ISOGENOUS ELLIPTIC SUBCOVERS OF GENUS TWO CURVES

L. BESHAJ, A. ELEZI, AND T. SHASKA

ABSTRACT. We prove that for N=2,3,5,7 there are only finitely many genus two curves \mathcal{X} (up to isomorphism) defined over \mathbb{Q} with (2,2)-split Jacobian and Aut $(\mathcal{X}) \cong V_4$, such that their elliptic subcovers are N-isogenous. Also, there are only finitely many genus two curves \mathcal{X} (up to isomorphism) defined over \mathbb{Q} with (3,3)-split Jacobian such that their elliptic subcovers are 5-isogenous.

1. Introduction

Genus 2 curves with (n,n)-decomposable Jacobians are the most studied type of genus 2 curves due to work of Jacobi, Hermite, et al. They provide examples of genus two curves with large Mordell-Weil rank of the Jacobian [13], many rational points [3], nice examples of descent [7], etc. Such curves have received new attention lately due to interest on their use on cryptographic applications and their suggested use on post-quantum crypto-systems and random self-reducibility of discrete logarithm problem; see [14] for details.

Let \mathcal{X} be a genus 2 curve defined over an field k, K its function field, and $\psi: \mathcal{X} \to E$ a degree n maximal covering to an elliptic curve E defined over k. We call E a degree n elliptic subcover of \mathcal{X} . Degree n elliptic subcovers occur in pairs, say (E_1, E_2) . It is well known that there is an isogeny of degree n^2 between the Jacobian Jac \mathcal{X} and the product $E_1 \times E_2$. Such curve \mathcal{X} is said to have (n, n)-decomposable (or (n, n)-split) Jacobian. The focus of this paper is on the isogenies among the elliptic curve E_1 and E_2 .

Let n=2 or n an odd integer. The locus of genus 2 curves \mathcal{X} with (n,n)-decomposable Jacobian, denoted by \mathcal{L}_n , is a 2-dimensional algebraic subvariety of the moduli space \mathcal{M}_2 of genus two curves; see [12] for details. Hence, we can get an explicit equation of \mathcal{L}_n in terms of the Igusa invariants J_2, J_4, J_6, J_{10} ; see [11] for \mathcal{L}_2 , [9] for \mathcal{L}_3 , and [6] for \mathcal{L}_5 . There is a more recent paper on the subject [4] where results of [6, 9] are confirmed and equations for n > 5 are studied. One of the main questions that has been considered historically is: what is the number of elliptic subcovers for a genus 2 curve or equivalently a genus 2 field $e_n(K)$? For $n=2, e_2(K)$ is the number of non-hyperelliptic involutions of the automorphism group $\operatorname{Aut}(K/k)$. In [9] it was shown that $e_3(K)=0,2$, or 4.

Consider the following question: how often are E_1 and E_2 isogenous to each other for \mathcal{X} defined over \mathbb{Q} ? In other words, for a fixed $n \geq 2$, such that n odd and for a fixed integer $N \geq 2$, how many genus 2 curves \mathcal{X} , defined over \mathbb{Q} , are there such that E_1 is N-isogenous to E_2 ? The focus of this paper is to answer this question for n = 2 and 3 and small N.

The case when n=2 is very different from the case when n is odd. Since degree 2 coverings correspond to Galois extensions of function fields, the elliptic subcover is fixed by an involution in $\operatorname{Aut}(K/k)$. There is a group theoretic aspect of the

n=2 case which was discussed in detail in [11]. The number of elliptic subcovers in this case correspond to the number of non-hyperelliptic involutions in Aut (K/k), which are called *elliptic involutions*. The equation of \mathcal{X} is given by

$$Y^2 = X^6 - s_1 X^4 + s_2 X^2 - 1$$

and in [2] it was shown that when defined over \mathbb{Q} this equation is minimal. Hence, for $(s_1, s_2) \in k^2$, such that the corresponding discriminant is nonzero, we have a genus 2 curve $\mathcal{X}_{(s_1, s_2)}$ and two corresponding elliptic subcovers. Two such curves $(\mathcal{X}_{(s_1, s_2)}, \xi_{s_1, s_2})$ and $(\mathcal{X}_{(s'_1, s'_2)}, \xi_{s'_1, s'_2})$ are isomorphic if and only if their dihedral invariants u and v are the same (cf. Section 2). Thus, the points $(s_1, s_2) \in k^2$ correspond to elliptic involutions of Aut \mathcal{X} while the points $(u, v) \in k^2$ correspond to elliptic involutions of $\overline{\text{Aut}} \mathcal{X}$ (see below for the notations used in this paper).

In Section 3 we prove that for n=2 there are finitely many genus 2 curves \mathcal{X} defined over \mathbb{Q} with Aut $(\mathcal{X}) \cong V_4$ whose elliptic components are N-isogenous for N=2,3,5,7. That \mathcal{X} is defined over \mathbb{Q} follows from the important fact that the invariants u and v are in the field of moduli of the curve \mathcal{X} and that for every curve in \mathcal{L}_2 , the field of moduli is a field of definition; see [5]. This is not necessarily true for curves in \mathcal{L}_n , when n>2. However, a proof of the above result it is still possible using the computational approach by using invariants χ, ψ in [9]. The rest of the proof (see Theorem ??) is computational; it is based on the fact that E_1 and E_2 are N-isogenous if and only if their j-invariants satisfy the modular polynomial $\phi_N(x,y)$. Expressing the $j_1=j(E_1)$ and $j_2=j(E_2)$ in terms of u and v and substituting them in the equation of the modular curve $X_0(N)$, reduces the problem in finding rational points on $X_0(N)$. For our purposes it is enough to show that such curve has genus $g \geq 2$.

In Section 4 we deal with the n=3 case. The equation of \mathcal{L}_3 was computed in [9]. A birational parametrization of \mathcal{L}_3 was also found there in terms of the invariants r_1 , r_2 of two cubics. These invariants are denoted by χ and ψ here. We are able to compute the j-invariants of E_1 and E_2 in terms of χ and ψ and find the conditions that χ and ψ must satisfy. Since ordered pairs (χ, ψ) are on a one to one correspondence with genus two curves with (3,3,)-split Jacobians, then we try to determine pairs (χ, ψ) satisfying the equation of the modular curve $X_0(N)$. This case is different from n=2 in that a rational ordered pair (χ, ψ) does not necessarily correspond to a genus two defined over $\mathbb Q$. However, a genus two curve defined over $\mathbb Q$ gives rise to rational invariants $\chi, \psi \in \mathbb Q$. Hence, it is enough to count the rational ordered pairs (χ, ψ) that satisfy the equation of the modular curve $X_0(N)$.

We are able to prove that for N=5 there are only finitely many genus two curves $\mathcal X$ such that they have (3,3)-split Jacobian and E_1 and E_2 are 5-isogenous. We could not prove such result for N=2,3, and 7 since the corresponding curve $X_0(\chi,\psi)$ has genus zero components in such cases. It remains open to further investigation if there is any theoretical interpretation of such surprising phenomena.

Notation: Throughout this paper \mathcal{X} denotes a genus 2 curve defined over a field k and K its function field. By $G = \operatorname{Aut}(\mathcal{X})$ we denote the automorphism group of \mathcal{X} or equivalently $\operatorname{Aut}(K/k)$. The elliptic involution of \mathcal{X} is denoted by σ_0 . The reduced automorphism group is denoted by $\overline{G} = \overline{\operatorname{Aut}}(\mathcal{X})$ and images of $\sigma \in G$ are $\overline{\sigma} \in \overline{G}$. Notice that an involution $\overline{\sigma} \in \overline{G}$ which comes from an elliptic involution $\sigma \in G$ is again called an elliptic involution in \overline{G} . The Jacobian of \mathcal{X} is denoted by

Jac \mathcal{X} and by $X_0(N)$ we denote the modular curve of level N. By D_n we denote the dihedral group of order 2n and by V_4 the Klein 4-group.

2. Preliminaries

Throughout this section \mathcal{X} is a genus 2 curve defined over an algebraically closed field k, char k=0, and K the function field of \mathcal{X} . Let $\psi_1: \mathcal{X} \longrightarrow E_1$ be a degree n covering from a curve \mathcal{X} of genus 2 to an elliptic curve E_1 ; see [12] for the basic definitions. The covering $\psi_1: \mathcal{X} \longrightarrow E_1$ is called a **maximal covering** if it does not factor through a nontrivial isogeny. A map of algebraic curves $f: X \to Y$ induces maps between their Jacobians $f^*: \operatorname{Jac} Y \to \operatorname{Jac} X$ and $f_*: \operatorname{Jac} X \to \operatorname{Jac} Y$. When f is maximal then f^* is injective and $\ker(f_*)$ is connected.

Let $\psi_1: \mathcal{X} \longrightarrow E_1$ be a covering as above which is maximal. Then $\psi^*_1: E_1 \to \operatorname{Jac} \mathcal{X}$ is injective and the kernel of $\psi_{1,*}: \operatorname{Jac} \mathcal{X} \to E_1$ is an elliptic curve which we denote by E_2 . For a fixed Weierstrass point $P \in \mathcal{X}$, we can embed \mathcal{X} to its Jacobian via

(1)
$$i_P: \mathcal{X} \longrightarrow \operatorname{Jac}(\mathcal{X}) \\ x \to [(x) - (P)]$$

Let $g: E_2 \to \operatorname{Jac} \mathcal{X}$ be the natural embedding of E_2 in $\operatorname{Jac} \mathcal{X}$, then there exists $g_*: \operatorname{Jac} \mathcal{X} \to E_2$. Define $\psi_2 = g_* \circ i_P : \mathcal{X} \to E_2$. So we have the following exact sequence

$$0 \to E_2 \xrightarrow{g} \operatorname{Jac} \mathcal{X} \xrightarrow{\psi_{1,*}} E_1 \to 0.$$

The dual sequence is also exact

$$0 \to E_1 \xrightarrow{\psi_1^*} \operatorname{Jac} \mathcal{X} \xrightarrow{g_*} E_2 \to 0.$$

If $\deg(\psi_1) = 2$ or it is an odd number then the maximal covering $\psi_2 : \mathcal{X} \to E_2$ is unique (up to isomorphism of elliptic curves). The Hurwitz space \mathcal{H}_{σ} of such covers is embedded as a subvariety of the moduli space of genus two curves \mathcal{M}_2 ; see [9] for details. It is a 2-dimensional subvariety of \mathcal{M}_2 which we denote it by \mathcal{L}_n . An explicit equation for \mathcal{L}_n , in terms of the arithmetic invariants of genus 2 curves, can be found in [11] or [5] for n = 2, in [9] for n = 3, and in [6] for n = 5. From now on, we will say that a genus 2 curve \mathcal{X} has an (n, n)-decomposable Jacobian if \mathcal{X} is as above and the elliptic curves E_i , i = 1, 2 are called the components of $\operatorname{Jac}(\mathcal{X})$.

Consider the following question: how often are E_1 and E_2 isogenous to each other for \mathcal{X} defined over \mathbb{Q} ? In other words, for a fixed $n \geq 2$, such that n odd and for a fixed integer $N \geq 2$, how many genus 2 curves \mathcal{X} , defined over \mathbb{Q} , are there such that E_1 is N-isogenous to E_2 ? The focus of this paper is to answer this question for n = 2, 3 and small degree isogenies.

2.1. Genus 2 curves with degree 2 elliptic subcovers. Notice that degree 2 coverings $\psi: \mathcal{X} \to E$ are Galois coverings. So it is enough to consider involutions in the automorphism group of \mathcal{X} which fix genus one quotient spaces. However, the hyperelliptic involution fixes a genus zero quotient space and is unique. From Riemann-Hurwitz formula all other involutions must fix genus one quotient spaces. This leads to the following definitions.

Let \mathcal{X} be a genus 2 curve, Aut (\mathcal{X}) its automorphism group, σ_0 the hyperelliptic involution, and $\overline{\operatorname{Aut}}(\mathcal{X}) := \operatorname{Aut}(\mathcal{X})/\langle \sigma_0 \rangle$ the reduced automorphism group. If Aut (\mathcal{X}) has another involution σ_1 , then the quotient space $\mathcal{X}/\langle \sigma_1 \rangle$ has genus one.

We call such involution an *elliptic involution*. There is another elliptic involution $\sigma_2 := \sigma_0 \, \sigma_1$. So the elliptic involutions come naturally in pairs. The corresponding coverings $\psi_i : \mathcal{X} \to \mathcal{X}/\langle \sigma_i \rangle$, i = 1, 2, are the maximal covers as above and $E_i := \mathcal{X}/\langle \sigma_i \rangle$ the elliptic subcovers of \mathcal{X} of degree 2. Also the corresponding Hurwitz space of such coverings is an irreducible algebraic variety which is embedded into \mathcal{M}_2 . We denote its image in \mathcal{M}_2 by \mathcal{L}_2 .

An involution in $\overline{\operatorname{Aut}}(\mathcal{X})$ is called an **elliptic involution** in $\overline{\operatorname{Aut}}(\mathcal{X})$ if it is an image of an elliptic involution from $\operatorname{Aut}(\mathcal{X})$. We will consider pairs (K,β) with K a genus 2 field and β an elliptic involution in \overline{G} . Two such pairs (K,β) and (K',β') are called isomorphic if there is a k-isomorphism $\alpha: K \to K'$ with $\beta' = \alpha\beta\alpha^{-1}$. The following was proved in [11].

Lemma 1. Let \mathcal{X} be a genus 2 curve and σ_0 its hyperelliptic involution. If σ_1 is an elliptic involution of \mathcal{X} , then so is $\sigma_2 = \sigma_1 \sigma_0$. Moreover, \mathcal{X} is isomorphic to a curve with affine equation

$$(2) Y^2 = X^6 - s_1 X^4 + s_2 X^2 - 1$$

for some $s_1, s_2 \in k$ and $\Delta_{\sigma_1, \sigma_2} := 27 - 18s_1s_2 - s_1^2s_2^2 + 4s_1^3 + 4s_2^3 \neq 0$. The equations for the elliptic subcovers $E_i = \mathcal{X}/\langle \sigma_i \rangle$, for i = 1, 2, are given by

$$E_1: y^2 = x^3 - s_1x^2 + s_2x - 1$$
, and $E_2: y^2 = x(x^3 - s_1x^2 + s_2x - 1)$

Our main goal of the next section is to determine when E_1 and E_2 are isogenous. In [11] it was shown that \mathcal{X} is determined up to a coordinate change by the subgroup $H \cong D_3$ of $SL_2(k)$ generated by $\tau_1: X \to \xi_6 X$, $\tau_2: X \to \frac{1}{X}$, where ξ_6 is a primitive 6-th root of unity. Let $\xi_3 := \xi_6^2$. The coordinate change by τ_1 replaces s_1 by $\xi_3 s_2$ and s_2 by $\xi_3^2 s_2$. The coordinate change by τ_2 switches s_1 and s_2 . Invariants of this H-action are:

(3)
$$u := s_1 s_2, \quad v := s_1^3 + s_2^3$$

Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ be the absolute Igusa invariants as in [7] or in [5]. Then we have the following:

Proposition 1. The mapping

$$A:(u,v)\longrightarrow (\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3),$$

gives a birational parametrization of \mathcal{L}_2 . The fibers of A of cardinality > 1 correspond to those curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| > 4$.

Proof. See
$$[11]$$
 for the details.

The map

$$(s_1, s_2) \mapsto (u, v),$$

is a branched Galois covering with group S_3 of the set $\{(u,v) \in k^2 : \Delta(u,v) \neq 0\}$ by the corresponding open subset of s_1, s_2 -space if $\operatorname{char}(k) \neq 3$. In any case, it is true that if s_1, s_2 and s'_1, s'_2 have the same u, v-invariants then they are conjugate under $\langle \tau_1, \tau_2 \rangle$.

Lemma 2. For $(s_1, s_2) \in k^2$ with $\Delta \neq 0$, equation (2) defines a genus 2 field $K_{s_1, s_2} = k(X, Y)$. Its reduced automorphism group contains the elliptic involution $\xi_{s_1, s_2} : X \mapsto -X$. Two such pairs $(K_{s_1, s_2}, \xi_{s_1, s_2})$ and $(K_{s'_1, s'_2}, \xi_{s'_1, s'_2})$ are isomorphic if and only if u = u' and v = v' (where u, v and u', v' are associated with s_1, s_2 and s'_1, s'_2 , respectively, by (3)).

However, the ordered pairs (u, v) classify the isomorphism classes of such elliptic subfields as it can be seen from the following theorem proved in [11].

Theorem 1. i) The $(u,v) \in k^2$ with $\Delta \neq 0$ bijectively parameterize the isomorphism classes of pairs (K,ξ) where K is a genus 2 field and ξ an elliptic involution of $\overline{\operatorname{Aut}}(K)$. This parametrization is defined in Lemma 2.

ii) The (u, v) satisfying additionally

$$(4) (v^2 - 4u^3)(4v - u^2 + 110u - 1125) \neq 0$$

bijectively parameterize the isomorphism classes of genus 2 fields with Aut $(K) \cong V_4$; equivalently, genus 2 fields having exactly 2 elliptic subfields of degree 2.

Our goal in the next section is to investigate when the pairs of elliptic subfields K_{s_1,s_2} (respectively isomorphism classes (K,ξ)) are isogenous. We want to find if that happens when \mathcal{X} is defined over \mathbb{Q} . Hence, the following result is crucial.

Lemma 3. Let \mathcal{X} be a genus 2 curve with (2,2)-decomposable Jacobian and E_i , i=1,2 its elliptic components. Then \mathcal{X} is defined over \mathbb{Q} if and only if $u,v \in \mathbb{Q}$.

See [10] for details, where an explicit equation of \mathcal{X} is provided with coefficients in $\mathbb{Q}(u,v)$ or [5] for a more general setup.

3. Isogenies between elliptic subcovers

Next we study pairs of degree 2 elliptic subfields of \mathcal{X} which are isogenous. We denote by $\phi_N(x,y)$ the N-th modular polynomial. Two elliptic curves with j-invariants j_1 and j_2 are n-isogenous if and only if $\phi_N(j_1,j_2)=0$. The equation $\phi_N(x,y)=0$ is the canonical equation of the modular curve $X_0(N)$. We display $\phi_N(x,y)$ for N=2,3.

$$\begin{split} \phi_2 &= x^3 - x^2y^2 + y^3 + 1488xy(x+y) + 40773375xy - 162000(x^2 + y^2) \\ &+ 8748000000(x+y) - 157464000000000 \\ \phi_3 &= -x^3y^3 + 2232x^3y^2 + 2232y^3x^2 + x^4 - 1069956x^3y + 2587918086x^2y^2 \\ &- 1069956y^3x + y^4 + 36864000x^3 + 8900222976000x^2y + 8900222976000y^2x \\ &+ 36864000y^3 + 452984832000000x^2 - 770845966336000000xy + 452984832000000y^2 \\ &+ 185542587187200000000000x + 1855425871872000000000y \end{split}$$

Notice that all polynomials $\phi_n(x,y)$ are symmetric in x and y, as expected. We denote s=x+y and t=xy and express $\phi_n(x,y)$ in terms of $\phi_n(s,t)$. Such expressions are much simpler and more convenient for our computations.

Let j_1 and j_2 denote the j-invariants of the elliptic curves E_1 and E_2 from Lemma 1. Then j-invariants of elliptic subcovers are given by

$$j_1 = -256 \frac{\left(s_1^2 - 3s_2\right)^3}{-s_1^2 s_2^2 + 4s_1^3 + 4s_2^3 - 18s_1 s_2 + 27}$$
$$j_2 = 256 \frac{\left(-s_2^2 + 3s_1\right)^3}{-s_1^2 s_2^2 + 4s_1^3 + 4s_2^3 - 18s_1 s_2 + 27}$$

We have the following.

Proposition 2. Let \mathcal{X} be a genus 2 curve with (2,2)-decomposable Jacobian and E_i , i=1,2 its elliptic components. There is a one to one correspondence between genus 2 curves \mathcal{X} defined over \mathbb{Q} such that there is a degree N isogeny $E_1 \to E_2$ and rational points on the modular curve $X_0(N)$ given in terms of u and v.

Proof. If \mathcal{X} is defined over \mathbb{Q} then the corresponding $(u,v) \in \mathbb{Q}^2$ since they are in the field of moduli of \mathcal{X} . Conversely, if u and v satisfy the equation of $X_0(N)$ then we can determine the equation of \mathcal{X} in terms of u and v as in [10].

Let us now explicitly check whether elliptic subfields of K are isogenous to each other. First we focus on the d-dimensional loci, for $d \ge 1$.

Theorem 2. For N = 2, 3, 5, 7 there are only finitely many curves \mathcal{X} defined over \mathbb{Q} with (2,2)-decomposable Jacobian and Aut $(\mathcal{X}) \cong V_4$ such that E_1 is N-isogenous to E_2 .

Proof. Let us know check if elliptic subfields are isogenous for N=2,3,5,7. By replacing j_1,j_2 in the modular curve we get a curve

$$F(s_1, s_2) = 0$$

This curve is symmetric in s_1 and s_2 and fixed by the H-action of Lem. 1. Therefore, such curve can be written in terms of the u and v,

$$G_N(u,v)=0.$$

We display all the computations below.

Let
$$N=2$$
. $G_2(u,v)$ is

$$G_2(u,v) = f_1(u,v) \cdot f_2(u,v)$$

where f_1 and f_2 are

(5)
$$f_1 = -16v^3 - 81216v^2 - 892296v - 2460375 + 3312uv^2 + 707616vu + 3805380u + 18360vu^2 - 1296162u^2 - 1744u^3v - 140076u^3 + 801u^4 + 256u^5$$

$$f_2 = 4096u^7 + 256016u^6 - 45824u^5v + 4736016u^5 - 2126736vu^4 + 23158143u^4 - 25451712u^3v - 119745540u^3 + 5291136v^2u^2 - 48166488vu^2 - 2390500350u^2$$

(6)
$$-179712uv^{3} + 35831808uv^{2} + 1113270480vu + 9300217500u - 4036608v^{3} \\ -1791153000v - 8303765625 - 1024v^{4} + 163840u^{3}v^{2} - 122250384v^{2} + 256u^{2}v^{3}$$

Notice that each one of these components has genus $g \geq 2$ and therefore only finitely many rational points.

Let N=3. Then, from equation (10) and $\phi_3(j_1,j_2)=0$ we have:

(7)
$$(4v - u^2 + 110u - 1125) \cdot g_1(u, v) \cdot g_2(u, v) = 0$$

П

FIGURE 1. Elliptic subcovers for \mathcal{X} , when Aut $(\mathcal{X}) \cong D_4$

where g_1 and g_2 are

$$g_{1} = -27008u^{6} + 256u^{7} - 2432u^{5}v + v^{4} + 7296u^{3}v^{2} - 6692v^{3}u - 1755067500u$$

$$+ 2419308v^{3} - 34553439u^{4} + 127753092vu^{2} + 16274844vu^{3} - 1720730u^{2}v^{2}$$

$$- 1941120u^{5} + 381631500v + 1018668150u^{2} - 116158860u^{3} + 52621974v^{2}$$

$$+ 387712u^{4}v - 483963660vu - 33416676v^{2}u + 922640625$$

$$g_{2} = 291350448u^{6} - v^{4}u^{2} - 998848u^{6}v - 3456u^{7}v + 4749840u^{4}v^{2} + 17032u^{5}v^{2}$$

$$+ 4v^{5} + 80368u^{8} + 256u^{9} + 6848224u^{7} - 10535040v^{3}u^{2} - 35872v^{3}u^{3} + 26478v^{4}u$$

$$- 77908736u^{5}v + 9516699v^{4} + 307234984u^{3}v^{2} - 419583744v^{3}u - 826436736v^{3}$$

$$+ 27502903296u^{4} + 28808773632vu^{2} - 23429955456vu^{3} + 5455334016u^{2}v^{2}$$

$$- 41278242816v + 82556485632u^{2} - 108737593344u^{3} - 12123095040v^{2}$$

$$+ 41278242816vu + 3503554560v^{2}u + 5341019904u^{5} - 2454612480u^{4}v$$

Thus, there is a isogeny of degree 3 between E_1 and E_2 if and only if u and v satisfy equation (7). The vanishing of the first factor is equivalent to $G \cong D_6$. So, if $Aut(\mathbb{C}) \cong D_6$ then E_1 and E_2 are isogenous of degree 3. The other factors are curves of genus $g \geq 2$ and therefore they have only finitely many rational points.

For cases N=5,7 we only get one irreducible component, which in both cases is a curve of genus $g\geq 2$. We don't display those equations here. This completes the proof.

Next we consider the case when $|\operatorname{Aut}(\mathcal{X})| > 4$. First notice that the invariants j_1 and j_2 are roots of the quadratic

$$(10) x^2 - sx + t = 0,$$

where

(11)
$$s := j_1 + j_2 = -2^8 \cdot \frac{(2u^3 - 54u^2 + 9uv - v^2 + 27v)}{(u^2 + 18u - 4v - 27)}$$
$$t := j_1 j_2 = 2^{16} \cdot \frac{(3v - u^2 - 9u)^3}{(u^2 + 18u - 4v - 27)^2}$$

If $G \cong D_4$, then σ_1 and σ_2 are in the same conjugacy class. There are again two conjugacy classes of elliptic involutions in G. Thus, there are two degree 2 elliptic subfields (up to isomorphism) of K. One of them is determined by double root j of the Eq. (10), for $v^2 - 4u^3 = 0$. Next, we determine the j-invariant j' of the other degree 2 elliptic subfield and see how it is related to j.

If
$$v^2 - 4u^3 = 0$$
 then $\bar{G} \cong V_4$ and the set of Weierstrass points

$$\mathcal{W} = \{\pm 1, \pm \sqrt{a}, \pm \sqrt{b}\}.$$

Then, $s_1 = a + \frac{1}{a} + 1 = s_2$. Involutions of \mathcal{X} are $\tau_1 : X \to -X$, $\tau_2 : X \to \frac{1}{X}$, $\tau_3 : X \to -\frac{1}{X}$. Since τ_1 and τ_3 fix no points of \mathcal{W} the they lift to involutions in G. They each determine a pair of isomorphic elliptic subfields. The j-invariant of elliptic subfield fixed by τ_1 is the double root of Eq. (10), namely

$$(12) j = 256 \frac{v^3}{v+1}.$$

To find the j-invariant of the elliptic subfields fixed by τ_3 we look at the degree 2 covering $\phi: \mathbb{P}^1 \to \mathbb{P}^1$, such that $\phi(\pm 1) = 0$, $\phi(a) = \phi(-\frac{1}{a}) = 1$, $\phi(-a) = \phi(\frac{1}{a}) = -1$, and $\phi(0) = \phi(\infty) = \infty$. This covering is, $\phi(X) = \frac{\sqrt{a}}{a-1} \frac{X^2-1}{X}$. The branch points of ϕ are $q_i = \pm \frac{2i\sqrt{a}}{\sqrt{a-1}}$. From lemma 1 the elliptic subfields E_1' and E_2' have 2-torsion points $\{0, 1, -1, q_i\}$. The j-invariants of E_1' and E_2' are

(13)
$$j' = -16\frac{(v-15)^3}{(v+1)^2}.$$

Then, we have the following result.

Proposition 3. Let \mathcal{X} be a genus 2 curve with $\operatorname{Aut}(\mathcal{X}) \cong D_4$ and E_i , E'_i , i = 1, 2, as above. Then E_i is 2-isogenous with E'_i and there are only finitely many genus 2 curves \mathcal{X} defined over \mathbb{Q} such that E_i is N-isogenous to E'_i for N = 3, 5, 7.

Proof. By substituting j and j' into the $\phi_N(x,y) = 0$ we get that

$$\phi_2(j, j') = 0$$

$$\phi_3(j, j') = (v^2 + 138v + 153)(v + 5)^2(v^2 - 70v - 55)^2 (256v^4 + 240v^3 + 191745v^2 + 371250v + 245025)(4096v^6 - 17920v^5 + 55909200v^4 - 188595375v^3 - 4518125v^2 + 769621875v + 546390625)$$

We don't display the $\phi_5(j,j')$ and $\phi_7(j,j')$, but they are high genus curves. This completes the proof.

4. Genus 2 curves with degree 3 elliptic subcovers

In this section we focus on genus 2 curves with (3,3)-split Jacobians. This case was studied in detail in [9]. The main theorem was:

Theorem 3. Let K be a genus 2 field and $e_3(K)$ the number of Aut(K/k)-classes of elliptic subfields of K of degree 3. Then;

i)
$$e_3(K) = 0, 1, 2, \text{ or } 4$$

ii) $e_3(K) \ge 1$ if and only if the classical invariants of K satisfy the irreducible equation $F(J_2, J_4, J_6, J_{10}) = 0$ displayed in [9, Appendix A].

There are exactly two genus 2 curves (up to isomorphism) with $e_3(K) = 4$. The case $e_3(K) = 1$ (resp., 2) occurs for a 1-dimensional (resp., 2-dimensional) family of genus 2 curves, see [9]. We focus on the 2-dimensional family, since the cases $e_3(K) = 1$ is the singular locus of the case $e_3(K) = 2$ studied in detail in [1]. Most of the basic definitions are taken from [7] or [8].

Definition 1. A non-degenerate pair (resp., degenerate pair) is a pair (C, \mathcal{E}) such that C is a genus 2 curve with a degree 3 elliptic subcover \mathcal{E} where $\psi : C \to \mathcal{E}$ is ramified in two (resp., one) places. Two such pairs (C, \mathcal{E}) and (C', \mathcal{E}') are called isomorphic if there is a k-isomorphism $C \to C'$ mapping $\mathcal{E} \to \mathcal{E}'$.

If $(\mathcal{C}, \mathcal{E})$ is a non-degenerate pair, then \mathcal{C} can be parameterized as follows

(14)
$$Y^{2} = (\mathfrak{v}^{2}X^{3} + \mathfrak{u}\mathfrak{v}X^{2} + \mathfrak{v}X + 1)(4\mathfrak{v}^{2}X^{3} + \mathfrak{v}^{2}X^{2} + 2\mathfrak{v}X + 1),$$

where $\mathfrak{u}, \mathfrak{v} \in k$ and the discriminant

$$\Delta = -16 \, \mathfrak{v}^{17} \, (\mathfrak{v} - 27) \, (27 \mathfrak{v} + 4 \mathfrak{v}^2 - \mathfrak{u}^2 \mathfrak{v} + 4 \mathfrak{u}^3 - 18 \mathfrak{u} \mathfrak{v})^3$$

of the sextic is nonzero. We let $R:=(27\mathfrak{v}+4\mathfrak{v}^2-\mathfrak{u}^2\mathfrak{v}+4\mathfrak{u}^3-18\mathfrak{u}\mathfrak{v})\neq 0$. For $4\mathfrak{u}-\mathfrak{v}-9\neq 0$ the degree 3 coverings are given by $\phi_1(X,Y)\to (U_1,V_1)$ and $\phi_2(X,Y)\to (U_2,V_2)$ where

$$U_{1} = \frac{\mathfrak{v}X^{2}}{\mathfrak{v}^{2}X^{3} + \mathfrak{u}\mathfrak{v}X^{2} + \mathfrak{v}X + 1}, \quad U_{2} = \frac{(\mathfrak{v}X + 3)^{2} (\mathfrak{v}(4\mathfrak{u} - \mathfrak{v} - 9)X + 3\mathfrak{u} - \mathfrak{v})}{\mathfrak{v}(4\mathfrak{u} - \mathfrak{v} - 9)(4\mathfrak{v}^{2}X^{3} + \mathfrak{v}^{2}X^{2} + 2\mathfrak{v}X + 1)},$$

$$(15) \quad V_{1} = Y \frac{\mathfrak{v}^{2}X^{3} - \mathfrak{v}X - 2}{\mathfrak{v}^{2}X^{3} + \mathfrak{u}\mathfrak{v}X^{2} + \mathfrak{v}X + 1},$$

$$V_{2} = (27 - \mathfrak{v})^{\frac{3}{2}} Y \frac{\mathfrak{v}^{2}(\mathfrak{v} - 4\mathfrak{u} + 8)X^{3} + \mathfrak{v}(\mathfrak{v} - 4\mathfrak{u})X^{2} - \mathfrak{v}X + 1}{(4\mathfrak{v}^{2}X^{3} + \mathfrak{v}^{2}X^{2} + 2\mathfrak{v}X + 1)^{2}}$$

and the elliptic curves have equations:

(16)
$$\mathcal{E}: V_1^2 = RU_1^3 - (12\mathfrak{u}^2 - 2\mathfrak{u}\mathfrak{v} - 18\mathfrak{v})U_1^2 + (12\mathfrak{u} - \mathfrak{v})U_1 - 4$$
$$\mathcal{E}': V_2^2 = c_3U_2^3 + c_2U_2^2 + c_1U_2 + c_0$$

where

$$c_{0} = -(9\mathfrak{u} - 2\mathfrak{v} - 27)^{3}$$

$$c_{1} = (4\mathfrak{u} - \mathfrak{v} - 9)(729\mathfrak{u}^{2} + 54\mathfrak{u}^{2}\mathfrak{v} - 972\mathfrak{u}\mathfrak{v} - 18\mathfrak{u}\mathfrak{v}^{2} + 189\mathfrak{v}^{2} + 729\mathfrak{v} + \mathfrak{v}^{3})$$

$$c_{2} = -\mathfrak{v}(4\mathfrak{u} - \mathfrak{v} - 9)^{2}(54\mathfrak{u} + \mathfrak{u}\mathfrak{v} - 27\mathfrak{v})$$

$$c_{3} = \mathfrak{v}^{2}(4\mathfrak{u} - \mathfrak{v} - 9)^{3}$$

The mapping $k^2 \setminus \{\Delta = 0\} \to \mathcal{L}_3$ such that

$$(\mathfrak{u},\mathfrak{v}) \to (i_1,i_2,i_3)$$

has degree 2. The invariants of two cubics, called r_1 and r_2 in [9], defined as

$$\chi = 27 \frac{\mathfrak{v}(\mathfrak{v} - 9 - 2\mathfrak{u})^3}{4\mathfrak{v}^2 - 18\mathfrak{u}\mathfrak{v} + 27\mathfrak{v} - \mathfrak{u}^2\mathfrak{v} + 4\mathfrak{u}^3}$$

$$\psi = -1296 \frac{\mathfrak{v}(\mathfrak{v} - 9 - 2\mathfrak{u})^4}{(\mathfrak{v} - 27)(4\mathfrak{v}^2 - 18\mathfrak{u}\mathfrak{v} + 27\mathfrak{v} - \mathfrak{u}^2\mathfrak{v} + 4\mathfrak{u}^3)},$$

uniquely determine the isomorphism class of curves in \mathcal{L}_3 .

4.1. Elliptic subcovers. We express the j-invariants j_i of the elliptic subfields E_i of K, from Eq. (16), in terms of u and v as follows:

(18)
$$j_{1} = 16\mathfrak{v} \frac{(\mathfrak{v}\mathfrak{u}^{2} + 216\mathfrak{u}^{2} - 126\mathfrak{v}\mathfrak{u} - 972\mathfrak{u} + 12\mathfrak{v}^{2} + 405\mathfrak{v})^{3}}{(\mathfrak{v} - 27)^{3}(4\mathfrak{v}^{2} + 27\mathfrak{v} + 4\mathfrak{u}^{3} - 18\mathfrak{v}\mathfrak{u} - \mathfrak{v}\mathfrak{u}^{2})^{2}}$$
$$j_{2} = -256 \frac{(\mathfrak{u}^{2} - 3\mathfrak{v})^{3}}{\mathfrak{v}(4\mathfrak{v}^{2} + 27\mathfrak{v} + 4\mathfrak{u}^{3} - 18\mathfrak{v}\mathfrak{u} - \mathfrak{v}\mathfrak{u}^{2})}$$

where $\mathfrak{v} \neq 0, 27$. Moreover, we can express $s = j_1 + j_2$ and $t = j_1 j_2$ in terms of the χ and ψ invariants as follows:

Lemma 4. The j-invariants of the elliptic subfields satisfy the following quadratic equations over $k(\chi, \psi)$;

$$(19) j^2 - sj + t = 0$$

where

$$s = \frac{1}{16777216\psi^{3}\chi^{8}} \left(1712282664960\psi^{3}\chi^{6} + 1528823808\psi^{4}\chi^{6} + 49941577728\psi^{4}\chi^{5} - 38928384\psi^{5}\chi^{5} - 258048\psi^{6}\chi^{4} + 12386304\psi^{6}\chi^{3} + 901736973729792\psi\chi^{10} + 966131712\psi^{5}\chi^{4} + 16231265527136256\chi^{10} + 480\psi^{8}\chi + 101376\psi^{7}\chi^{2} + 479047767293952\psi\chi^{8} + 7827577896960\psi^{2}\chi^{9} + 2705210921189376\chi^{9} + 21641687369515008\chi^{12} + 32462531054272512\chi^{11} + \psi^{9} + 619683250176\psi^{3}\chi^{7} + 1408964021452800\psi\chi^{9} + 45595641249792\psi^{2}\chi^{8} + 7247757312\psi^{3}\chi^{8} + 37572373905408\psi^{2}\chi^{7}\right)$$

$$t = -\frac{1}{68719476736\chi^{12}\psi^{3}} (84934656\chi^{5} + 1179648\chi^{4}\psi - 5308416\chi^{4} - 442368\chi^{3}\psi - 13824\chi^{2}\psi^{2} - 192\chi\psi^{3} - \psi^{4}\right)^{3}$$

Proof. Substitute j_1 and j_2 as in Eq. (18) in equation Eq. (19).

The computation of the above equation is rather involved; see [9] or [8] for details. Notice that if \mathcal{C} is defined over \mathbb{Q} then $\chi, \psi \in \mathbb{Q}$. The converse is not necessarily true.

In an analogous way with the case n=2 we will study the locus $\phi_N(x,y)=0$ which represents the modular curve $X_0(N)$. For N prime, two elliptic curves E_1 , E_2 are N-isogenous if and only if $\phi_N(j(E_1), j(E_2))=0$. We will consider the case when N=2,3,5, and 7. We will omit part of the formulas since they are big to display.

Proposition 4. Let C be a genus 2 curve with (3,3)-split Jacobian and E_1 , E_2 its elliptic subcovers. There are only finitely many genus 2 curves X defined over \mathbb{Q} such that E_1 is 5-isogenous to E_2 .

Proof. Let $\phi_5(x,y)$ be the modular polynomial of level 5. As in the previous section, we let s=x+y and t=xy. Then, $\phi_5(x,y)$ can be written in terms of s,t. We replace s and t by expressions in Eq. (20). We get a curve in χ , ψ of genus 169. From Faltings theorem there are only finitely many rational points (χ,ψ) . Since, $\mathbb{Q}(\chi,\psi)$ is the field of moduli of \mathcal{C} , then \mathcal{C} can not be defined over \mathbb{Q} if χ,ψ are not in \mathbb{Q} . This completes the proof.

Let us now consider the other cases. If N=2, then the curve $\phi_2(s,t)$ can be expressed in terms of the invariants χ, ψ and computations show that the locus $\phi_2(\chi, \psi)$ becomes

$$g_1(\chi, \psi) \cdot g_2(\chi, \psi) = 0,$$

where $g_1(\chi, \psi) = 0$ is a genus zero component given by

 $\psi^9 + 10820843684757504 \chi^{12} + 16231265527136256 \chi^{11} + 4057816381784064 \chi^{10} \psi$ $+ 2348273369088 \chi^8 \psi^3 + 8115632763568128 \chi^{10} + 253613523861504 \chi^9 \psi$ $- 1834588569600 \chi^7 \psi^3 - 45864714240 \chi^6 \psi^4 - 525533184 \chi^5 \psi^5 - 2322432 \chi^4 \psi^6$ $+ 1352605460594688 \chi^9 + 253613523861504 \chi^8 \psi + 21134460321792 \chi^7 \psi^2$ $+ 32105299968 \chi^5 \psi^4 + 668860416 \chi^4 \psi^5 + 9289728 \chi^3 \psi^6 + 82944 \chi^2 \psi^7 + 432 \chi \psi^8$ $+ 190210142896128 \chi^9 \psi^2 - 26418075402240 \chi^8 \psi^2 + 1027369598976 \chi^6 \psi^3 = 0.$

while the other component has genus g = 29. To conclude about the number of 2-isogenies between E_1 and E_2 we have to check for rational points in the conic $g_1(\chi, \psi) = 0$.

The computations for the case N=3 shows similar results. The locus $\phi_3(\chi,\psi)$ becomes

$$g_1(\chi, \psi) \cdot g_2(\chi, \psi) = 0,$$

where $g_1(\chi, \psi) = 0$ is a genus zero component and $g_2(\chi, \psi) = 0$ is a curve with singularities.

Also the case N=7 show that the curve $\phi_7(\chi,\psi)$ becomes

$$q_1(\chi, \psi) \cdot q_2(\chi, \psi) = 0,$$

where $g_1(\chi, \psi) = 0$ is a genus zero component and $g_2(\chi, \psi) = 0$ is a genus one curve. Summarizing we have the following remark.

Remark 1. Let C be a genus 2 curve with (3,3)-split Jacobian and E_1 , E_2 its elliptic subcovers. There are possibly infinite families of genus 2 curves X defined over \mathbb{Q} such that E_1 is 5-isogenous to E_2 , when N=2,3,7.

As a final remark we would like to mention that we can perform similar computations for n=5 by using the equation of \mathcal{L}_5 as computed in [6]. One can possibly even investigate cases for n>5 by using results of [4]. However, the computations will be much more complicated.

References

- Lubjana Beshaj, Singular locus on the space of genus 2 curves with decomposable Jacobians, Albanian J. Math. 4 (2010), no. 4, 147–160. MR2755393
- [2] L. Beshaj, Minimal weierstrass equations for genus 2 curves (2016), available at 1612.08318.
- [3] Everett W. Howe, Franck Leprévost, and Bjorn Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math. 12 (2000), no. 3, 315–364. MR1748483
- [4] Abhinav Kumar, Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields, Res. Math. Sci. 2 (2015), Art. 24, 46. MR3427148
- [5] A. Malmendier and T. Shaska, A universal genus-two curve from Siegel modular forms (201607), available at 1607.08294.
- [6] K. Magaard, T. Shaska, and H. Völklein, Genus 2 curves that admit a degree 5 map to an elliptic curve, Forum Math. 21 (2009), no. 3, 547–566. MR2526800
- [7] Tony Shaska, Genus 2 curves with (3,3)-split Jacobian and large automorphism group, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 205–218. MR2041085
- [8] ______, Genus two curves with many elliptic subcovers, Comm. Algebra 44 (2016), no. 10, 4450-4466, DOI 10.1080/00927872.2015.1027365. MR3508311
- [9] T. Shaska, Genus 2 fields with degree 3 elliptic subfields, Forum Math. 16 (2004), no. 2, 263-280. MR2039100

- [10] ______, Genus two curves covering elliptic curves: a computational approach, Computational aspects of algebraic curves, 2005, pp. 206–231. MR2182041
- [11] T. Shaska and H. Völklein, Elliptic subfields and automorphisms of genus 2 function fields, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), 2004, pp. 703–723. MR2037120
- [12] T. Shaska, Curves of genus 2 with (n,n)-decomposable Jacobians, J. Symbolic Comput. 31 (2001), no. 5, 603–617. MR1828706
- [13] Tetsuji Shioda, Genus two curves over $\mathbf{Q}(t)$ with high rank, Comment. Math. Univ. St. Paul. **46** (1997), no. 1, 15–21. MR1448471
- [14] Katsuyuki Takashima, Efficient algorithms for isogeny sequences and their cryptographic applications, Mathematical modelling for next-generation cryptography, 2018, pp. 97–114.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNITED STATES MILITARY ACADEMY AT WEST POINT, WEST POINT, NY, 10996.

 $E ext{-}mail\ address: Lubjana.Beshaj@usma.edu}$

Department of Mathematics and Statistics, American University, 4400 Mass. Ave., NW, Washington DC, 20016.

E-mail address: aelezi@american.edu

Department of Mathematics, Oakland University, Rochester, MI, 48309-4485.

 $E ext{-}mail\ address: shaska@oakland.edu}$