

King 1

Super Speedy Serial Skittle Sorter (5S)

Submitted by

Nickolas David King

Electrical Engineering

To

The Honors College

Oakland University

In partial fulfillment of the

requirement to graduate from

The Honors College

Mentor: Brian Dean, Professor of Engineering

Department of Engineering

Oakland University

(15 May, 2014)

King 2

Abstract

The Super Speedy Serial Skittle Sorter, or 5S for short, is a fully automated sorting machine

made up of simple parts that are easily replaceable. The ideas and mechanics of large corporation sorting

machines from around the world are incorporated into a small and efficient tabletop machine. By putting

a Skittle into the hopper, the machine will automatically start and begin sorting Skittles. One large disk

will move the Skittles along to the designated hole, already pre-determined, in a circular direction to trap

doors that will lead to designated bins. This document will describe the details on how the 5S will operate

and design considerations that were explored.

It was found, through the design of the system, that a microprocessor would be used to read the

Skittles. Using a photoresistor or using an RGB sensor was also considered, as it could be tuned to a

Skittles color and instantly actuate a sorting mechanism. This option was, however, more expensive and

complicated than using a factory color sensor, the Taos TCS 3200 TCS 230. By using this sensor in

conjunction with the microprocessor, sorting Skittles would be quick and efficient.

The 5S was found to be a very good implementation of a sorting machine, with many areas that

could be improved with further research. This document explains the initial version of the machine and

the success that was found using it.

King 3

Table of Contents

Abstract……..2

Introduction………5

Conclusion/Recommendations……………………………………………………………………………………. 6

Computer Overview……………….………………………………………………………………………………....7

Original Considerations…………..………………………………………………………………………………….7

Program Flowchart…………………………………………………………………………………………………..8

Color Sensors…………….……………………………………………………………………………………….….9

Start and Stop of Machine……………………………………………………………………………………...….10

Motor Control………………………………………………………………………………………………………..11

Delays……..11

Electrical Overview…………………………………………………………………………………………………12

Hopper Sensor………………………………………………………………………………………………….......13

Color Sensor………………………………………………………………………………………………………...15

Processor……………………………..……………………………………………………………………………..17

Counter Sensors……………………………………….…………………………………………………………...18

Displays……………………………………………………………………….……………………………………..19

Sliding Door Servos……………………………………………………………………………..………………….21

Motor……………………….………………………………………………………………………………………...21

Mechanical and Machine Design Considerations……………………………………………………………….22

Hopper Designs…………………………………………………….………………………………………………22

Plinko………………….……………………………………………………………………………………………..25

Piston……...26

King 4

Table of Contents (cont.)

Conveyor Belt………………………………………………………………………………………………….……27

Stress Analysis……………………………………………………………………………………………………...30

Results and Discussion……………………………………………………………………..……………………..32

References…….…………………………………………………………………………………………………….37

Appendix….……38

King 5

Introduction

The 5S was built as part of a senior design competition. Ten teams consisting of electrical,

mechanical and computer engineers were tasked to build an automatic Skittle sorting machine. The

machine was to turn on when Skittles were dropped in, sort, count, and display the time until the machine

sorted all Skittles, shutting off by itself when this was accomplished. Each group was instructed to build

the machine keeping cost and speed at the forefront of design consideration. The competition would take

time, cost, and accuracy into each team’s final score. Mistakes, such as system jamming, and incorrectly

sorted skittles would add to a team’s score, which would then be multiplied by the final build cost, with the

lowest scoring team winning.

The 5S focused highly on cost and how quickly a Skittle could be sorted. Knowing a low cost

machine would greatly benefit in the end, all design constraints were made with this in mind.

Mechanically, the majority of the machine was built with wood, using metal to fashion doors for the skittles

to fall through and finding the most cost-efficient servos to open these metal doors. Electrically, low cost

power supplies, color sensors, self-built timers, and programming board were used.

This document will describe in detail the steps taken to create the 5S. Different designs will be

discussed with the steps taken to create the 5S, as the design was completely changed and modified

halfway through the semester. Problems overcame, how Skittle colors were differentiated, how Skittles

were electronically counted and the total time it takes for the machine to operate is also discussed in

detail.

King 6

Conclusion/Recommendations

Ten different teams built an automatic Skittle sorter, all attempting to build the quickest and

cheapest Skittle sorter. The 5S was the most successful implementation of a Skittle sorting machine.

Cost was kept at a minimum and speed was found to be the fastest out of all machines built. With this

affirmation of original design considerations, future buildings of this machine would also generate the

greatest success. At time of presentation, the machine was found to be 80 percent accurate, with the

ability to improve with the allotment of more time.

The 5S could have been improved through continued laboratory experiments, as the two biggest

problems were differentiating between three of the seven colors as well as jamming of the system. By

putting the 5S in a stable and non-changing environment, the sensors could be calibrated much more

accurately. The next problem that would be solved would be the jamming issue. The height the Skittles

were fed from the copper tubes needs to be exact, as differing heights could lead to Skittles becoming

jammed in the system. Along with this, the height of each sensor would be kept constant so that there

would be no jamming underneath the sensor as the Skittle was read. The system could also have been

improved by creating the same height between each door. As a Skittle traveled between each door, it

dropped down onto wood and then back up onto a metal door. This allowed the Skittle to roll as the disk

spun, not keeping the Skittle “flat.” This could lead to jamming and incorrect color sorting, as the Skittle

could not be read in the most desirable location.

King 7

Computer Overview

Original Considerations

At the start of the project, an algorithm was designed that would be simple, yet efficient at sorting

Skittles. Research into color sensors and the Arduino programming language and interface spearheaded

the project. The Arduino code was written to be simple, aiming to be without redundancy.

Two microcontrollers were compared for the task presented; the DRAGON12-Plus and Arduino

Mega. A microcontroller was needed that would not sacrifice speed at a lower cost. The DRAGON12-

Plus board was found to have a faster clock with more input and output pins, yet was four times the cost

of the Arduino Mega. The Arduino Mega was found to have adequate speed with enough input and

output pins to satisfy the proposed design. Since its release, the Arduino Mega has seen two revisions,

leading to widespread support and many companies providing comparable boards at a lower cost.

The Arduino Programming platform was chosen for the simplicity and ability to handle large,

complex systems. The Arduino platform is an all-inclusive environment where one can program, design,

and build, using only systems designed for Arduino boards. The Integrated Development Environment

(IDE) for Arduino, along with library plugins allowed for easy programming and quick troubleshooting.

The Arduino environment has many plugins available, i.e. Eclipse, Visual Studio, and many other

platforms, allowing developers to use the most comfortable IDE. The Arduino programming language is

simple to follow, with much of the hard coding done in the background, implemented in libraries referred

to at the beginning of the code. With the hard coding running in the background, the necessary code was

easy to follow and explain. Arduino IDE allowed on-the-fly changes and was easy to learn, rather than

using C or C++. Both these programming languages would have required more research into the design

and communication of the system.

An Arduino Uno and Arduino Due were initially considered to carry out the code for the 5S.

However, after testing and building of the 5S, more input and output pins were necessary to drive all the

required components. The Arduino Mega has 70 pins available for use, 54 digital pins and 16 analog

pins. Initially, amount of interrupt pins was also considered, as the Arduino Mega has six. However, after

careful consideration, interrupts were not used and conditional statements instead implemented. Color

sensing was considered at the digital pins, as 54 pins could be used and act as both input and output.

King 8

Program Flowchart

Figure 1 Program Flowchart

King 9

Figure 1 gives a general overview of how the 5S operates. If the disk has not started spinning,

the Arduino code recognizes that the current click count, which represents when the disk rotates one

hole, is zero. A beam break is located inside the hopper, which is set to be continuously HIGH until a

Skittle falls in front of it, causing it to send a LOW signal to the Arduino, which will continue as long as a

Skittle is detected in front of the sensor. When this LOW signal occurs, the motor will begin to spin and

the timer will begin. The beam break on the disk consists of a photoresistor and a diode that are

positioned across from each other. When the disk is in a spot for a Skittle to fall into a bin, the

photoresistor and diode are lined up, sending a signal to the Arduino and the detect color method is

recognized in the code. At any other time, the photoresistor and diode are blocked by the disk and do not

line up. If the hopper beam break goes HIGH, there are no longer any Skittles in the hopper, which

triggers the shut off conditional statements. If all of the trap door queues are empty, the motor and timer

are both shut off.

Color Sensors

Many color sensors were compared when choosing how to differentiate Skittles. A color sensor

using a red, green, and blue LED shined at a photoresistor was initially considered. However, after many

tests, this option was deemed not fast enough to read the Skittles going through the 5S. The Taos TCS

3200 TCS 230 was next explored; a light to frequency color sensor. The Taos detected red, green, blue,

and white values, giving a greater accuracy at separating colors. Documentation on the Taos was

available for many versions of the sensor, allowing for ease of implementation into the 5S. Before the

Taos was chosen, the HDJD-S822 was also explored, a light to voltage sensor. However, the

advantages to this sensor were no different than using the Taos. Because of this, the Taos was chosen,

as it was one-fourth the price.

The Taos sensor has the ability to read one Skittle at a time, preventing other colors from being

detected. The Taos sensor reads the values of white, red, blue, and green for each Skittle as the Skittle

goes by. The Taos sensor uses two pins, S2 and S3, for filtering between the four colors. By

setting both pins LOW, the sensor filters for red; setting S2 LOW and S3 HIGH will filter for blue; setting

S2 HIGH and S3 LOW filters for white; setting both pins HIGH will filter for green. The Taos color sensor

also allows for output frequency scaling, achieved by another two pins, S0 and S1. Again, four ranges

King 10

are observed; by setting both pins LOW, the sensor output frequency powers down; setting S0 LOW and

S1 HIGH, the sensor output frequency is set to 2%; setting S0 HIGH and S1 LOW, the sensor output

frequency is set to 20%; setting both pins HIGH, the sensor output frequency is set to 100%. To achieve

the best color readings, the sensor was set at an output frequency of 2%.

Queue Algorithm

The design of the 5S was to be as fast and accurate as possible. Many ideas were considered,

with a continuous rotating disk chosen as the desired design. Holes were cut along the edge of the disk,

intended for the Skittles, along with holes further in on the disk to supplement a counting system. A beam

break was used to observe the difference between an open hole and the solidity of the disc. Each time a

hole lined up, the system was able to monitor the position of the disk and send this information to the

Arduino. This information needed to be relayed to the servo doors, telling the servo doors when to open

after a specific criteria was met. After brainstorming, a queue system was implemented for the 5S. The

Taos TCS 3200 TCS 230 would read the color of the Skittle as it passes by, storing this in a designated

color queue. Each designated color queue would be assigned a number of “clicks” that would be added

to the current click count. When the Skittle got to the designated servo door, the code would check to see

if the number stored in the queue is equal to the current click count. If the Skittle was in the right position,

the servo door would open and the Skittle would be removed from the index of the queue. To ensure the

quickest sorting time, the only delays present in the code were observed for the servo doors to open.

Start and Stop of Machine

A beam break, consisting of an LED and photoresistor, located inside the hopper detects when

Skittles are poured into it. A conditional statement inside the loop function of the code detects when

Skittles pass by the photoresistor. If a Skittle passes by the photoresistor and the current click count is

zero, the 5S will start spinning the disk.

The 5S sorts colors by reading a color threshold and storing the current click count plus a color’s

distance away from a trap door, into a queue. By utilizing the same beam break inside the hopper, the

microcontroller is constantly reading it to see if it ever goes LOW. If the beam break inside the hopper

goes LOW, the code recognizes that the hopper is empty and starts checking queues. The 5S will shut

King 11

off when the queues no longer have any values in their indices. Using this method allows the 5S to

guarantee that all of the Skittles have been sorted and counted before the disk and timer stops.

Motor Control

The motor was controlled using PWM (pulse width modulation). The PWM signal and the analog

read/write functions that are built into the Arduino library were explored. AnalogWrite was used to control

the speed of the motor, adjusting the speed between analog value 0 and 255, which would set the disk

rotation to not moving or rotating as quickly as the motor could spin. To calculate the amount of Skittles

that could be sorted in one second, the disk was marked and timed to see how long it took for one

revolution. The optimal speed the 5S can sort Skittles was found to be one revolution in nine seconds,

which was found by setting the motor speed to an analog value of 133.

Delays

The only delay needed to guarantee that the machine worked correctly was a servo delay. This

was calculated to incorporate the speed of the disk, as the opening and closing of each door contributed

to the total time the door operated. This delay was found to be 160 milliseconds, 80 milliseconds

dedicated to opening the servo and the subsequent to closing.

King 12

Electrical Overview

Figure 2 Electrical System Overview

A 12V start signal from the hopper is level-shifted to 5V, as the programming board only accepts

3.3V or 5V input, and fed to the processor (power supplies are omitted from the diagram for simplicity).

The processor in turn sends a PWM signal to a FET to start the motor and begins sending a 1 Hz pulse to

the elapsed time chronometer. The 1 Hz pulse is level-shifted to 12V in order to keep in line with all other

signals being sent to the Arduino.

The spinning disk is divided into four sections with one color sensor, six sliding doors, and one

hole without a door for each section. The loop is closed by a disk position sensor, or ‘click counter’ that

uses the same type of LED light and photoresistor (PR) as the count and hopper sensors. Upon the first

pulse (click) from the disk position sensor and every subsequent click thereafter, the processor will select

and read all four of the color intensities available from each color sensor, parse the data and return a

King 13

color for each sensor. Thus, the four sections are processed simultaneously, i.e. in parallel. This

information is tracked using a queue array system in which the sensed Skittle’s sliding door is actuated as

it approaches the door assigned to its color.

A system of clear tubing and PVC Tee’s guides the Skittle through the light sensor for its color

and into its bin. The sensor signal is fed to an independent counter and display circuit which can be easily

read from 10 to 20 feet away.

Hopper Sensor

The goal for the hopper sensor is to sense anything placed in the hopper from a single candy to

its full four-pound capacity. The hopper being divided into four sections, one for each feeder tube,

necessitates the use of four sensors that are diode-orred to provide one input signal to the processor to

start the machine.

The sensors are composed each of an LED shining directly onto a photoresistor forming a

voltage divider with a pull-up resistor (Figure 3). When nothing obstructs the light, the PR has a value on

the order of 100 ohms, providing a voltage of nearly zero on the non-inverting input and thus a low output.

When the light is obstructed by a Skittle, the resistance of the PR increases to 100K over 47ms (see

Figure 9). The non-inverting input exceeds the threshold voltage set by the potentiometer and the open

collector output goes to the voltage set by its pull-up resistor, in this case the +5V start signal required by

the microprocessor.

The output diodes provide isolation between the comparator outputs. The purpose of the series

100-ohm resistors is to drop any small voltage differences between the cathodes.

Power is provided by the same 12V power supply that supplies the motor. Current requirements are 10

mA for each LED, 5 mA for the PRs, and 5 mA sink current provided by the comparators for a total of 50

mA.

King 14

Figure 3 Hopper Sensor Schematic

King 15

Color Sensor

The original concept for color sensing was to use the same type of pulled up photoresistors used for the

hopper and counters to provide a single sense voltage to either the Arduino processor or a comparator.

Hopefully, the

PRs could be

coaxed into

distinct responses

for each color

under controlled

conditions. This

offers an

inexpensive

alternative to

light/frequency

and light/voltage

converters. The idea was to measure the wavelength for each Skittle color and use matching color gels to

filter out the light of different colors, thus providing the lowest voltage for the Skittle that matched the gel.

The idea of using comparators to immediately trigger an actuator offers the potential savings of a

microprocessor-free design.

Table 1 LED & Color Effects on PhotoSensors

Figure 4 Testing PR's

King 16

Experiments shown in Table 1 were conducted using the color filters over the light and again

using filters over the photoresistors. Using Ocean Optics SpectraSuite software to measuring the

spectrum of several white LEDs, it was found that a temperature of 4000K yielded the widest and flattest

response over the visible range. The same apparatus was used previously to determine Skittle

wavelength.

Controlling and varying light intensity,

light-to-Skittle distance, PR-to-Skittle distance,

and ambient light intrusion, the data for different

colors showed that each color could have a

distinct range of response voltages. Promising,

yes, however, the color vs. voltage distributions

overlapped with other colors to an unworkable degree.

Similar experiments were carried out using the ams TCS3103 RGB-light to voltage converter.

This device outputs individual red, green and blue voltages in response to light input.

Figure 6 shows the ams TCS3103 sensor mounted to a surfboard, close up, and damaged during

an experiment.

Figure 5 Wavelength Approximation Using
SpectraSuite

Figure 6 ams TCS3103

King 17

The datasheet suggests that it is capable of outputting a range of voltages spanning nearly the

range from Vcc to ground. The most that was measured for red, green or blue outputs, however was

1.1V. The cost of the sensor, a Surfboard®, and possibly instrumentation amplifiers as well as the

difficulty in soldering and otherwise working with these sensors (ambiguous datasheets, for instance)

dimmed the attractiveness of this option. This option was finally decided against as time grew short and

when it was found that pre-assembled light/frequency converters were reliably reading colors with off-the-

shelf Arduino code.

The Taos TCS 3200 TCS 230 color sensor

circuit board uses an ams AG color sensing chip that

converts light intensity to frequency. The board

provides white LED light, interface headers and

power supply filtering.

The sensor uses an array of 64

photodiodes, 16 each of red, green, blue and clear.

Inputs S2 and S3 are used to select which color filter

is active. S0 and S1 are used for frequency scaling.

The 16 MHz Arduino Mega can easily accommodate

the max output frequency of 600 KHz, thus S0 is tied LOW and S1 tied HIGH to ensure the best color

reads.

Processor

Servo doors were actuated on 24 of the Arduino Mega’s 54 digital outputs. One provides a 1 Hz

clock to drive the timer display, one is for the start signal, 9 for color sensor I/O, one for motor control, and

one for the click sensor accounting for a grand total of 37 digital I/O’s used.

Power is provided by the same 12V power supply that drives the motor. The onboard regulators

provide 5V and 3.3V power for the microprocessor. Each I/O can source/sink 40 mA. Worst case current

consumption is therefore 1.2 A. The processor will not, however, drive the servos directly, but apply <

1mA signal to the devices. Total current consumption is then less than 100 mA.

Figure 7 Taos TCS 3200 TCS 230 Connection to Arduino

King 18

Counter Sensors

The counter sensors work on the same principle, using the same parts as

the hopper sensor. In this case, 5mm holes are drilled through opposing

sides of a rubber tube in which mount the LED light source and the

photoresistor. As the Skittles fall through, they interrupt the light shining

on the PR, changing its resistance and triggering a comparator circuit

sending a pulse to a counter/7-segment decoder IC.

 The PR response to a Skittle falling through the tube is shown in

Figure 9 below (yellow trace). This particular run shows that it took 7ms

for the Skittle to pass the PR, 11.5 ms for the complete PR cycle. The

theoretical speed limit per sensor is therefore 1000/11.5 = 87 Skittles/second. Since the response can

vary widely due to the path a particular candy may take, a low threshold was set (shown by delta x on the

plot to be 1.225V). Indeed, if the threshold were to be higher than the PR peak voltage, a count would be

missed. The tradeoff is a risk of false triggers caused by electrical noise (from the motor, perhaps) or

ambient light events. Current requirements for each sensor are the same as those of the hopper, 10mA.

Figure 8 Counter Sensor

Figure 9 PR Response to Skittle Falling Through Tube

King 19

Scope trace compared with a PSpice simulation showing a 12ms fly by time for a typical drop count--not

enough time for the PR to fully rise to its “dark” value, but plenty of time to reliably cross a carefully

chosen comparator threshold voltage.

This trace measures the response time of

the PR to be 47ms. The datasheet says 35ms.

Bearing in mind how the power supply ripple

obscures the rise time, the two numbers agree

nicely.

Displays

Four-digit, multiplexed seven-segment LED displays that could be driven by a single I2C networkable chip

were originally chosen as cheaper, bigger and brighter than LCD displays (Figure 11). The driver ICs

were fine-pitch 24-pin devices that

were expensive ($4), and difficult to

work with. Though 20-pin mounting

boards were available at

reasonable price, 24-pin mounting

boards were expensive and hard to

find. This and the LCD display

schemes would cost 7 inputs of the

processor in the form of count

sensor inputs and two more for the I2C communication.

 Instead it was decided to go with independent sensors and counter/driver ICs in order to reduce the I/O

count required of the processor. This presented the opportunities to either reclaim the I/O for sorting or

go with a lesser Arduino board.

Figure 10 Response Time of PR

Figure 11 Displays

King 20

 The CD4026 IC provides a counter, schmitt trigger and seven segment decoding in one package. The

cost is similar to the lowest cost

LCD displays which may not even

meet the requirements of

readability. In addition, it was

unclear whether eBay was a usable

source, with the next best price

nearly double. Half-inch yellow-

green seven-segment LEDs were

chosen for price and to go with a

Texas Instruments counter-decoder in one. While the parts are cheap, the high number of connections

required for seven three-digit displays was nearly prohibitive. In retrospect, designing and ordering etched

PCBs from ExpressPCB would have saved time, but added expense. Since time is not considered as a

cost in the competition, it was decided to use point-to-point soldering. Total cost per display is $3.26,

including the circuit board.

While the datasheet suggests that the drivers have a limit of 3mA/segment and should be

buffered, experiments showed that using no current-limiting resistors did not pose a problem for drivers or

displays. Initially, 4.7K resistors were tried to keep current under the 3mA driver limit, but the displays

were too dim. Instead, 2.2K resistors resulting in 4.7mA/segment yielded sufficient brightness. Each

display therefore required 100mA.

The elapsed time chronometer displays are nearly identical to the counter displays, the main

differences being an additional digit, the ‘10s’ digit being tested
1
 for ‘6’ in order to clock the ‘minutes’ digit,

and the ‘10s’ digit being installed upside down in order to form the colon between minutes and seconds.

Figure 12 Schematic for Displays

King 21

Sliding Door Servos
Hobby King

The sliding door actuators operate on 5 to 6V, and require

190 mA to operate. A 5V, 8A power supply is required to power all of

the servos and sensors while the Arduino, counters, timer and motor

will be powered by a 12V computer power supply.

The servo in Figure 13 can travel 60 degrees in 0.09s via

PWM signal. We require 40 degrees absent any type of mechanical

advantage like a bell crank. The relationship between arm travel and

time is not completely linear due to the inductive nature of the load,

thus we must assume travel time to be more than ⅔ of 0.09s.

Motor

The motor is sufficiently oversized in order to cope with variations in friction and load encountered

during the development process. A window lift motor was chosen because its relative inexpensive

($6.43), has a wide range of control voltages, (6 - 16V), torque (exact spec unknown, but enough to

overcome the weight of door glass and friction of window seals), and integrated gear housing that

provides for an ideal speed. Speed can be varied, by changing the Arduino’s PWM signal from 0-255,

which ranges the speed of the disc from 0 RPM all the way up to 18.75 RPM. In addition, the motor will

accept a square shaft, on either side of the gear box, making adapting the motor for use in the project

fairly simple and useable for driving both the disc and the hopper agitator at the same time.

The other motor considered was a Johnson P/N 9167AJ 13.6VDC motor used in power tools from

MPJA. The ⅛” shaft driving the outside diameter of the 24” disk and 6200 RPM speed would give a speed

of 6200/(24*8) = 32.3 RPM or 15 Skittles/second. While this is an ideal speed, the gear housing provided

by the window motor for less than $2 more allowed for shafts that extend in both directions normal to

rotation, thus we could spin both the disk and the hopper agitator with a simple single shaft.

Figure 13 Hobby King Servo

King 22

Mechanical and Machine Design Considerations

Hopper Designs

The first part of the machine that the Skittles need to pass through is the hopper. Because of

this, the hopper is the most crucial part of the system, often being overlooked. The initial design utilized a

sliding plate that would pick up 6 Skittles at a time and drop them on the conveyor belt. The conveyor

belt design was changed, as this hopper was slower than anticipated.

The second design incorporated more of a forced and better way to separate the Skittles one by

one. As shown below, the hopper would require another motor to drive the flap wheel. This adds more

complexity as well as more cost to the 5S, as it would require at least 1, maybe 2 more motors to drive

the flap wheel.

Figure 15 Second Hopper Design

Figure 14 Initial Hopper Design

King 23

The third hopper design incorporated 2 rotating discs that would grab 1 Skittle at a time. As

pictured below, the Skittle would still have to be separated individually from a group of Skittles. This did

not really seem like the most logical option because the Skittles are separated individually 2 different

times.

Figure 16 Third Hopper Design

The last and final hopper design ended up being a very simple agitator that spins using the same

motor that spins the disc. As the agitator spins, the Skittles are pushed through each of the 4 tubes that

lead down to the rotating disc.

King 24

Figure 17 Hopper Agitator

The next and second most important part of the Skittle sorting machine is the separating the

Skittles individually so that the Skittle color can be read. In order for the Skittle to be read consistently

and accurately, it must be held very steady and at a consistent distance away from the sensor. The

importance of the Skittle position was not learned until after the first design was made and tried.

There were multiple different ideas that were considered. The first design discussed was the

plinko style sorting machine. The second design was the piston or plunger design, which was determined

to not sort Skittles quickly enough for the competition but did seem to be a consistent and dependable

way to sort Skittles. Below is a picture of the plinko design that was found online and designed by Lego.

King 25

Plinko

Figure 18 Sample Plinko System

The plinko system would utilize gravity to push the Skittles down and a series of paddles

connected to servos would guide them to the correct bucket based on color. The cons on this set up is

that the system would have to stop each Skittle one by one to read the color, and timing the paddles to

move the Skittles as they fall would be difficult. Also, gravity is the only thing moving the Skittles. The pros

to this system is there are not many parts involved and can be made on a low budget and easily

duplicated to increase the speed at which Skittles are sorted.

King 26

Piston

Figure 19 Sample Piston System

Another idea considered was a piston/linear actuator. The idea behind this system is the Skittles

would be read and a linear actuator would push a plate up and down to the correct position where the

Skittles will slide into the correct hole based on its color. The cons to this system are that you have to stop

each Skittle to read the color and you are also relying on gravity to force the Skittle to the correct bucket.

The pros to this idea are there are not many moving parts and cost should be low.

King 27

Conveyor Belt

Figure 20 Sample Conveyor Belt System

The last design that was considered was a conveyor belt system. This system would feed 6

Skittles on a platform where brushes on a conveyor belt would come by and push the Skittles down the

platform. There is one trap door for each color and will open according to the color of the Skittles. There

will be two conveyor belt systems so the Skittles can sort just as fast. The cons to this system are there

will need to be 14 servos for each trap door as well as sprockets and motors to drive the conveyor belt.

The pros to this system are the Skittles are constantly moving; the Skittles do not need to stop for a

sensor to read the color. Since this system does not rely on gravity, you can tune in the servos and

conveyor belt to move as fast as the color sensor can read and as fast as the servos can move, to allow

the Skittles through the door. This idea was built up and determined to not be a good decision because

the Skittle could not be held steady enough and in a consistent enough position to read the Skittles

accurately.

Then it was time to get back to the drawing board. It was decided that instead of separating the

Skittles two times, it was a better idea to just separate the Skittles one time and then read the color

immediately after they were separated. It was decided to try using the final hopper design as the main

King 28

part of the whole sorting machine. Instead of just using one sensor and one set of doors to sort the

Skittles, it was decided to duplicate the set and have four sets of servos and sensors to speed up the

sorting process. At full speed this machine is designed to sort 40 Skittles per second. However, this goal

was far-reaching at time of competition, yet could be improved upon in the future.

 The white in Figure 21 is the hopper; the copper tube is the part that transfers the Skittles one by

one from the hopper to the rotating disc.

Figure 21 Entire System

King 29

The black disc rotates clockwise and once the Skittle drops out of the tube, it gets picked up by

the rotating disc and then slides past the sensor. As the sensor reads the color, it is stored in the queue

and the proper door opens after the proper count of clicks.

Figure 22 Rotating Disk with Servo Doors

This height that the copper tube is above the black disc is very important to keep consistent to

keep just one Skittle entering the disc at a time without jamming.

King 30

Figure 23 With Top On

Once the Skittles are read and the proper trap door opens, a flexible plastic tube takes the

Skittles from the machine down to the bins. Since there are four sets of doors and four sensors, there are

a lot of tubes that transport the Skittles. This brings about another challenge, routing four tubes to just

one so that they can be counted. With the help of PVC Tee’s, all four sets of each color Skittle were able

to be connected to just one output where it can be counted easily.

Stress Analysis

A finite element analysis (FEA) was done on the shaft that connects to the motor. The load is

applied to an area on the top of the shaft that makes contact with the motor. The shaft is made out of

4130 Steel; and is made of 1.25” hex with a ¼” square on top that connects directly to the motor. The

shaft was fixed at the bolt holes that connect to the bearing and a torque of 11 Nm was applied to the top

square of the shaft. The torque was chosen because the motor has a stall torque of 11Nm. The mesh

size was refined until the results reached diminishing returns. The analysis was done in the parabolic

method.

King 31

Figure 24 Von Mises Stress on Drive Shaft

The maximum stress analysis is shown above The maximum stress was recorded to be

197,748,192 N/m^2. This stress was located at the lower part of the square.. This is expected because

this part of the shaft is directly connected to the motor. 4130 has a yield strength of; 470,000,000 N/m^2.

The safety factor can be calculated by dividing the yield stress by the actual stress on the material. This is

shown in the equation below.

𝑆. 𝐹. =
𝜎𝑦

𝜎

The factor of safety for the shaft is 2.44. With a factor of safety of 2.4, this gives assurance that the

machine can run without the shaft being a concern.

Figure 25 Factor of Safety of the Drive Shaft

King 32

Results and Discussion

It would be very inexpensive to implement the 5S. After buying all materials to build it, the cost

would be approximately $180. Labor involved would be building the whole machine, wiring all sensors,

servos, and displays, “zeroing” the servos, and calibrating the sensors. With tight tolerances to

machining, calibration would be very quick as the sensors should output very similar results. Verifying

each sensor would still need to be done to be sure a faulty reading wasn’t being output. The initial

readings would take about 6-8 hours. After the initial readings were saved, verifying it for new machines

would take 1-4 hours depending if there was a faulty reading. Each display takes about 10 hours to

make. Setting up the servos by “zeroing” them would take only a few minutes and could be pre done if

each servo arm and door was made identical. The wiring of all sensors and servos would take about 10

hours. Building the system as a whole would take about 60 hours. This includes making each servo arm,

making the disk, making the servo doors, tubing for each door to the correct bin, making the base piece,

making the piece to mount the position sensor and to build the finished product. In all, about 160 hours

would be needed to make a whole machine. Breaking this up between 10 people, it can be completed in

about 16 hours which would mean about 2 days to complete the build. Depending on demand of such

Skittle sorting machines, people hired can be based off of this demand. With a high demand, more jobs

would be created and help the economy.

Safety

Overall, the 5S is a safe machine. However, there are several things that users should be aware

of. First, there is a blade agitator inside of the hopper, so it is not safe to reach inside of the hopper while

the machine is operating. Second, there is a rotating disk, which carries Skittles around. Therefore, it is

also dangerous to touch when the disk is spinning. Third, the trap doors are sharp. They close and open

rapidly, so it is not wise to touch the trap doors while the machine is in use, as it might cause injury.

Fourth, it is dangerous to touch the ends of wires in the sorter. They might carry high voltage electricity.

Fifth, when the machine stops running due to any problems, it is important to turn off the machine first.

Oftentimes, the machine stops running because some irregular shaped Skittles become stuck in the disk.

However, the amount of Skittles would not be an issue as a taller tube could be used for the hopper to

allow more Skittles and it would not affect the motor rotating the blades inside the hopper. As long as the

King 33

bins at the exit could hold the amount of Skittles to be sorted, the number of Skittles entering the machine

would not be a factor.

Economic Factors

The cost of the Super Speedy Serial Skittle Sorter is around 180 dollars. It has two power

supplies, one of them is 400W, and another one is 40W. Therefore, if the machine were operating 24/7, it

would use around 0.44KW per hour, with the cost of electricity depending on location. This machine could

be used for many different purposes. Some modification might be needed, like color based sorting or

shape based sorting. In this case, this machine could displace some jobs like medicine pill sorting or

different color recycling waste sorting. It would affect some jobs, as many sorting jobs require human

efforts. It would also increase the speed of the sorting process.

Reliability

The failure rate for the machine would be dependent based off of the sensor that was used. For

the current setup, a failure rate of 20% would be accepted. This is because with the TCS3200 TCS230

sensor, the values for colors overlap. This is a problem if a darker pink is sensed or a lighter red. Each

might be read as the wrong color. If a new color sensor was implemented, an ideal failure rate would be

0.01%. This system would be very reliable; however, each feeding tube would be set to the correct

height to eliminate the possibility of jamming. Without jamming, the machine would continue without

problem.

Aesthetics

For the 5S, using a metal frame would be more aesthetically attractive, as well as making the

sorter more stable and durable. The metal could be painted red in order to represent Skittles and

heighten the aesthetics. Placing white borders around the counters could draw attention to them and

make them look better. Additionally, using a clear hopper with the Skittles logo on it would add some

more color to the technology. To stay with the Skittles theme, using white metal borders would be a good

choice. Moreover, in order to see the unique mechanics on the inside without making it vulnerable, clear

Plexiglas could surround it. Nonetheless, users need to get access to the inside, so constructing a door

on the back of the technology would be a good idea. The clear Plexiglas would also reduce the noise

produced by the technology. To make the 5S more appealingly, LEDs could be lined down the tubes. As

King 34

soon a Skittle goes down a tube, an LED would flash which would correspond to the color it was. As a

red Skittle exits the disk, a red LED would flash. The same would happen for the remaining colors, and in

effect a light show would occur until all the Skittles have left the system. Tubes leading to the bins could

have a vacuum at the end of the tube would help alleviate Skittles from getting stuck in the tubing.

Potential Customers

There are various types of sensors available: distance, color, and sound sensors. These sensors

have made daily living easier and more convenient. The color-sorting machine can be used in various

fields and for many different applications. The color-sorting machine can be used in the manufacturing

field, as it could be used widely for sorting bottle caps, medicine pills, candy, and so on. It sorts the

different items into their designated sections based on their color. In addition, the color-sorting machine

can be used in recycling factories. Plastic recycling factories need to sort the different colored plastic so it

can be recycled and reused. Therefore, the color-sorting machine can be used to sort the products based

on their color. Afterwards, the different colored unwrapped products will be placed back into the husking

machine until they are completely unwrapped. Furthermore, the color-sorting machine can be used for

organization, such as organizing library books. A better method to sort books would be to use a color-

sensor machine rather than a code scanner. A different colored sticker can represent a specific

bookshelf. The color-sorting machine can be attached to the book-return entry. Once people drop books

into the book-return entry, the sorting machine can organize the books by the colored sticker on them.

Societal Impact

The potential benefit to society of the 5S would be increasing the speed of sorting. It also can be

more efficient by allowing humans to avoid injury when it comes to sorting harmful products. However,

this machine might cause people to lose jobs as the machine will do all the sorting work. Additionally,

people who work with this machine might need a higher level of education, so that they are able to fix or

adjust the machine by themselves. Therefore, people who have a lower of education might have a more

difficult time finding a job in this type of field.

King 35

Table 2 shows results from calibrating the first sensor. This was done by taking five different

Skittles and recording four different readings for each Skittle. Each reading consisted of a red, green,

blue, and white value. The red, green, and blue values were put into ratios as can be seen from the

figure below. The average of the b/g, g/r, and r/b ratios was recorded. In order to get a range that could

be implemented into the code, +/- 3 standard deviations was used, which is shown in the column +/-. The

range was the produced by taking the average of the ratios and adding or subtracting three standard

deviations.

Table 2 Color Values From Color Calibration

King 36

It was necessary to find overlaps after these ranges were obtained. Table 3 shows how many

ratios two colors share. Take red and orange for example; these two colors share three ratios. Since all

three ratios are shared, individual values would be used to distinguish between each color.

Table 3 Overlap Regions of Color Calibration

Wherever two colors didn’t share three ratios, ratios for these colors could be opened up to allow

more leniencies from the sensor. Once set, these ratios and raw values could be input into the code.

Ten different teams built an automatic Skittle sorter, all attempting to build the quickest and

cheapest Skittle sorter. The 5S was the most successful implementation of a Skittle sorting machine.

Cost was kept at a minimum and speed was found to be the fastest out of all machines built. With this

affirmation of original design considerations, future buildings of this machine would also generate the

greatest success. At time of presentation, the machine was found to be 80 percent accurate, with the

ability to improve with the allotment of more time.

King 37

References

"CAR SEAT 3-12VDC GEAR MOTOR." CAR SEAT 3-12VDC GEAR MOTOR. N.p., n.d. Web. 24 Mar.

2014.

<http://www.sciplus.com/p/CAR-SEAT-312VDC-GEAR-MOTOR_49248>.

Digital Design Using Digilent FPGA Boards, by Richard E. Haskell and Darrin M. Hanna

Oakland University, LBE Books, Rochester, MI c. 2009

 "HK15178 Analog Servo 10g / 1.4kg / 0.09s." HobbyKing Store. N.p., n.d. Web. 19 Mar. 2014.

<https://www.hobbyking.com/hobbyking/store/__16257__HK15178_Analog_Servo_10g_1_4kg_0_09s.ht

ml>.

IR Light Beam Break Circuits,

http://www.me.umn.edu/courses/me2011/arduino/technotes/irbeam/irbeam.html

Latcha, Michael, and Mohamed Zohdy. "SECS Senior Design Syllabus." SECS Senior Design Syllabus.

N.p., n.d. Web. 19 Mar. 2014

"McMaster-Carr." McMaster-Carr. N.p., n.d. Web. 24 Mar. 2014.

"TCS3200 Color Sensor (SKU:SEN0101)." Robot Wiki. N.p., n.d. Web. 19 Mar. 2014.

<http://www.dfrobot.com/wiki/index.php/TCS3200_Color_Sensor_(SKU:SEN0101)>.

 "Using the TCS3200 with Arduino or Parallax Propeller." ReiBotorg. N.p., n.d. Web. 14 Apr. 2014.

<http://reibot.org/2011/07/06/tcs3200/>.

http://www.sciplus.com/p/CAR-SEAT-312VDC-GEAR-MOTOR_49248
https://www.hobbyking.com/hobbyking/store/__16257__HK15178_Analog_Servo_10g_1_4kg_0_09s.html
https://www.hobbyking.com/hobbyking/store/__16257__HK15178_Analog_Servo_10g_1_4kg_0_09s.html
http://www.me.umn.edu/courses/me2011/arduino/technotes/irbeam/irbeam.html
http://www.dfrobot.com/wiki/index.php/TCS3200_Color_Sensor_(SKU:SEN0101)
http://reibot.org/2011/07/06/tcs3200/

King 38

Appendix

Data Sheets and Arduino Specifications

Taos color to light frequency convertor,

http://www.dfrobot.com/image/data/SEN0101/TCS3200%20TCS3210.pdf

Arduino spec sheet, http://arduino.cc/en/uploads/Main/arduino-mega2560_R3-sch.pdf

Arduino pin mapping, http://arduino.cc/en/Hacking/PinMapping2560

CMOS AND Gates data sheet, http://www.ti.com/lit/ds/schs057c/schs057c.pdf

CMOS decade counter/divider data sheet, http://www.ti.com/lit/ds/symlink/cd4026b.pdf

Comparator data sheet, http://www.ti.com/lit/ds/symlink/lm339-n.pdf

Summary of Microcontroller

http://arduino.cc/en/Main/arduinoBoardMega2560

http://www.dfrobot.com/image/data/SEN0101/TCS3200%20TCS3210.pdf
http://arduino.cc/en/uploads/Main/arduino-mega2560_R3-sch.pdf
http://arduino.cc/en/Hacking/PinMapping2560
http://arduino.cc/en/Hacking/PinMapping2560
http://www.ti.com/lit/ds/schs057c/schs057c.pdf
http://www.ti.com/lit/ds/symlink/cd4026b.pdf
http://www.ti.com/lit/ds/symlink/lm339-n.pdf
http://arduino.cc/en/Main/arduinoBoardMega2560

King 39

Memory of Arduino

http://arduino.cc/en/Main/arduinoBoardMega2560

Input and Output of Mega

http://arduino.cc/en/Main/arduinoBoardMega2560

http://arduino.cc/en/Main/arduinoBoardMega2560
http://arduino.cc/en/Main/arduinoBoardMega2560

King 40

Full Code for The 5S:

#include <QueueArray.h>

#include <Servo.h>

// The I/O pins for section one color sensor are initialized

// Each sensor has the same pins with the same functionality

// All of the output pins could be tied together.

// The only pins that could not be tied together are the input pins from the color sensor

// i.e. in this case pin 10

int S1_S0 = 8;

int S1_S1 = 9;

int S1_S2 = 12;

int S1_S3 = 11;

int S1_taosOutPin = 10;

int S1_LED = 13;

//--

// The I/O pins for section two color sensor are initialized

// Input pin in this case was pin 46

int S2_S0 = 8;

int S2_S1 = 9;

int S2_S2 = 12;

int S2_S3 = 11;

int S2_taosOutPin = 46;

int S2_LED = 13;

//--

// The I/O pins for section three color sensor are initialized

// Input pin in this case was pin 47

int S3_S0 = 8;

int S3_S1 = 9;

int S3_S2 = 12;

int S3_S3 = 11;

int S3_taosOutPin = 47;

int S3_LED = 13;

//--

// The I/O pins for section four color sensor are initialized

// Input pin in this case was pin 48

int S4_S0 = 8;

King 41

int S4_S1 = 9;

int S4_S2 = 12;

int S4_S3 = 11;

int S4_taosOutPin = 48;

int S4_LED = 13;

//--

// The beam break was assigned to digital pin 2

int GBeam = 2;

//--

// Initialize the servos for section 1

Servo S1_servoR; // Red servo door section 1

Servo S1_servoG; // Green servo door section 1

Servo S1_servoPu; // Purple servo door section 1

Servo S1_servoY; // Yellow servo door section 1

Servo S1_servoOr; // Orange servo door section 1

Servo S1_servoPi; // Pink servo door section 1

//--

// Initialize the servos for section 2

Servo S2_servoR; // Red servo door section 2

Servo S2_servoG; // Green servo door section 2

Servo S2_servoPu; // Purple servo door section 2

Servo S2_servoY; // Yellow servo door section 2

Servo S2_servoOr; // Orange servo door section 2

Servo S2_servoPi; // Pink servo door section 2

//--

// Initialize the servos for section 3

Servo S3_servoR; // Red servo door section 3

Servo S3_servoG; // Green servo door section 3

Servo S3_servoPu; // Purple servo door section 3

Servo S3_servoY; // Yellow servo door section 3

Servo S3_servoOr; // Orange door section 3

Servo S3_servoPi; // Pink door section 3

//--

// Initialize the servos for section 4

Servo S4_servoR; // Red servo door section 4

Servo S4_servoG; // Green servo door section 4

King 42

Servo S4_servoPu; // Purple servo door section 4

Servo S4_servoY; // Yellow servo door section 4

Servo S4_servoOr; // Orange servo door section 4

Servo S4_servoPi; // Pink servo door section 4

//--

int AABeam = 0; // A temp variable that will act like a HIGH signal

int beamBreak = 0; // Initialize the beam break

int myMotor = 7; // Pin to control the motor speed

//--

// Queues to hold the values of the click count + pre numbers for section one

QueueArray <int> redDoorS1;

QueueArray <int> greenDoorS1;

QueueArray <int> purpleDoorS1;

QueueArray <int> yellowDoorS1;

QueueArray <int> orangeDoorS1;

QueueArray <int> pinkDoorS1;

//--

// Queues to hold the values of the click count + pre numbers for section two

QueueArray <int> redDoorS2;

QueueArray <int> greenDoorS2;

QueueArray <int> purpleDoorS2;

QueueArray <int> yellowDoorS2;

QueueArray <int> orangeDoorS2;

QueueArray <int> pinkDoorS2;

//--

// Queues to hold the values of the click count + pre numbers for section three

QueueArray <int> redDoorS3;

QueueArray <int> greenDoorS3;

QueueArray <int> purpleDoorS3;

QueueArray <int> yellowDoorS3;

QueueArray <int> orangeDoorS3;

QueueArray <int> pinkDoorS3;

//--

// Queues to hold the values of the click count + pre numbers for section four

QueueArray <int> redDoorS4;

QueueArray <int> greenDoorS4;

QueueArray <int> purpleDoorS4;

King 43

QueueArray <int> yellowDoorS4;

QueueArray <int> orangeDoorS4;

QueueArray <int> pinkDoorS4;

//--

int GbeamClickCount = 0; // Click count that will increment only when a color is sensed

int startBreak = 0; // Temp variable that reads the beam break that will start the machine

int startBeam = 4; // This beam will start the machine

int externalTimer = 3; // Send a signal to an external pin that will start a timer on a 7 segment display

// The following variables set the number of clicks that each Skittle has to travel before a trap door is open

int redPreNum = 1;

int greenPreNum = 6;

int purplePreNum = 5;

int yellowPreNum = 4;

int orangePreNum = 3;

int pinkPreNum = 2;

int servoDelay = 160;

int C = 0;

int D = 0;

//--

void setup() {

 // Everything in the setup() function will only run one time, where all pins are initialized

 // Each of these method calls will initialize the inputs and outputs for each sensor

 TCS3200setupS1();

 TCS3200setupS2();

 TCS3200setupS3();

 TCS3200setupS4();

 //--

 // Attach section 1 servos to pins and set their default positions

 S1_servoR.attach(40);

 S1_servoR.write(40);

 S1_servoG.attach(41);

 S1_servoG.write(40);

 S1_servoPu.attach(42);

 S1_servoPu.write(40);

 S1_servoY.attach(43);

 S1_servoY.write(40);

 S1_servoOr.attach(44);

 S1_servoOr.write(40);

 S1_servoPi.attach(45);

 S1_servoPi.write(40);

King 44

 //--

 // Attach section 2 servos to pins and set their default positions

 S2_servoR.attach(22);

 S2_servoR.write(40);

 S2_servoG.attach(23);

 S2_servoG.write(40);

 S2_servoPu.attach(24);

 S2_servoPu.write(40);

 S2_servoY.attach(25);

 S2_servoY.write(40);

 S2_servoOr.attach(26);

 S2_servoOr.write(40);

 S2_servoPi.attach(27);

 S2_servoPi.write(40);

 //--

 // Attach section 3 servos to pins and set their default positions

 S3_servoR.attach(28);

 S3_servoR.write(40);

 S3_servoG.attach(29);

 S3_servoG.write(40);

 S3_servoPu.attach(30);

 S3_servoPu.write(40);

 S3_servoY.attach(31);

 S3_servoY.write(40);

 S3_servoOr.attach(32);

 S3_servoOr.write(40);

 S3_servoPi.attach(33);

 S3_servoPi.write(40);

 //--

 // Attach section 4 servos to pins and set their default positions

 S4_servoR.attach(34);

 S4_servoR.write(40);

 S4_servoG.attach(35);

 S4_servoG.write(40);

 S4_servoPu.attach(36);

 S4_servoPu.write(40);

 S4_servoY.attach(37);

 S4_servoY.write(40);

 S4_servoOr.attach(38);

 S4_servoOr.write(40);

 S4_servoPi.attach(39);

King 45

 S4_servoPi.write(40);

 //--

 // The beam breaks are set as inputs, as it is needed to know when the value changes

 pinMode(GBeam,INPUT);

 pinMode(startBeam, INPUT);

 // Motor set as output to control the speed

 pinMode(myMotor, OUTPUT);

 analogWrite(myMotor,0);

 // Timer set as output to receive a signal to begin

 pinMode(externalTimer, OUTPUT);

}

void loop() {

 startBreak = digitalRead(startBeam); // Checks to see what the current state of the start beam break is

and sets it to this variable

 // Starting condition for starting the machine

 // This nested conditional statement will check to see if the current clickcount is zero, which will always

be the case when the machine is first started

 // Click count will be > 0 as soon as the disk begins to spin therefore this statement becomes a NOP.

 if(GbeamClickCount == 0)

 {

 // Our beam breaks are defaulted to HIGH so if something passes by, the beam goes LOW

 if(startBreak == LOW){

 // Nothing here as the machine will not turn on with ambient light

 }

 else

 {

 analogWrite(myMotor, 133); // Start the motor which turns the disk and the hopper

 }

 }

 //--

 // Check to see if the motor is spinning. If the motor is spinning then set

 // temp var C equal to D and set D equal to the millis() function divided by 1000, giving seconds.

 // Both C and D are integers so they can never have a decimal value, therefore if D minus C is equal

 // to 1, send a pulse to the timer. The externalTimer is set to LOW in the CheckClick() function so that

 // the pulse is at least 150ms, long enough for the 7Seg to read it.

 //--

King 46

 if((myMotor / 4) > 0)

 {

 C = D;

 D = millis() / 1000;

 if((D - C) == 1)

 {

 digitalWrite(externalTimer, HIGH);

 }

 }

 // AABeam will have the value that was last read from the beambreak

 AABeam = beamBreak;

 beamBreak = digitalRead(GBeam);

 // If the AABeam is high(Last value sensed by beambreak) and the beam break is sensed as LOW, a

falling edge is recognized

 // and the system know a Skittle is over a hole, ready to be sensed

 if (AABeam == 1 && beamBreak == 0)

 {

 CheckClick(); // Call the function that will increment the click count, detect color, and open servo doors

 }

 if(startBreak == LOW && GbeamClickCount > 20){

 //Check if section 1 queues are empty

 if(redDoorS1.isEmpty() == true){

 if(greenDoorS1.isEmpty() == true){

 if(purpleDoorS1.isEmpty() == true){

 if(yellowDoorS1.isEmpty() == true){

 if(orangeDoorS1.isEmpty() == true){

 if(pinkDoorS1.isEmpty() == true){

 //Check if section 2 queues are empty

 if(redDoorS2.isEmpty() == true){

 if(greenDoorS2.isEmpty() == true){

 if(purpleDoorS2.isEmpty() == true){

 if(yellowDoorS2.isEmpty() == true){

 if(orangeDoorS2.isEmpty() == true){

 if(pinkDoorS2.isEmpty() == true){

 //Check if section 3 queues are empty

 if(redDoorS3.isEmpty() == true){

 if(greenDoorS3.isEmpty() == true){

 if(purpleDoorS3.isEmpty() == true){

 if(yellowDoorS3.isEmpty() == true){

 if(orangeDoorS3.isEmpty() == true){

 if(pinkDoorS3.isEmpty() == true){

King 47

 //Check if section 4 queues are empty

 if(redDoorS4.isEmpty() == true){

 if(greenDoorS4.isEmpty() == true){

 if(purpleDoorS4.isEmpty() == true){

 if(yellowDoorS4.isEmpty() == true){

 if(orangeDoorS4.isEmpty() == true){

 if(pinkDoorS4.isEmpty() == true){

 analogWrite(myMotor,0); // Stop the motor

 digitalWrite(externalTimer, 0); // Send a signal to the external timer to shut it off

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

}

}

void CheckClick(){

 GbeamClickCount++; // Increase the click count by one and get a color reading from each sensor

 // Get color reading from each of the 4 sections

 detectColorS1(S1_taosOutPin);

King 48

 detectColorS2(S2_taosOutPin);

 detectColorS3(S3_taosOutPin);

 detectColorS4(S4_taosOutPin);

 //--

 // Check to see if the red queue for section one has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(redDoorS1.count() > 0){

 if (redDoorS1.peek() == GbeamClickCount){

 S1_servoR.write(0); // open the servo door

 redDoorS1.pop();

 }

 }

 // Check to see if the green queue for section one has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(greenDoorS1.count() > 0){

 if (greenDoorS1.peek() == GbeamClickCount){

 S1_servoG.write(0); // open the servo door

 greenDoorS1.pop();

 }

 }

 // Check to see if the purple queue for section one has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(purpleDoorS1.count() > 0){

 if (purpleDoorS1.peek() == GbeamClickCount){

 S1_servoPu.write(0); // open the servo door

 purpleDoorS1.pop();

 }

 }

 // Check to see if the yellow queue for section one has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(yellowDoorS1.count() > 0){

 if (yellowDoorS1.peek() == GbeamClickCount){

 S1_servoY.write(0);

 yellowDoorS1.pop();

 }

 }

 // Check to see if the orange queue for section one has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (orangeDoorS1.count() > 0){

 if (orangeDoorS1.peek() == GbeamClickCount){

 S1_servoOr.write(0); // open the servo door

 orangeDoorS1.pop();

King 49

 }

 }

 // Check to see if the pink queue for section one has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (pinkDoorS1.count() > 0){

 if (pinkDoorS1.peek() == GbeamClickCount){

 S1_servoPi.write(0); // open the servo door

 pinkDoorS1.pop();

 }

 }

//--

 // Check to see if the red queue for section two has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(redDoorS2.count() > 0){

 if (redDoorS2.peek() == GbeamClickCount){

 S2_servoR.write(0); // open the servo door

 redDoorS2.pop();

 }

 }

 // Check to see if the green queue for section two has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(greenDoorS2.count() > 0){

 if (greenDoorS2.peek() == GbeamClickCount){

 S2_servoG.write(0); // open the servo door

 greenDoorS2.pop();

 }

 }

 // Check to see if the purple queue for section two has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(purpleDoorS2.count() > 0){

 if (purpleDoorS2.peek() == GbeamClickCount){

 S2_servoPu.write(0); // open the servo door

 purpleDoorS2.pop();

 }

 }

 // Check to see if the yellow queue for section two has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(yellowDoorS2.count() > 0){

 if (yellowDoorS2.peek() == GbeamClickCount){

 S2_servoY.write(0); // open the servo door

 yellowDoorS2.pop();

 }

King 50

 }

 // Check to see if the orange queue for section two has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (orangeDoorS2.count() > 0){

 if (orangeDoorS2.peek() == GbeamClickCount){

 S2_servoOr.write(0); // open the servo door

 orangeDoorS2.pop();

 }

 }

 // Check to see if the pink queue for section two has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (pinkDoorS2.count() > 0){

 if (pinkDoorS2.peek() == GbeamClickCount){

 S2_servoPi.write(0); // open the servo door

 pinkDoorS2.pop();

 }

 }

//--

 // Check to see if the red queue for section three has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(redDoorS3.count() > 0){

 if (redDoorS3.peek() == GbeamClickCount){

 S3_servoR.write(0); // open the servo door

 redDoorS3.pop();

 }

 }

 // Check to see if the green queue for section three has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(greenDoorS3.count() > 0){

 if (greenDoorS3.peek() == GbeamClickCount){

 S3_servoG.write(0); // open the servo door

 greenDoorS3.pop();

 }

 }

 // Check to see if the purple queue for section three has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(purpleDoorS3.count() > 0){

 if (purpleDoorS3.peek() == GbeamClickCount){

 S3_servoPu.write(0); // open the servo door

 purpleDoorS3.pop();

 }

 }

King 51

 // Check to see if the yellow queue for section three has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(yellowDoorS3.count() > 0){

 if (yellowDoorS3.peek() == GbeamClickCount){

 S3_servoY.write(0); // open the servo door

 yellowDoorS3.pop();

 }

 }

 // Check to see if the orange queue for section three has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (orangeDoorS3.count() > 0){

 if (orangeDoorS3.peek() == GbeamClickCount){

 S3_servoOr.write(0); // open the servo door

 orangeDoorS3.pop();

 }

 }

 // Check to see if the pink queue for section three has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (pinkDoorS3.count() > 0){

 if (pinkDoorS3.peek() == GbeamClickCount){

 S3_servoPi.write(0); // open the servo door

 pinkDoorS3.pop();

 }

 }

//--

 // Check to see if the red queue for section four has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(redDoorS4.count() > 0){

 if (redDoorS4.peek() == GbeamClickCount){

 S4_servoR.write(0); // open the servo door

 redDoorS4.pop();

 }

 }

 // Check to see if the green queue for section four has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(greenDoorS4.count() > 0){

 if (greenDoorS4.peek() == GbeamClickCount){

 S4_servoG.write(0); // open the servo door

 greenDoorS4.pop();

 }

 }

 // Check to see if the purple queue for section four has at least 1 index

King 52

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(purpleDoorS4.count() > 0){

 if (purpleDoorS4.peek() == GbeamClickCount){

 S4_servoPu.write(0); // open the servo door

 purpleDoorS4.pop();

 }

 }

 // Check to see if the yellow queue for section four has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if(yellowDoorS4.count() > 0){

 if (yellowDoorS4.peek() == GbeamClickCount){

 S4_servoY.write(0); // open the servo door

 yellowDoorS4.pop();

 }

 }

 // Check to see if the orange queue for section four has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (orangeDoorS4.count() > 0){

 if (orangeDoorS4.peek() == GbeamClickCount){

 S4_servoOr.write(0); // open the servo door

 orangeDoorS4.pop();

 }

 }

 // Check to see if the pink queue for section four has at least 1 index

 // If it has at least one index, check if the number stored in the queue is equal to the

 // current click count

 if (pinkDoorS4.count() > 0){

 if (pinkDoorS4.peek() == GbeamClickCount){

 S4_servoPi.write(0); // open the servo door

 pinkDoorS4.pop();

 }

 }

 delay(servoDelay); // Delay the speed of the disk / motor

 digitalWrite(externalTimer,LOW);

 // Reset all of the servos back to their original positions

 S1_servoR.write(50);

 S1_servoG.write(50);

 S1_servoPu.write(50);

 S1_servoY.write(50);

 S1_servoOr.write(50);

 S1_servoPi.write(50);

 S2_servoR.write(50);

 S2_servoG.write(50);

 S2_servoPu.write(50);

 S2_servoY.write(50);

King 53

 S2_servoOr.write(50);

 S2_servoPi.write(50);

 S3_servoR.write(50);

 S3_servoG.write(50);

 S3_servoPu.write(50);

 S3_servoY.write(50);

 S3_servoOr.write(50);

 S3_servoPi.write(50);

 S4_servoR.write(50);

 S4_servoG.write(50);

 S4_servoPu.write(50);

 S4_servoY.write(50);

 S4_servoOr.write(50);

 S4_servoPi.write(50);

 //loop();

 }

//--

// This is sample code that has been revamped for the 5S

// Base code can be found at http://forums.parallax.com/showthread.php/136258-Code-for-using-a-

TCS3200-with-Arduino-and-a-question

void TCS3200setupS1(){

 // Initialize the input and output pins

 pinMode(S1_LED,OUTPUT); // LED output pin

 // S2 and S3 control the 4 different color filters

 pinMode(S1_S2,OUTPUT); //Section 1 S2

 pinMode(S1_S3,OUTPUT); //Section 1 S3

 // The only input pin from the TAOS, controls the color value

 pinMode(S1_taosOutPin, INPUT); //Section 1 taosOutPin

 // S1 and S0 control the frequency or sensitivity of the sensor

 pinMode(S1_S0,OUTPUT); //Section 1 S0

 pinMode(S1_S1,OUTPUT); //Section 1 S1

 return;

}

//--

void TCS3200setupS2(){

http://forums.parallax.com/showthread.php/136258-Code-for-using-a-TCS3200-with-Arduino-and-a-question
http://forums.parallax.com/showthread.php/136258-Code-for-using-a-TCS3200-with-Arduino-and-a-question

King 54

 // Initialize the input and output pins

 pinMode(S2_LED,OUTPUT); // LED output pin

 // S2 and S3 control the 4 different color filters

 pinMode(S2_S2,OUTPUT); // Section 2 S2

 pinMode(S2_S3,OUTPUT); // Section 2 S3

 // The only input pin from the TAOS, controls the color value

 pinMode(S2_taosOutPin, INPUT); // Section 2 taosOutPin

 // S1 and S0 control the frequency or sensitivity of the sensor

 pinMode(S2_S0,OUTPUT); // Section 2 S0

 pinMode(S2_S1,OUTPUT); // Section 2 S1

 return;

}

//--

void TCS3200setupS3(){

 // Initialize the input and output pins

 pinMode(S3_LED,OUTPUT); //LED output pin

 // S2 and S3 control the 4 different color filters

 pinMode(S3_S2,OUTPUT); // Section 3 S2

 pinMode(S3_S3,OUTPUT); // Section 3 S3

 // The only input pin from the TAOS, controls the color value

 pinMode(S3_taosOutPin, INPUT); // Section 3 taosOutPin

 // S1 and S0 control the frequency or sensitivity of the sensor

 pinMode(S3_S0,OUTPUT); // Section 3 S0

 pinMode(S3_S1,OUTPUT); // Section 3 S1

 return;

}

//--

void TCS3200setupS4(){

 // Initialize the input and output pins

 pinMode(S4_LED,OUTPUT); //LED ouput pin

King 55

 // S2 and S3 control the 4 different color filters

 pinMode(S4_S2,OUTPUT); // Section 4 S2

 pinMode(S4_S3,OUTPUT); // Section 4 S3

 // The only input pin from the TAOS, controls the color value

 pinMode(S4_taosOutPin, INPUT); // Section 4 taosOutPin

 // S1 and S0 control the frequency or sensitivity of the sensor

 pinMode(S4_S0,OUTPUT); // Section 4 S0

 pinMode(S4_S1,OUTPUT); // Section 4 S1

 return;

}

//---

// The following method detects the color for the section one color sensor

// It calls the method colorReadS1 which reads the colors based on different color filters

// When colorReadS1 is finished it returns the color values and stores them in temp variables

// white,red,blue, and green.

// The variables RedR, BlueR, and GreenR hold the color ranges determined by taking a lot of

// color readings and normalizing them.

//---

int detectColorS1(int taosOutPin){

double white = colorReadS1(taosOutPin,0,1);

double red = colorReadS1(taosOutPin,1,1);

double blue = colorReadS1(taosOutPin,2,1);

double green = colorReadS1(taosOutPin,3,1);

double RedR = (blue/green);

double BlueR = (green/red);

double GreenR = (red/blue);

// Set up the threshold values for normalizing the Skittle readings

double RedThreshold = (((GreenR >= 0.89) && (GreenR <= 1.28)) && ((BlueR >= 1.01) && (BlueR <=

1.49)) && ((RedR >= 0.71) && (RedR <= 0.78)));

double GreenThreshold = (((GreenR >= 1.08) && (GreenR <= 1.41)) && ((BlueR >= 0.76) && (BlueR <=

0.91)) && ((RedR >= 0.78) && (RedR <= 1.07)));

double PurpleThreshold = (((GreenR >= 1.66) && (GreenR <= 2.11)) && ((BlueR >= 0.75) && (BlueR <=

0.83)) && ((RedR >= 0.63) && (RedR <= 0.71)));

double OrangeThreshold = (((GreenR >= 0.63) && (GreenR <= 1.1)) && ((BlueR >= 1.08) && (BlueR <=

1.74)) && ((RedR >= 0.78) && (RedR <= 0.88)));

double YellowThreshold = (((GreenR >= 0.58) && (GreenR <= 1.04)) && ((BlueR >= 1) && (BlueR <=

1.22)) && ((RedR >= 0.89) && (RedR <= 1.37)));

double PinkThreshold = (((GreenR >= 0.89) && (GreenR <= 1.28)) && ((BlueR >= 1.01) && (BlueR <=

1.49)) && ((RedR >= 0.71) && (RedR <= 0.78)) && red <= 2100 && blue <= 1850);

King 56

// If one of the thresholds condition is met then push the current click count plus the predetermined color

distance for the servo door into each colors queue

if(PinkThreshold)

{

 pinkDoorS1.push(GbeamClickCount + pinkPreNum);

}

else if(OrangeThreshold)

{

 orangeDoorS1.push(GbeamClickCount + orangePreNum);

}

else if(RedThreshold)

{

 redDoorS1.push(GbeamClickCount + redPreNum);

}

else if(GreenThreshold)

{

 greenDoorS1.push(GbeamClickCount + greenPreNum);

}

else if(PurpleThreshold)

{

 purpleDoorS1.push(GbeamClickCount + purplePreNum);

}

else if(YellowThreshold)

{

 yellowDoorS1.push(GbeamClickCount + yellowPreNum);

}

}

//---

// The following method detects the color for the section two color sensor

// It calls the method colorReadS2 which reads the colors based on different color filters

// When colorReadS1 is finished it returns the color values and stores them in temp variables

// white,red,blue, and green.

// The variables RedR, BlueR, and GreenR hold the color ranges determined by taking a lot of

// color readings and normalizing them.

//---

int detectColorS2(int taosOutPin){

double white = colorReadS2(taosOutPin,0,1);

double red = colorReadS2(taosOutPin,1,1);

double blue = colorReadS2(taosOutPin,2,1);

double green = colorReadS2(taosOutPin,3,1);

double RedR = (blue/green);

double BlueR = (green/red);

double GreenR = (red/blue);

King 57

// Set up the threshold values for normalizing the Skittle readings

double RedThreshold = (((GreenR >= 1.11) && (GreenR <= 1.39)) && ((BlueR >= 1.07) && (BlueR <=

1.33)) && ((RedR >= 0.6) && (RedR <= 0.72)));

double GreenThreshold = (((GreenR >= 1.27) && (GreenR <= 1.56)) && ((BlueR >= 0.75) && (BlueR <=

0.95)) && ((RedR >= 0.74) && (RedR <= 0.94)));

double PurpleThreshold = (((GreenR >= 1.98) && (GreenR <= 2.4)) && ((BlueR >= 0.7) && (BlueR <=

0.83)) && ((RedR >= 0.54) && (RedR <= 0.66)));

double OrangeThreshold = (((GreenR >= 0.75) && (GreenR <= 1.26)) && ((BlueR >= 1.09) && (BlueR <=

1.65)) && ((RedR >= 0.67) && (RedR <= 0.79)));

double YellowThreshold = (((GreenR >= 0.73) && (GreenR <= 1.12)) && ((BlueR >= 1.03) && (BlueR <=

1.21)) && ((RedR >= 0.83) && (RedR <= 1.1)));

double PinkThreshold = (((GreenR >= 1.02) && (GreenR <= 1.39)) && ((BlueR >= 1.07) && (BlueR <=

1.45)) && ((RedR >= 0.6) && (RedR <= 0.72)) && (green <= 1900));

// If one of the thresholds condition is met then push the current click count plus the predetermined color

distance for the servo door into each colors queue

if(PinkThreshold)

{

 pinkDoorS2.push(GbeamClickCount + pinkPreNum);

}

else if(RedThreshold)

{

 redDoorS2.push(GbeamClickCount + redPreNum);

}

else if(GreenThreshold)

{

 greenDoorS2.push(GbeamClickCount + greenPreNum);

}

else if(OrangeThreshold)

{

 orangeDoorS2.push(GbeamClickCount + orangePreNum);

}

else if(PurpleThreshold)

{

 purpleDoorS2.push(GbeamClickCount + purplePreNum);

}

else if(YellowThreshold)

{

 yellowDoorS2.push(GbeamClickCount + yellowPreNum);

}

}

//---

// The following method detects the color for the section three color sensor

// It calls the method colorReadS3 which reads the colors based on different color filters

// When colorReadS1 is finished it returns the color values and stores them in temp variables

// white,red,blue, and green.

King 58

// The variables RedR, BlueR, and GreenR hold the color ranges determined by taking a lot of

// color readings and normalizing them.

//---

int detectColorS3(int taosOutPin){

double white = colorReadS3(taosOutPin,0,1);

double red = colorReadS3(taosOutPin,1,1);

double blue = colorReadS3(taosOutPin,2,1);

double green = colorReadS3(taosOutPin,3,1);

double RedR = (blue/green);

double BlueR = (green/red);

double GreenR = (red/blue);

// Set up the threshold values for normalizing the Skittle readings

double RedThreshold = (((GreenR >= 1.05) && (GreenR <= 1.44)) && ((BlueR >= 0.97) && (BlueR <=

1.38)) && ((RedR >= 0.6) && (RedR <= 0.78)) && red >= 1350);

double GreenThreshold = (((GreenR >= 1.13) && (GreenR <= 1.53)) && ((BlueR >= 0.74) && (BlueR <=

1.04)) && ((RedR >= 0.68) && (RedR <= 1)) && red >= 1250);

double PurpleThreshold = (((GreenR >= 1.91) && (GreenR <= 2.21)) && ((BlueR >= 0.7) && (BlueR <=

0.86)) && ((RedR >= 0.54) && (RedR <= 0.7)));

double OrangeThreshold = (((GreenR >= 0.76) && (GreenR <= 1.21)) && ((BlueR >= 1.13) && (BlueR <=

1.6)) && ((RedR >= 0.69) && (RedR <= 0.81)));

double YellowThreshold = (((GreenR >= 0.69) && (GreenR <= 1.07)) && ((BlueR >= 1) && (BlueR <=

1.25)) && ((RedR >= 0.86) && (RedR <= 1.18)));

double PinkThreshold = (((GreenR >= 1.08) && (GreenR <= 1.41)) && ((BlueR >= 1) && (BlueR <= 1.35))

&& ((RedR >= 0.63) && (RedR <= 0.75)) && red <= 1355 && blue <= 1000);

// If one of the thresholds condition is met then push the current click count plus the predetermined color

distance for the servo door into each colors queue

if(OrangeThreshold)

{

 orangeDoorS3.push(GbeamClickCount + orangePreNum);

}

else if(PinkThreshold)

{

 pinkDoorS3.push(GbeamClickCount + pinkPreNum);

}

else if(YellowThreshold)

{

 yellowDoorS3.push(GbeamClickCount + yellowPreNum);

}

else if(RedThreshold)

{

 redDoorS3.push(GbeamClickCount + redPreNum);

}

else if(GreenThreshold)

{

 greenDoorS3.push(GbeamClickCount + greenPreNum);

King 59

}

else if(PurpleThreshold)

{

 purpleDoorS3.push(GbeamClickCount + purplePreNum);

}

}

//---

// The following method detects the color for the section four color sensor

// It calls the method colorReadS4 which reads the colors based on different color filters

// When colorReadS1 is finished it returns the color values and stores them in temp variables

// white,red,blue, and green.

// The variables RedR, BlueR, and GreenR hold the color ranges determined by taking a lot of

// color readings and normalizing them.

//---

int detectColorS4(int taosOutPin){

double white = colorReadS4(taosOutPin,0,1);

double red = colorReadS4(taosOutPin,1,1);

double blue = colorReadS4(taosOutPin,2,1);

double green = colorReadS4(taosOutPin,3,1);

double RedR = (blue/green);

double BlueR = (green/red);

double GreenR = (red/blue);

// Set up the threshold values for normalizing the Skittle readings

double RedThreshold = (((GreenR >= 1.22) && (GreenR <= 1.45)) && ((BlueR >= 0.96) && (BlueR <=

1.15)) && ((RedR >= 0.67) && (RedR <= 0.75)));

double GreenThreshold = (((GreenR >= 1.17) && (GreenR <= 1.53)) && ((BlueR >= 0.81) && (BlueR <=

0.9)) && ((RedR >= 0.75) && (RedR <= 0.98)));

double PurpleThreshold = (((GreenR >= 1.74) && (GreenR <= 2.16)) && ((BlueR >= 0.72) && (BlueR <=

0.84)) && ((RedR >= 0.61) && (RedR <= 0.71)));

double OrangeThreshold = (((GreenR >= 0.85) && (GreenR <= 1.13)) && ((BlueR >= 1.15) && (BlueR <=

1.46)) && ((RedR >= 0.71) && (RedR <= 0.82)));

double YellowThreshold = (((GreenR >= 0.72) && (GreenR <= 1.12)) && ((BlueR >= 0.97) && (BlueR <=

1.2)) && ((RedR >= 0.85) && (RedR <= 1.18)));

double PinkThreshold = (((GreenR >= 1.14) && (GreenR <= 1.45)) && ((BlueR >= 0.96) && (BlueR <=

1.23)) && ((RedR >= 0.67) && (RedR <= 0.75)) && (green <= 2050) && (red <= 1900) && (blue <=

1450));

// If one of the thresholds condition is met then push the current click count plus the predetermined color

distance for the servo door into each colors queue

if(PinkThreshold)

{

 pinkDoorS4.push(GbeamClickCount + pinkPreNum);

King 60

}

else if(RedThreshold)

{

 redDoorS4.push(GbeamClickCount + redPreNum);

}

else if(GreenThreshold)

{

 greenDoorS4.push(GbeamClickCount + greenPreNum);

}

else if(OrangeThreshold)

{

 orangeDoorS4.push(GbeamClickCount + orangePreNum);

}

else if(PurpleThreshold)

{

 purpleDoorS4.push(GbeamClickCount + purplePreNum);

}

else if(YellowThreshold)

{

 yellowDoorS4.push(GbeamClickCount + yellowPreNum);

}

}

//--

double colorReadS1(int taosOutPin, int color, boolean LEDstate){

// Turn on sensor and use a 1:50 ratio, allowing for more color variation

taosMode(3);

//set the S2 and S3 pins to select the color to be sensed

if(color == 0){//white

digitalWrite(S1_S3, LOW); //S3

digitalWrite(S1_S2, HIGH); //S2

// Serial.print(" w");

}

else if(color == 1){//red

digitalWrite(S1_S3, LOW); //S3

digitalWrite(S1_S2, LOW); //S2

// Serial.print(" r");

}

else if(color == 2){//blue

digitalWrite(S1_S3, HIGH); //S3

King 61

digitalWrite(S1_S2, LOW); //S2

// Serial.print(" b");

}

else if(color == 3){//green

digitalWrite(S1_S3, HIGH); //S3

digitalWrite(S1_S2, HIGH); //S2

// Serial.print(" g");

}

// create a var where the pulse reading from sensor will go

float readPulse;

// turn LEDs on or off, as directed by the LEDstate var

if(LEDstate == 0){

 digitalWrite(S1_LED, HIGH);

}

if(LEDstate == 1){

 digitalWrite(S1_LED, HIGH);

}

// Reads a pulse from the sensor

readPulse = pulseIn(taosOutPin, LOW, 80000);

// If for some reason the pulse times out meaning no power or some other reason, then just set it to

80,000.

if(readPulse < .1){

readPulse = 80000;

}

return readPulse;

}

//--

double colorReadS2(int taosOutPin, int color, boolean LEDstate){

taosMode(3);

//set the S2 and S3 pins to select the color to be sensed

if(color == 0){//white

digitalWrite(S2_S3, LOW); //S3

digitalWrite(S2_S2, HIGH); //S2

// Serial.print(" w");

}

else if(color == 1){//red

King 62

digitalWrite(S2_S3, LOW); //S3

digitalWrite(S2_S2, LOW); //S2

// Serial.print(" r");

}

else if(color == 2){//blue

digitalWrite(S2_S3, HIGH); //S3

digitalWrite(S2_S2, LOW); //S2

// Serial.print(" b");

}

else if(color == 3){//green

digitalWrite(S2_S3, HIGH); //S3

digitalWrite(S2_S2, HIGH); //S2

// Serial.print(" g");

}

// create a var where the pulse reading from sensor will go

float readPulse;

// turn LEDs on or off, as directed by the LEDstate var

if(LEDstate == 0){

 digitalWrite(S2_LED, HIGH);

}

if(LEDstate == 1){

 digitalWrite(S2_LED, HIGH);

}

// Reads a pulse from the sensor

readPulse = pulseIn(taosOutPin, LOW, 80000);

// If for some reason the pulse times out meaning no power or some other reason, then just set it to

80,000.

if(readPulse < .1){

readPulse = 80000;

}

// return the pulse value back to whatever called for it...

return readPulse;

}

//--

double colorReadS3(int taosOutPin, int color, boolean LEDstate){

taosMode(3);

King 63

//set the S2 and S3 pins to select the color to be sensed

if(color == 0){//white

digitalWrite(S3_S3, LOW); //S3

digitalWrite(S3_S2, HIGH); //S2

// Serial.print(" w");

}

else if(color == 1){//red

digitalWrite(S3_S3, LOW); //S3

digitalWrite(S3_S2, LOW); //S2

// Serial.print(" r");

}

else if(color == 2){//blue

digitalWrite(S3_S3, HIGH); //S3

digitalWrite(S3_S2, LOW); //S2

// Serial.print(" b");

}

else if(color == 3){//green

digitalWrite(S3_S3, HIGH); //S3

digitalWrite(S3_S2, HIGH); //S2

// Serial.print(" g");

}

// create a var where the pulse reading from sensor will go

float readPulse;

// turn LEDs on or off, as directed by the LEDstate var

if(LEDstate == 0){

 digitalWrite(S3_LED, HIGH);

}

if(LEDstate == 1){

 digitalWrite(S3_LED, HIGH);

}

// Reads a pulse from the sensor

readPulse = pulseIn(taosOutPin, LOW, 80000);

// If for some reason the pulse times out meaning no power or some other reason, then just set it to

80,000.

if(readPulse < .1){

readPulse = 80000;

}

// return the pulse value back to whatever called for it...

return readPulse;

King 64

}

//--

double colorReadS4(int taosOutPin, int color, boolean LEDstate){

taosMode(3);

//set the S2 and S3 pins to select the color to be sensed

if(color == 0){//white

digitalWrite(S4_S3, LOW); //S3

digitalWrite(S4_S2, HIGH); //S2

// Serial.print(" w");

}

else if(color == 1){//red

digitalWrite(S4_S3, LOW); //S3

digitalWrite(S4_S2, LOW); //S2

// Serial.print(" r");

}

else if(color == 2){//blue

digitalWrite(S4_S3, HIGH); //S3

digitalWrite(S4_S2, LOW); //S2

// Serial.print(" b");

}

else if(color == 3){//green

digitalWrite(S4_S3, HIGH); //S3

digitalWrite(S4_S2, HIGH); //S2

// Serial.print(" g");

}

// create a var where the pulse reading from sensor will go

float readPulse;

// turn LEDs on or off, as directed by the LEDstate var

if(LEDstate == 0){

 digitalWrite(S4_LED, HIGH);

}

if(LEDstate == 1){

 digitalWrite(S4_LED, HIGH);

}

// Reads a pulse from the sensor

readPulse = pulseIn(taosOutPin, LOW, 80000);

King 65

// If for some reason the pulse times out meaning no power or some other reason, then just set it to

80,000.

if(readPulse < .1){

readPulse = 80000;

}

return readPulse;

}

//--

// Operation modes area, controlled by high/low settings on S0 and S1 pins.

// Setting mode to zero will put Taos into low power mode. taosMode(0);

void taosMode(int mode){

 // taosMode(3) is being used, i.e. 3

 if(mode == 3){

 //this will put in 1:50

 digitalWrite(S1_S0, LOW); //S0

 digitalWrite(S1_S1, HIGH); //S1

 digitalWrite(S2_S0, LOW); //S0

 digitalWrite(S2_S1, HIGH); //S1

 digitalWrite(S3_S0, LOW); //S0

 digitalWrite(S3_S1, HIGH); //S1

 digitalWrite(S4_S0, LOW); //S0

 digitalWrite(S4_S1, HIGH); //S1

 }

 return;

}

King 66

King 67

King 68

King 69

King 70

King 71

King 72

King 73

King 74

