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Chapter 1

Abstract

Programs which run at ring zero are a security risk. Moving code into user

space can mitigate this risk. As a demonstration, a simple kernel module

with vulnerable logic was used as a control case. This module was capable

of targeted data exfiltration from the kernel. It was shown that moving the

application logic into user space decreased the severity of the vulnerability.

Furthermore, rewriting the user space program in Guile – a very high-level

language – removed the vulnerability entirely.
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Chapter 2

Introduction

The larger the Linux kernel’s code-base grows, the more vulnerable it be-

comes. Because the kernel runs in ring zero, any vulnerability could be

extremely dangerous. To make matters worse, the use of the C language and

manual memory management drastically increases the incidence of vulnera-

bilities.

For example, the following are a small selection of the most severe memory

corruption vulnerabilities of 2022. [1]

CVE-2022-26772 A memory corruption issue was addressed with improved

state management. This issue is fixed in macOS Monterey 12.4. An

application may be able to execute arbitrary code with kernel privileges.

CVE-2022-25651 Memory corruption in Bluetooth host due to integer

overflow while processing BT HFP-UNIT profile in Snapdragon Auto,
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Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon

Mobile, Snapdragon Voice & Music

CVE-2021-44179 Adobe Dimension versions 3.4.3 (and earlier) is affected

by a memory corruption vulnerability due to insecure handling of a

malicious GIF file, potentially resulting in arbitrary code execution in

the context of the current user. User interaction is required to exploit

this vulnerability.

Despite these risks, large sections of convoluted code are added to the

Linux Kernel regularly, including the Bluetooth stack, and device drivers,

which have introduced severe vulnerabilities. It is pertinent to develop meth-

ods for moving this vulnerable code out of the kernel and into user-space,

where high-level languages can be used, and vulnerabilities will be less able

to affect the rest of the kernel. This technique is most advantageous in in-

stances where the relevant code either has low performance requirements, or

is especially convoluted and long.
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Chapter 3

Literature

There is substantial variation between the architectures of the various major

OS kernels in the market today. While Apple’s Darwin and Windows NT

are both hybrid kernels in which many device and network drivers are imple-

mented in user space, the Linux kernel features a monolithic design in which

all device drivers are implemented in kernel space.

There are real benefits to such a design, including improved performance,

simplified design, and protection of essential functionality from interference

by user space programs. However, there are also vulnerabilities inherent with

this design. Because kernel code is run at ring zero, vulnerabilities are very

severe. For example, BlueBorne, which exploits a vulnerability in the Linux

Bluetooth stack, can perform arbitrary code execution as root [2].

Code written in C is often vulnerable to memory errors such as use-after-

free, buffer overflow, or integer overflow. Many such vulnerabilities have
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been reported in the Linux kernel, for example, CVE-2015-3636 [3]. Using

a higher-level language may decrease the incidence of such vulnerabilities.

POSIX compliant kernels have been written in high-level languages like Go,

and while they suffer from decreased performance, there are some situations

where the security benefit might justify the performance loss [4].

For example, if the Linux Bluetooth stack had been implemented in user

space, and in a high-level language, the BlueBorne vulnerability, and others

like it, might have been avoided.
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Chapter 4

Methodology

SStore

While it is possible to find real-world examples of vulnerabilities in Linux

kernel modules, creating a vulnerable module from scratch makes both the

problem and solution simpler, easier to implement, and more illustrative.

One of the simplest and most difficult-to-avoid C anomalies are buffer over-

flows. These are common wherever manual memory management, arrays, or

strings are used, and can either be used for memory corruption or exfiltration.

Exfiltration is preferable to corruption for the purposes of demonstration be-

cause it reduces the chance of damaging the host system during development.

Therefore, a module which allows for the exfiltration of data through buffer

overflows has been developed.

”String-store” (hereafter referred to as SStore) is a simple kernel module
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for the storage of strings. The user may interact with the module using the

character device /dev/SStore0. The user should be able to insert a string

"foobar" into array index M by writing the following:

# echo "i{M}" > /dev/SStore0

# echo "{foobar}" > /dev/SStore0

In order to retrieve a string from index M:

# echo "r{M}" > /dev/SStore0

# head -n 1 > /dev/SStore0

{foobar}

Reading a line from /dev/SStore should return the string foobar fol-

lowed by a newline character.

4.1 Monolithic

The monolithic implementation of SStore works exactly according to the

preceding specification, with one small modification. For the sake of simplic-

ity, the monolithic module only accepts strings up to 16 characters long, plus

a null byte. Anything after the 16th character is truncated.

# echo "i0" > /dev/SStore0

# echo "Here is a very long string" > /dev/SStore0

# echo "r0" > /dev/SStore0

# head -n 1 /dev/SStore0

Here is a very l
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4.2 Micro

The homogeneous implementation of SStore makes a slight departure from

the monolithic, as instead of storing strings in kernel space, it keeps them in

user-space. This was accomplished by creating two character devices instead

of one. In this implementation, there is the expected kernel-like interface

/dev/SStore0, however, there is also /dev/SSS0 (String Store Server) which

allows the kernel to control a user-space program. Two such programs were

written; one in C, and another in a Lisp-like language called Guile.

Instead of storing strings in kernel space, the homogeneous module re-

lays its instructions to the user-space server program. The module then

then receives the strings from the server and returns them to the user-space

interface. Again, for simplicity’s sake, strings are limited in length to 16

characters.

4.3 Miscellanious

Vulnerabilities like the kind designed here may be exploited by systematically

reading data until something important is found. However, in order to make

the results of the experiment reproducible, several small changes were made

involving memory addresses. Firstly, a small kernel module flag.ko was

written. This module simply creates a flag string in kernel-space, and then

logs its memory address. Second, those programs written in C (being the

kernel module and C micro server) were slightly modified to also log the
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memory addresses of the strings they printed.

These two changes should make it easy to reproduce the vulnerability.

They do not affect either server’s ability to be exploited in the wild.
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Chapter 5

Findings

Monolith

Inserting the flag.ko module and reading the kernel message buffer:

# insmod flag.ko

$ tail -n 1 /var/log/messages

...kernel: Secret location: 18446744072644022272

Loading the monolith.ko module, and reading string number 0 from

/dev/SStore0:

# insmod monolith.ko

# echo "r0" > /dev/SStore0

# head -n 1 /dev/SStore0

$ tail -n 1 /var/log/messages
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...kernel: Source: 18446744072645694592

Calculating the distance between index 0 and the flag:

$ echo $(( 18446744072644022272 - 18446744072645694592))

-1672320

Calculating the string index which should land on the flag, assuming each

string is 17 characters long, with the last character being a null byte:

$ echo $((-1672320 / 17))

-98371

Using this offset, it is possible to exfiltrate the flag which was placed in

the kernel earlier.

# echo "r-98371" > /dev/SStore0

# head -n 1 /dev/SStore0

The answer is 42.

$ tail -n 1 /var/log/messages

...kernel: Source: 18446744072644022285

In other words, r-98371 landed 13 bytes after the target address (landing

before a target string is not as helpful, as reading terminates on a null byte).

To protect against this case, extra spaces were added to the beginning of the

flag string.

For a real-world use, one can simply plug-in random numbers until some-

thing interesting is found. For example:

# echo "r8" > /dev/SStore0; head -n 0 /dev/SStore0 | hexdump

Prints the following (hexdump used because the string is not printable):
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0000000 c096 ffff ffff d528 c096 ffff ffff 000a

Of course, whether there is any useful data to be stolen, and where it

might be, are both highly variable.

Micro, Homogeneous

The homogeneous results are more interesting. Simply unloading monolith.ko

and loading micro.ko is not enough. A user-space server must also be run-

ning, or else any operation hangs. After running micro (the server written

in C), the program behaves as expected, except that the following is printed

to stderr instead of the kernel log:

# ./micro /dev/SSS0 &

# echo "r0" > /dev/SStore0; head -n 1 /dev/SStore0

String address: 140736312557712

Calculating an offset as follows, it is not possible to capture the flag.

$ echo $(( (140736312557712 - 18446744072644022272) / 17))

8278669299238

Attempting to use this offset will simply cause a segfault.

# echo "r8278669299238" > /dev/SStore0; cat /dev/SStore0

In this particular case, even attempting to go out of bounds by about 8

kilobytes triggered a segfault.

# echo "r500" > /dev/SStore0; cat /dev/SStore0

String address: 140726348461236^C[1]+ Segmentation fault ./micro
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/dev/SSS0

However, even with memory protections in place, the C server is still

vulnerable to a buffer overrun. Some data could still be exfiltrated. For

example:

# echo "r-4" > /dev/SStore0

# head -n 1 /dev/SStore0

V

While the significance of this string (31 spaces and a ’V’) isn’t exactly

clear, it does prove the feasibility of arbitrary data exfiltration. In a larger

program, there may be a larger attack surface.

Micro, Heterogeneous

After killing the C service and starting the Guile service, it was not possible

to exfiltrate any information. Simply showing situations in which data is

not exfiltrated does not constitute proof. Instead, consider that the testing

machine has only 8 GB of RAM. If it were possible to read directly from

memory, attempting to read from memory which doesn’t exist should cause

an error. 8 GB = 8,589,934,592.

# echo "r9000000000" > /dev/SStore0; head -n 1 /dev/SStore0

# echo "i9000000000" > /dev/SStore0; echo "Out of memory?" > /dev/SStore0

# echo "r9000000000" > /dev/SStore0; head -n 1 /dev/SStore0
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> Out of memory?

If it were possible to direct the program to read from or write to arbitrary

memory locations, doing so on a memory address which is outside the bounds

of the host machine’s physical memory would surely fail. Clearly, the Guile

micro-server doesn’t suffer from the same weaknesses as the C micro-server

and kernel module.

Thanks to Guile’s safe implementation of both strings and (associative)

arrays, memory safety is no longer of even the slightest concern.
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Chapter 6

Conclusion

When the functionality of a program is not of critical security or performance

concern, running it as ring zero presents clear dangers to the security and

stability of the whole system.

The kernel module was able to read and write to arbitrary locations in

memory, and was demonstrated to be able to exfiltrate string data easily.

Moving the vulnerable logic from kernel-space to user-space, as in the

C server, was able to protect kernel memory, but it was still possible for a

process to compromise its own memory.

The best solution was the hybrid approach. The Guile server was com-

pletely protected against out-of-bounds errors, as well as the runtime insta-

bility that might come from a segmentation fault. Although limited by the

kernel-module, the Guile server also has the advantage of vastly easier and

safer string manipulation.
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The heterogeneous hybrid approach allows for the optimal compromise

between performance and security. Long, convoluted, string or array-heavy

code can be written in high-level languages and executed in user-space, while

performance-critical code can be written in C and executed in user-space.
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