the implementation of DLDL on the magnetic 

levitation non-linear system. The integration of Lyapunov Control, Deep Learning and 

Dynamic Layering is shown to achieve safe parameter recommendations and control 

within 0.1 ms to 8 s from triggering the DNN depending on the number of parameters 

that require change and the type of nonlinear dynamics introduced. The algorithm is 

shown to yield successful results after testing different scenarios of switching inputs or 

applying high frequency input. 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 
 
 
 

7.1 Conclusion 

In this research we studied the effect of utilizing Lyapunov non-linear stability 

theory as a form of non-linear control. The developed control is tested on Duffing, van 

der pol and Zohdy-Harb oscillators exhibiting chaotic behavior. The outcome of the 

simulation is compared to PID control and Model Predictive Control. It was found that 

utilizing the Lyapunov control function as a feedback control signal yielded the best 

results from timing to stability to accuracy of control. Compared to PID control 

Lyapunov control was able to provide high accuracy feedback within timing bounds of 

0.2 to 0.4 seconds depending on nonlinear system complexity. The drawback of 

Lyapunov control was found to be that parameter tuning had substantial effect on the 

controller agility and the system output. Moreover, it was found that by incrementing the 

frequency of the Duffing, Van der pol or Zohdy-Harb oscillation above 4000 Hz the 

controller required re-tuning to adjust. Therefor we began to study the integration of deep 

learning with the nonlinear Lyapunov control to determine the optimal parameters for 

system stability.  

The study demonstrates that the integration of deep learning enables the agility 

and robustness of the controller through the selection of the optimal initial parameters for 

the controller, as well as recalibration of the parameters if disturbances or new dynamics 

are added to the system. On the other hand, deep learning was found to be 

computationally expensive with the increase of the number of parameters and hidden 
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layers. The combination between Lyapunov and Deep Learning yielded outstanding 

results given one or two parameters only required change but with the increase of the 

number of parameters to more than 2 the system was unable to converge to the optimal 

parameters within time. Therefor the novel Dynamic Deep Learning control was 

introduced along with enhanced custom architecture to tackle large numeric data. 

Different data sets were studied and presented as well as different network architectures. 

Their effect on the Root Mean Square Error was demonstrated in this research. Dynamic 

deep learning allows a change in the number of layers based on the Data set complexity 

and gives priority to the highest parameter with correlation to the error using the Person 

Correlation theory. Dynamic deep learning integration with Lyapunov control was found 

to be successful in tackling the timing constraint. 

 Therefore, the proposed approach is able to generate safe parameter 

recommendations within 0.1 ms to 8 s following the activation of the DNN, depending on 

the number of parameters requiring modification and the nonlinear dynamics introduced. 

After evaluating various input switching and high frequency input settings, it is 

demonstrated that the combination of Lyapunov Non-linear control and Deep Learning 

produces safe and agile control that could be utilized within fully autonomous system. 

The proposed control method is also simulated and tested on a Magnetic Levitation non-

linear system. The Maglev application is selected due to its wide use in the medical, 

transportation and space exploration fields. The controller is shown to be successful in 

adapting to high frequency changes and the introduction of disturbances, which are two 

of the main issues faced by the previously mentioned fields. 
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7.2 Future work 

Future work considerations include the study of other Neural Network 

architectures such as dual network approaches Generative Adversarial Network (GAN) , 

the network would be capable of determining which control method would have the most 

impact on stabilizing the system and reducing errors while adjusting for parameters. The 

impact of adjusting the control method based on the observed type of instability can be 

examined. Unsupervised types of machine learning architectures can be investigated. In 

addition, a further study objective is to investigate machine learning based observers to 

estimate unknown state measurement.  

Traditional state observers are built based on the modeled system. Therefor a 

typical observer performance will depend on the accuracy of the mathematical model of a 

system. In future research in addition to adjusting the control law and parameters a 

machine learning data driven state observer can be implemented to act as a precursor to 

the system future state. Adjusting the control mechanism beforehand based on the 

observed state, this would require additional processing power and data sets but can be 

used in conjunction with parameter modification to achieve system stability as a last 

option. Furthermore, the use of deep learning in the evaluation of system complexity can 

be studied in addition to other types of non-linear control, which, when paired with the 

deep learning techniques used in this study, could yield positive results. 
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