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Abstract. We prove that for N = 2, 3, 5, 7 there are only finitely many genus

two curves X (up to isomorphism) defined over Q with (2, 2)-split Jacobian and

Aut (X )∼=V4, such that their elliptic subcovers are N -isogenous. Also, there
are only finitely many genus two curves X (up to isomorphism) defined over

Q with (3, 3)-split Jacobian such that their elliptic subcovers are 5-isogenous.

1. Introduction

Genus 2 curves with (n, n)-decomposable Jacobians are the most studied type
of genus 2 curves due to work of Jacobi, Hermite, et al. They provide examples
of genus two curves with large Mordell-Weil rank of the Jacobian [13], many ra-
tional points [3], nice examples of descent [7], etc. Such curves have received new
attention lately due to interest on their use on cryptographic applications and their
suggested use on post-quantum crypto-systems and random self-reducibility of dis-
crete logarithm problem; see [14] for details.

Let X be a genus 2 curve defined over an field k, K its function field, and
ψ : X → E a degree n maximal covering to an elliptic curve E defined over k.
We call E a degree n elliptic subcover of X . Degree n elliptic subcovers occur in
pairs, say (E1, E2). It is well known that there is an isogeny of degree n2 between
the Jacobian JacX and the product E1 ×E2. Such curve X is said to have (n, n)-
decomposable (or (n, n)-split) Jacobian. The focus of this paper is on the isogenies
among the elliptic cures E1 and E2.

Let n = 2 or n an odd integer. The locus of genus 2 curves X with (n, n)-
decomposable Jacobian, denoted by Ln, is a 2-dimensional algebraic subvariety of
the moduli space M2 of genus two curves; see [12] for details. Hence, we can get
an explicit equation of Ln in terms of the Igusa invariants J2, J4, J6, J10; see [11]
for L2, [9] for L3, and [6] for L5. There is a more recent paper on the subject [4]
where results of [6, 9] are confirmed and equations for n > 5 are studied. One of
the main questions that has been considered historically is: what is the number of
elliptic subcovers for a genus 2 curve or equivalently a genus 2 field en(K)? For
n = 2, e2(K) is the number of non-hyperelliptic involutions of the automorphism
group Aut (K/k). In [9] it was shown that e3(K) = 0, 2, or 4.

Consider the following question: how often are E1 and E2 isogenous to each
other for X defined over Q? In other words, for a fixed n ≥ 2, such that n odd
and for a fixed integer N ≥ 2, how many genus 2 curves X , defined over Q, are
there such that E1 is N -isogenous to E2? The focus of this paper is to answer this
question for n = 2 and 3 and small N .

The case when n = 2 is very different from the case when n is odd. Since degree
2 coverings correspond to Galois extensions of function fields, the elliptic subcover
is fixed by an involution in Aut (K/k). There is a group theoretic aspect of the
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n = 2 case which was discussed in detail in [11]. The number of elliptic subcovers in
this case correspond to the number of non-hyperelliptic involutions in Aut (K/k),
which are called elliptic involutions. The equation of X is given by

Y 2 = X6 − s1X4 + s2X
2 − 1

and in [2] it was shown that when defined over Q this equation is minimal. Hence,
for (s1, s2) ∈ k2, such that the corresponding discriminant is nonzero, we have a
genus 2 curve X(s1,s2) and two corresponding elliptic subcovers. Two such curves
(X(s1,s2), ξs1,s2) and (X(s′1,s

′
2)
, ξs′1,s′2) are isomorphic if and only if their dihedral

invariants u and v are the same (cf. Section 2). Thus, the points (s1, s2) ∈ k2

correspond to elliptic involutions of Aut X while the points (u, v) ∈ k2 correspond
to elliptic involutions of Aut X (see below for the notations used in this paper).

In Section 3 we prove that for n = 2 there are finitely many genus 2 curves X
defined over Q with Aut (X )∼=V4 whose elliptic components are N -isogenous for
N = 2, 3, 5, 7. That X is defined over Q follows from the important fact that the
invariants u and v are in the field of moduli of the curve X and that for every curve
in L2, the field of moduli is a field of definition; see [5]. This is not necessarily
true for curves in Ln, when n > 2. However, a proof of the above result it is still
possible using the computational approach by using invariants χ, ψ in [9]. The
rest of the proof (see Theorem ??) is computational; it is based on the fact that
E1 and E2 are N -isogenous if and only if their j-invariants satisfy the modular
polynomial φN (x, y). Expressing the j1 = j(E1) and j2 = j(E2) in terms of u and
v and substituting them in the equation of the modular curve X0(N), reduces the
problem in finding rational points on X0(N). For our purposes it is enough to show
that such curve has genus g ≥ 2.

In Section 4 we deal with the n = 3 case. The equation of L3 was computed
in [9]. A birational parametrization of L3 was also found there in terms of the
invariants r1, r2 of two cubics. These invariants are denoted by χ and ψ here. We
are able to compute the j-invariants of E1 and E2 in terms of χ and ψ and find
the conditions that χ and ψ must satisfy. Since ordered pairs (χ, ψ) are on a one
to one correspondence with genus two curves with (3, 3, )-split Jacobians, then we
try to determine pairs (χ, ψ) satisfying the equation of the modular curve X0(N).
This case is different from n = 2 in that a rational ordered pair (χ, ψ) does not
necessarily correspond to a genus two defined over Q. However, a genus two curve
defined over Q gives rise to rational invariants χ, ψ ∈ Q. Hence, it is enough to
count the rational ordered pairs (χ, ψ) that satisfy the equation of the modular
curve X0(N).

We are able to prove that for N = 5 there are only finitely many genus two curves
X such that they have (3, 3)-split Jacobian and E1 and E2 are 5-isogenous. We could
not prove such result for N = 2, 3, and 7 since the corresponding curve X0(χ, ψ)
has genus zero components in such cases. It remains open to further investigation
if there is any theoretical interpretation of such surprising phenomena.

Notation: Throughout this paper X denotes a genus 2 curve defined over a field
k and K its function field. By G = Aut (X ) we denote the automorphism group of
X or equivalently Aut (K/k). The elliptic involution of X is denoted by σ0. The
reduced automorphism group is denoted by Ḡ = Aut (X ) and images of σ ∈ G are
σ̄ ∈ Ḡ. Notice that an involution σ̄ ∈ Ḡ which comes from an elliptic involution
σ ∈ G is again called an elliptic involution in Ḡ. The Jacobian of X is denoted by
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JacX and by X0(N) we denote the modular curve of level N . By Dn we denote
the dihedral group of order 2n and by V4 the Klein 4-group.

2. Preliminaries

Throughout this section X is a genus 2 curve defined over an algebraically closed
field k, char k = 0, and K the function field of X . Let ψ1 : X −→ E1 be a degree
n covering from a curve X of genus 2 to an elliptic curve E1; see [12] for the basic
definitions. The covering ψ1 : X −→ E1 is called a maximal covering if it does
not factor through a nontrivial isogeny. A map of algebraic curves f : X → Y
induces maps between their Jacobians f∗ : JacY → JacX and f∗ : JacX → JacY .
When f is maximal then f∗ is injective and ker(f∗) is connected.

Let ψ1 : X −→ E1 be a covering as above which is maximal. Then ψ∗1 : E1 →
JacX is injective and the kernel of ψ1,∗ : JacX → E1 is an elliptic curve which
we denote by E2. For a fixed Weierstrass point P ∈ X , we can embed X to its
Jacobian via

iP : X −→ Jac(X )

x→ [(x)− (P )]
(1)

Let g : E2 → JacX be the natural embedding of E2 in JacX , then there exists
g∗ : JacX → E2. Define ψ2 = g∗ ◦ iP : X → E2. So we have the following exact
sequence

0→ E2
g−→ JacX ψ1,∗−→ E1 → 0.

The dual sequence is also exact

0→ E1
ψ∗1−→ JacX g∗−→ E2 → 0.

If deg(ψ1) = 2 or it is an odd number then the maximal covering ψ2 : X → E2 is
unique (up to isomorphism of elliptic curves). The Hurwitz space Hσ of such covers
is embedded as a subvariety of the moduli space of genus two curves M2; see [9]
for details. It is a 2-dimensional subvariety of M2 which we denote it by Ln. An
explicit equation for Ln, in terms of the arithmetic invariants of genus 2 curves, can
be found in [11] or [5] for n = 2, in [9] for n = 3, and in [6] for n = 5. From now
on, we will say that a genus 2 curve X has an (n, n)-decomposable Jacobian if X is
as above and the elliptic curves Ei, i = 1, 2 are called the components of Jac(X ).

Consider the following question: how often are E1 and E2 isogenous to each
other for X defined over Q? In other words, for a fixed n ≥ 2, such that n odd
and for a fixed integer N ≥ 2, how many genus 2 curves X , defined over Q, are
there such that E1 is N -isogenous to E2? The focus of this paper is to answer this
question for n = 2, 3 and small degree isogenies.

2.1. Genus 2 curves with degree 2 elliptic subcovers. Notice that degree 2
coverings ψ : X → E are Galois coverings. So it is enough to consider involutions
in the automorphism group of X which fix genus one quotient spaces. However,
the hyperelliptic involution fixes a genus zero quotient space and is unique. From
Riemann-Hurwitz formula all other involutions must fix genus one quotient spaces.
This leads to the following definitions.

Let X be a genus 2 curve, Aut (X ) its automorphism group, σ0 the hyperelliptic
involution, and Aut (X ) := Aut (X )/〈σ0〉 the reduced automorphism group. If
Aut (X ) has another involution σ1, then the quotient space X/〈σ1〉 has genus one.
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We call such involution an elliptic involution. There is another elliptic involution
σ2 := σ0 σ1. So the elliptic involutions come naturally in pairs. The corresponding
coverings ψi : X → X/〈σi〉, i = 1, 2, are the maximal covers as above and Ei :=
X/〈σi〉 the elliptic subcovers of X of degree 2. Also the corresponding Hurwitz
space of such coverings is an irreducible algebraic variety which is embedded into
M2. We denote its image in M2 by L2.

An involution in Aut (X ) is called an elliptic involution in Aut (X ) if it is an
image of an elliptic involution from Aut (X ). We will consider pairs (K,β) with K
a genus 2 field and β an elliptic involution in Ḡ. Two such pairs (K,β) and (K ′, β′)
are called isomorphic if there is a k-isomorphism α : K → K ′ with β′ = αβα−1.
The following was proved in [11].

Lemma 1. Let X be a genus 2 curve and σ0 its hyperelliptic involution. If σ1 is
an elliptic involution of X , then so is σ2 = σ1σ0. Moreover, X is isomorphic to a
curve with affine equation

(2) Y 2 = X6 − s1X4 + s2X
2 − 1

for some s1, s2 ∈ k and ∆σ1,σ2
:= 27−18s1s2−s21s22 +4s31 +4s32 6= 0. The equations

for the elliptic subcovers Ei = X/〈σi〉, for i = 1, 2, are given by

E1 : y2 = x3 − s1x2 + s2x− 1, and E2 : y2 = x (x3 − s1x2 + s2x− 1)

Our main goal of the next section is to determine when E1 and E2 are isogenous.
In [11] it was shown that X is determined up to a coordinate change by the

subgroup H ∼=D3 of SL2(k) generated by τ1 : X → ξ6X, τ2 : X → 1
X , where ξ6 is a

primitive 6-th root of unity. Let ξ3 := ξ26 . The coordinate change by τ1 replaces s1
by ξ3s2 and s2 by ξ23s2. The coordinate change by τ2 switches s1 and s2. Invariants
of this H-action are:

(3) u := s1s2, v := s31 + s32

Let x1,x2,x3 be the absolute Igusa invariants as in [7] or in [5]. Then we have the
following:

Proposition 1. The mapping

A : (u, v) −→ (x1,x2,x3),

gives a birational parametrization of L2. The fibers of A of cardinality > 1 corre-
spond to those curves X with |Aut (X )| > 4.

Proof. See [11] for the details. �

The map
(s1, s2) 7→ (u, v),

is a branched Galois covering with group S3 of the set {(u, v) ∈ k2 : ∆(u, v) 6= 0}
by the corresponding open subset of s1, s2-space if char(k) 6= 3. In any case, it is
true that if s1, s2 and s′1, s

′
2 have the same u, v-invariants then they are conjugate

under 〈τ1, τ2〉.

Lemma 2. For (s1, s2) ∈ k2 with ∆ 6= 0, equation (2) defines a genus 2 field
Ks1,s2 = k(X,Y ). Its reduced automorphism group contains the elliptic involution
ξs1,s2 : X 7→ −X. Two such pairs (Ks1,s2 , ξs1,s2) and (Ks′1,s

′
2
, ξs′1,s′2) are isomorphic

if and only if u = u′ and v = v′ (where u, v and u′, v′ are associated with s1, s2 and
s′1, s

′
2, respectively, by (3)).
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However, the ordered pairs (u, v) classify the isomorphism classes of such elliptic
subfields as it can be seen from the following theorem proved in [11].

Theorem 1. i) The (u, v) ∈ k2 with ∆ 6= 0 bijectively parameterize the isomor-
phism classes of pairs (K, ξ) where K is a genus 2 field and ξ an elliptic involution
of Aut (K). This parametrization is defined in Lemma 2.

ii) The (u, v) satisfying additionally

(4) (v2 − 4u3)(4v − u2 + 110u− 1125) 6= 0

bijectively parameterize the isomorphism classes of genus 2 fields with Aut (K)∼=V4;
equivalently, genus 2 fields having exactly 2 elliptic subfields of degree 2.

Our goal in the next section is to investigate when the pairs of elliptic subfields
Ks1,s2 (respectively isomorphism classes (K, ξ)) are isogenous. We want to find if
that happens when X is defined over Q. Hence, the following result is crucial.

Lemma 3. Let X be a genus 2 curve with (2, 2)-decomposable Jacobian and Ei,
i = 1, 2 its elliptic components. Then X is defined over Q if and only if u, v ∈ Q.

See [10] for details, where an explicit equation of X is provided with coefficients
in Q(u, v) or [5] for a more general setup.

3. Isogenies between elliptic subcovers

Next we study pairs of degree 2 elliptic subfields of X which are isogenous.
We denote by φN (x, y) the N -th modular polynomial. Two elliptic curves with
j-invariants j1 and j2 are n-isogenous if and only if φN (j1, j2) = 0. The equation
φN (x, y) = 0 is the canonical equation of the modular curve X0(N). We display
φN (x, y) for N = 2, 3.

φ2 = x3 − x2y2 + y3 + 1488xy(x+ y) + 40773375xy − 162000(x2 + y2)

+ 8748000000(x+ y)− 157464000000000

φ3 = −x3y3 + 2232x3y2 + 2232y3x2 + x4 − 1069956x3y + 2587918086x2y2

− 1069956y3x+ y4 + 36864000x3 + 8900222976000x2y + 8900222976000y2x

+ 36864000y3 + 452984832000000x2 − 770845966336000000xy + 452984832000000y2

+ 1855425871872000000000x+ 1855425871872000000000y

Notice that all polynomials φn(x, y) are symmetric in x and y, as expected. We
denote s = x + y and t = xy and express φn(x, y) in terms of φn(s, t). Such
expressions are much simpler and more convenient for our computations.

φ2(s, t) = s3 − 162000s2 + 1485 ts− t2 + 8748000000 s+ 41097375 t− 157464000000000

φ3(s, t) = s4 + 36864000s3 − 1069960s2t+ 2232 st2 − t3 + 452984832000000s2

+ 8900112384000 ts+ 2590058000 t2 + 1855425871872000000000 s

− 771751936000000000 t
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Let j1 and j2 denote the j-invariants of the elliptic curves E1 and E2 from
Lemma 1. Then j-invariants of elliptic subcovers are given by

j1 = −256

(
s1

2 − 3 s2
)3

−s12s22 + 4 s13 + 4 s23 − 18 s1 s2 + 27

j2 = 256

(
−s22 + 3 s1

)3
−s12s22 + 4 s13 + 4 s23 − 18 s1 s2 + 27

We have the following.

Proposition 2. Let X be a genus 2 curve with (2, 2)-decomposable Jacobian and
Ei, i = 1, 2 its elliptic components. There is a one to one correspondence between
genus 2 curves X defined over Q such that there is a degree N isogeny E1 → E2

and rational points on the modular curve X0(N) given in terms of u and v.

Proof. If X is defined over Q then the corresponding (u, v) ∈ Q2 since they are in
the field of moduli of X . Conversely, if u and v satisfy the equation of X0(N) then
we can determine the equation of X in terms of u and v as in [10].

�
Let us now explicitly check whether elliptic subfields of K are isogenous to each

other. First we focus on the d-dimensional loci, for d ≥ 1.

Theorem 2. For N = 2, 3, 5, 7 there are only finitely many curves X defined over
Q with (2, 2)-decomposable Jacobian and Aut (X )∼=V4 such that E1 is N -isogenous
to E2.

Proof. Let us know check if elliptic subfields are isogenous for N = 2, 3, 5, 7. By
replacing j1, j2 in the modular curve we get a curve

F (s1, s2) = 0

This curve is symmetric in s1 and s2 and fixed by the H-action of Lem. 1. Therefore,
such curve can be written in terms of the u and v,

GN (u, v) = 0.

We display all the computations below.
Let N = 2. G2(u, v) is

G2(u, v) = f1(u, v) · f2(u, v)

where f1 and f2 are

f1 = −16v3 − 81216v2 − 892296v − 2460375 + 3312uv2 + 707616vu+ 3805380u+

18360vu2 − 1296162u2 − 1744u3v − 140076u3 + 801u4 + 256u5
(5)

f2 = 4096u7 + 256016u6 − 45824u5v + 4736016u5 − 2126736vu4 + 23158143u4

− 25451712u3v − 119745540u3 + 5291136v2u2 − 48166488vu2 − 2390500350u2

− 179712uv3 + 35831808uv2 + 1113270480vu+ 9300217500u− 4036608v3

− 1791153000v − 8303765625− 1024v4 + 163840u3v2 − 122250384v2 + 256u2v3

(6)

Notice that each one of these components has genus g ≥ 2 and therefore only
finitely many rational points.

Let N = 3. Then, from equation (10) and φ3(j1, j2) = 0 we have:

(7) (4v − u2 + 110u− 1125) · g1(u, v) · g2(u, v) = 0



ISOGENOUS ELLIPTIC SUBCOVERS OF GENUS TWO CURVES 7

X

~~~~
~~
~~
~~

vvnnn
nnn

nnn
nnn

nnn

  @
@@

@@
@@

@

((PP
PPP

PPP
PPP

PPP
P

E1
/o/o/o E2 E′1 /o/o/o E′2

Figure 1. Elliptic subcovers for X , when Aut (X )∼=D4

where g1 and g2 are

g1 = −27008u6 + 256u7 − 2432u5v + v4 + 7296u3v2 − 6692v3u− 1755067500u

+ 2419308v3 − 34553439u4 + 127753092vu2 + 16274844vu3 − 1720730u2v2

− 1941120u5 + 381631500v + 1018668150u2 − 116158860u3 + 52621974v2

+ 387712u4v − 483963660vu− 33416676v2u+ 922640625

(8)

g2 = 291350448u6 − v4u2 − 998848u6v − 3456u7v + 4749840u4v2 + 17032u5v2

+ 4v5 + 80368u8 + 256u9 + 6848224u7 − 10535040v3u2 − 35872v3u3 + 26478v4u

− 77908736u5v + 9516699v4 + 307234984u3v2 − 419583744v3u− 826436736v3

+ 27502903296u4 + 28808773632vu2 − 23429955456vu3 + 5455334016u2v2

− 41278242816v + 82556485632u2 − 108737593344u3 − 12123095040v2

+ 41278242816vu+ 3503554560v2u+ 5341019904u5 − 2454612480u4v

(9)

Thus, there is a isogeny of degree 3 between E1 and E2 if and only if u and v
satisfy equation (7). The vanishing of the first factor is equivalent to G∼=D6. So,
if Aut(C)∼=D6 then E1 and E2 are isogenous of degree 3. The other factors are
curves of genus g ≥ 2 and therefore they have only finitely many rational points.

For cases N = 5, 7 we only get one irreducible component, which in both cases
is a curve of genus g ≥ 2. We don’t display those equations here. This completes
the proof.

�
Next we consider the case when |Aut (X )| > 4. First notice that the invariants

j1 and j2 are roots of the quadratic

(10) x2 − sx+ t = 0,

where

s := j1 + j2 = −28 · (2u3 − 54u2 + 9uv − v2 + 27v)

(u2 + 18u− 4v − 27)

t := j1j2 = 216 · (3v − u2 − 9u)3

(u2 + 18u− 4v − 27)2

(11)

If G∼=D4, then σ1 and σ2 are in the same conjugacy class. There are again two
conjugacy classes of elliptic involutions in G. Thus, there are two degree 2 elliptic
subfields (up to isomorphism) of K. One of them is determined by double root j
of the Eq. (10), for v2− 4u3 = 0. Next, we determine the j-invariant j′ of the other
degree 2 elliptic subfield and see how it is related to j.

If v2 − 4u3 = 0 then Ḡ∼=V4 and the set of Weierstrass points

W = {±1,±
√
a,±
√
b}.
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Then, s1 = a + 1
a + 1 = s2. Involutions of X are τ1 : X → −X, τ2 : X → 1

X ,

τ3 : X → − 1
X . Since τ1 and τ3 fix no points of W the they lift to involutions in

G. They each determine a pair of isomorphic elliptic subfields. The j-invariant of
elliptic subfield fixed by τ1 is the double root of Eq. (10), namely

(12) j = 256
v3

v + 1
.

To find the j-invariant of the elliptic subfields fixed by τ3 we look at the degree 2
covering φ : P1 → P1, such that φ(±1) = 0, φ(a) = φ(− 1

a ) = 1, φ(−a) = φ( 1
a ) =

−1, and φ(0) = φ(∞) =∞. This covering is, φ(X) =
√
a

a−1
X2−1
X . The branch points

of φ are qi = ± 2i
√
a√

a−1 . From lemma 1 the elliptic subfields E′1 and E′2 have 2-torsion

points {0, 1,−1, qi}. The j-invariants of E′1 and E′2 are

(13) j′ = −16
(v − 15)3

(v + 1)2
.

Then, we have the following result.

Proposition 3. Let X be a genus 2 curve with Aut (X )∼=D4 and Ei, E
′
i, i = 1, 2,

as above. Then Ei is 2-isogenous with E′i and there are only finitely many genus 2
curves X defined over Q such that Ei is N -isogenous to E′i for N = 3, 5, 7.

Proof. By substituting j and j′ into the φN (x, y) = 0 we get that

φ2(j, j
′) = 0

φ3(j, j
′) = (v2 + 138v + 153)(v + 5)2(v2 − 70v − 55)2 (256v4 + 240v3 + 191745v2

+ 371250v + 245025)(4096v6 − 17920v5 + 55909200v4 − 188595375v3

− 4518125v2 + 769621875v + 546390625)

We don’t display the φ5(j, j′) and φ7(j, j′), but they are high genus curves. This
completes the proof.

�

4. Genus 2 curves with degree 3 elliptic subcovers

In this section we focus on genus 2 curves with (3, 3)-split Jacobians. This case
was studied in detail in[9]. The main theorem was:

Theorem 3. Let K be a genus 2 field and e3(K) the number of Aut (K/k)-classes
of elliptic subfields of K of degree 3. Then;

i) e3(K) = 0, 1, 2, or 4
ii) e3(K) ≥ 1 if and only if the classical invariants of K satisfy the irreducible

equation F (J2, J4, J6, J10) = 0 displayed in [9, Appendix A].

There are exactly two genus 2 curves (up to isomorphism) with e3(K) = 4. The
case e3(K) = 1 (resp., 2) occurs for a 1-dimensional (resp., 2-dimensional) family
of genus 2 curves, see [9]. We focus on the 2-dimensional family, since the cases
e3(K) = 1 is the singular locus of the case e3(K) = 2 studied in detail in [1]. Most
of the basic definitions are taken from [7] or [8].

Definition 1. A non-degenerate pair (resp., degenerate pair) is a pair (C, E)
such that C is a genus 2 curve with a degree 3 elliptic subcover E where ψ : C → E
is ramified in two (resp., one) places. Two such pairs (C, E) and (C′, E ′) are called
isomorphic if there is a k-isomorphism C → C′ mapping E → E ′.
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If (C, E) is a non-degenerate pair, then C can be parameterized as follows

(14) Y 2 = (v2X3 + uvX2 + vX + 1) (4v2X3 + v2X2 + 2vX + 1),

where u, v ∈ k and the discriminant

∆ = −16 v17 (v− 27) (27v + 4v2 − u2v + 4u3 − 18uv)3

of the sextic is nonzero. We let R := (27v + 4v2 − u2v + 4u3 − 18uv) 6= 0. For
4u − v − 9 6= 0 the degree 3 coverings are given by φ1(X,Y ) → (U1, V1) and
φ2(X,Y )→ (U2, V2) where

U1 =
vX2

v2X3 + uvX2 + vX + 1
, U2 =

(vX + 3)2 (v(4u− v− 9)X + 3u− v)

v (4u− v− 9)(4v2X3 + v2X2 + 2vX + 1)
,

V1 = Y
v2X3 − vX − 2

v2X3 + uvX2 + vX + 1
,

V2 = (27− v)
3
2 Y

v2(v− 4u+ 8)X3 + v(v− 4u)X2 − vX + 1

(4v2X3 + v2X2 + 2vX + 1)2

(15)

and the elliptic curves have equations:

E : V 2
1 = RU3

1 − (12u2 − 2uv− 18v)U2
1 + (12u− v)U1 − 4

E ′ : V 2
2 = c3U

3
2 + c2U

2
2 + c1U2 + c0

(16)

where

c0 = −(9u− 2v− 27)3

c1 = (4u− v− 9) (729u2 + 54u2v− 972uv− 18uv2 + 189v2 + 729v+ v3)

c2 = −v (4u− v− 9)2 (54u+ uv− 27v)

c3 = v2 (4u− v− 9)3

(17)

The mapping k2 \ {∆ = 0} → L3 such that

(u, v)→ (i1, i2, i3)

has degree 2. The invariants of two cubics, called r1 and r2 in [9], defined as

χ = 27
v(v− 9− 2u)3

4v2 − 18uv + 27v− u2v + 4u3

ψ = −1296
v(v− 9− 2u)4

(v− 27)(4v2 − 18uv + 27v− u2v + 4u3)
,

uniquely determine the isomorphism class of curves in L3.

4.1. Elliptic subcovers. We express the j-invariants ji of the elliptic subfields Ei
of K, from Eq. (16), in terms of u and v as follows:

j1 = 16v
(vu2 + 216u2 − 126vu− 972u+ 12v2 + 405v)3

(v− 27)3(4v2 + 27v+ 4u3 − 18vu− vu2)2

j2 = −256 (u2 − 3v)3

v(4v2 + 27v+ 4u3 − 18vu− vu2)

(18)

where v 6= 0, 27. Moreover, we can express s = j1 + j2 and t = j1j2 in terms of the
χ and ψ invariants as follows:
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Lemma 4. The j-invariants of the elliptic subfields satisfy the following quadratic
equations over k(χ, ψ);

(19) j2 − s j + t = 0

where

s =
1

16777216ψ3χ8

(
1712282664960ψ3χ6 + 1528823808ψ4χ6 + 49941577728ψ4χ5

− 38928384ψ5χ5 − 258048ψ6χ4 + 12386304ψ6χ3 + 901736973729792ψχ10

+ 966131712ψ5χ4 + 16231265527136256χ10 + 480ψ8χ+ 101376ψ7χ2

+ 479047767293952ψχ8 + 7827577896960ψ2χ9 + 2705210921189376χ9

+ 21641687369515008χ12 + 32462531054272512χ11 + ψ9

+ 619683250176ψ3χ7 + 1408964021452800ψχ9 + 45595641249792ψ2χ8

+ 7247757312ψ3χ8 + 37572373905408ψ2χ7)

t =− 1

68719476736χ12ψ3
(84934656χ5 + 1179648χ4ψ − 5308416χ4

−442368χ3ψ − 13824χ2ψ2 − 192χψ3 − ψ4)3

(20)

Proof. Substitute j1 and j2 as in Eq. (18) in equation Eq. (19). �

The computation of the above equation is rather involved; see [9] or [8] for details.
Notice that if C is defined over Q then χ, ψ ∈ Q. The converse is not necessarily
true.

In an analogous way with the case n = 2 we will study the locus φN (x, y) = 0
which represents the modular curve X0(N). For N prime, two elliptic curves E1, E2

are N -isogenous if and only if φN (j(E1), j(E2)) = 0. We will consider the case when
N = 2, 3, 5, and 7. We will omit part of the formulas since they are big to display.

Proposition 4. Let C be a genus 2 curve with (3, 3)-split Jacobian and E1, E2 its
elliptic subcovers. There are only finitely many genus 2 curves X defined over Q
such that E1 is 5-isogenous to E2.

Proof. Let φ5(x, y) be the modular polynomial of level 5. As in the previous section,
we let s = x + y and t = xy. Then, φ5(x, y) can be written in terms of s, t. We
replace s and t by expressions in Eq. (20). We get a curve in χ, ψ of genus 169.
From Faltings theorem there are only finitely many rational points (χ, ψ). Since,
Q(χ, ψ) is the field of moduli of C, then C can not be defined over Q if χ, ψ are not
in Q. This completes the proof.

�
Let us now consider the other cases. If N = 2, then the curve φ2(s, t) can be

expressed in terms of the invariants χ, ψ and computations show that the locus
φ2(χ, ψ) becomes

g1(χ, ψ) · g2(χ, ψ) = 0,
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where g1(χ, ψ) = 0 is a genus zero component given by

ψ9 + 10820843684757504χ12 + 16231265527136256χ11 + 4057816381784064χ10ψ

+2348273369088χ8ψ3 + 8115632763568128χ10 + 253613523861504χ9ψ

−1834588569600χ7ψ3 − 45864714240χ6ψ4 − 525533184χ5ψ5 − 2322432χ4ψ6

+1352605460594688χ9 + 253613523861504χ8ψ + 21134460321792χ7ψ2

+32105299968χ5ψ4 + 668860416χ4ψ5 + 9289728χ3ψ6 + 82944χ2ψ7 + 432χψ8

+190210142896128χ9ψ2 − 26418075402240χ8ψ2 + 1027369598976χ6ψ3 = 0,

(21)

while the other component has genus g = 29. To conclude about the number of
2-isogenies between E1 and E2 we have to check for rational points in the conic
g1(χ, ψ) = 0.

The computations for the case N = 3 shows similar results. The locus φ3(χ, ψ)
becomes

g1(χ, ψ) · g2(χ, ψ) = 0,

where g1(χ, ψ) = 0 is a genus zero component and g2(χ, ψ) = 0 is a curve with
singularities.

Also the case N = 7 show that the curve φ7(χ, ψ) becomes

g1(χ, ψ) · g2(χ, ψ) = 0,

where g1(χ, ψ) = 0 is a genus zero component and g2(χ, ψ) = 0 is a genus one
curve. Summarizing we have the following remark.

Remark 1. Let C be a genus 2 curve with (3, 3)-split Jacobian and E1, E2 its
elliptic subcovers. There are possibly infinite families of genus 2 curves X defined
over Q such that E1 is 5-isogenous to E2, when N = 2, 3, 7.

As a final remark we would like to mention that we can perform similar compu-
tations for n = 5 by using the equation of L5 as computed in [6]. One can possibly
even investigate cases for n > 5 by using results of [4]. However, the computations
will be much more complicated.
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