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Abstract

Background: Fulfilling the vision of Semantic Web requires an accurate data model for organizing knowledge and
sharing common understanding of the domain. Fitting this description, ontologies are the cornerstones of Semantic
Web and can be used to solve many problems of clinical information and biomedical engineering, such as word sense
disambiguation, semantic similarity, question answering, ontology alignment, etc. Manual construction of ontology is
labor intensive and requires domain experts and ontology engineers. To downsize the labor-intensive nature of
ontology generation and minimize the need for domain experts, we present a novel automated ontology generation
framework, Linked Open Data approach for Automatic Biomedical Ontology Generation (LOD-ABOG), which is
empowered by Linked Open Data (LOD). LOD-ABOG performs concept extraction using knowledge base mainly
UMLS and LOD, along with Natural Language Processing (NLP) operations; and applies relation extraction using
LOD, Breadth first Search (BSF) graph method, and Freepal repository patterns.

Results: Our evaluation shows improved results in most of the tasks of ontology generation compared to those
obtained by existing frameworks. We evaluated the performance of individual tasks (modules) of proposed framework
using CDR and SemMedDB datasets. For concept extraction, evaluation shows an average F-measure of 58.12% for
CDR corpus and 81.68% for SemMedDB; F-measure of 65.26% and 77.44% for biomedical taxonomic relation extraction
using datasets of CDR and SemMedDB, respectively; and F-measure of 52.78% and 58.12% for biomedical
non-taxonomic relation extraction using CDR corpus and SemMedDB, respectively. Additionally, the comparison with
manually constructed baseline Alzheimer ontology shows F-measure of 72.48% in terms of concepts detection, 76.27%
in relation extraction, and 83.28% in property extraction. Also, we compared our proposed framework with ontology-
learning framework called “OntoGain” which shows that LOD-ABOG performs 14.76% better in terms of relation extraction.

Conclusion: This paper has presented LOD-ABOG framework which shows that current LOD sources and technologies are a
promising solution to automate the process of biomedical ontology generation and extract relations to a greater extent. In
addition, unlike existing frameworks which require domain experts in ontology development process, the
proposed approach requires involvement of them only for improvement purpose at the end of ontology life cycle.

Keywords: Semantic web, Ontology generation, Linked open data, Semantic enrichment

Background

In the era of Big Data and the immense volume of infor-
mation and data available today on the web, there is an
urgent need to revolutionize the way we model,
organize, and refine that data. One way of modeling data
is designing ontologies and using them to maximize the
benefit of accessing and extracting valuable implicit and
explicit knowledge from structured and unstructured
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data. Ontology is a vital piece in transforming the Web
of documents to the Web of data [1]. The basic principle
of ontology is representing data or facts in formal format
using one of the primary ontology languages, namely,
Resource Description Framework (RDF) [2], Resource
Description Framework Schema (RDFs) [3], Web Ontol-
ogy Language (OWL) [4], or Simple Knowledge
Organization System (SKOS) [5].

Over the past decade, ontology generation has become
one of the most revolutionary developments in many fields
and the field of Bioinformatics. There are various ap-
proaches to create ontologies. These approaches include:
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rule-based & syntax analysis [6—11], syntactic patterns [12—
16], dictionary-based [17] machine learning [18-24], and
knowledge-based [25-27]. The rule-based approach in-
volves a manually crafted set of rules formed to represent
knowledge that decide what to do or conclude across vari-
ous scenarios. Typically, it achieves a very high level of pre-
cision, but quite low recall. This approach is labor intensive,
works for one specific domain, and is less scalable [10, 11].
On the other hand, syntactic pattern-based approach is
well-studied in ontology engineering and has already been
proven to be effective in ontology generation from unstruc-
tured text [12, 13]. Unlike the rule-based approach, this ap-
proach comprises a large number of crafted syntactic
patterns. Therefore, it has high recall and low precision
[14]. The crafted patterns are most likely broad and domain
dependent. One of the most well-known lexico-syntactic
pattern frameworks is Text20nto [15]. Text2Onto com-
bines machine learning approaches with basic linguistic ap-
proaches such as tokenization and part-of-speech (POS)
tagging [16]. This approach suffers from inaccuracy and do-
main dependency. Naresh et al. [17] proposed a framework
to build ontology from text that uses predefined dictionary.
The drawbacks of their approach include labor cost to con-
struct and maintenance of comprehensive dictionary. Fi-
nally, the resultant generated ontology was even manually
created. Machine learning-based approaches use various su-
pervised and unsupervised methods for automating ontol-
ogy generation tasks. Studies in [18-22] present their
proposed approaches for ontology generation based on su-
pervised learning methods. In [18] Bundschus et al. focus
on extracting relations among diseases, treatment, and
genes using conditional random fields, while, in [19] For-
tuna et al. use SVM active supervised learning method to
extract domain concepts and instances. Cimiano et al. [20]
investigate a supervised approach based on Formal Concept
Analysis method combined with natural language process-
ing to extract taxonomic relations from various data
sources. Poesio et al. [21] proposed a supervised learning
approach based on the kernel method that exploits exclu-
sively shallow linguistic information. Huang et al. [22] pro-
posed a supervised approach that uses predefine syntactic
patterns and machine learning to detect relations between
two entities from Wikipedia Texts. The primary drawback
of these supervised machine learning based approaches is
that they require huge volumes of training data, and manual
labeling which is often time consuming, costly, and labor in-
tensive. Therefore, few unsupervised approaches in [23, 24]
were proposed: in [23] Legaz-Garcia et al. use agglomerative
clustering to construct concept hierarchies and generate
formal specification output that complies with an OWL for-
mat by using ontology alignment while Missikoff et al. [24]
proposed an unsupervised approach that combines a lin-
guistic and statistics-based method to perform automated
ontology generation tasks from texts.
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Recently, some approaches that use knowledge-base to
automate ontology construction have been proposed. For
example, Harris et al. [24] use natural language processing
and knowledge base, to construct ontological knowledge
structure from raw text. The proposed approach uses a pre-
defined dictionary of concepts to extract ‘disorder type’ con-
cepts of ontological knowledge such as UMLS that might
occur in the text. In addition, to extract the hierarchy rela-
tions, they use syntactic patterns to facilitate the extraction
process. The drawbacks of their approach include labor cost
to construct dictionary, domain specific, limited number of
patterns. Another attempt using knowledge base approach
was made by Cahyani et al. [25] to build domain ontology
of Alzheimer using controlled vocabulary, and linked data
patterns along with Alzheimer text corpus as an input. This
study uses Text2Onto tools to identify concepts and rela-
tions and filters them using dictionary-based method. Fur-
thermore, this work uses linked data patterns mapping to
recognize the final concepts and relations candidates. This
approach presents a few fundamental limitations: disease
specific, requires predefine dictionary related to the domain
of interest, and does not consider the semantic meaning of
terms during concepts and relations extraction. Also,
Qawasmeh et al. [27] proposed a semi-automated boot-
strapping approach that involves manual text preprocessing
and concept extraction along with usage of LOD to extract
the relations, and instances of classes. The drawbacks of
their approach include need of domain experts and involve-
ment of significant manual labor during development
process. Table 1 shows a comparison of proposed approach
with existing knowledge-based approaches.

Despite the ongoing efforts and many researches in the
field of ontology building, many challenges still exist in the
automation process of ontology generation from unstruc-
tured data [28, 29]. Such challenges include concepts dis-
covery, taxonomic relationships extraction (that define a
concept hierarchy), and non-taxonomic relationships. In
general, ontologies are created manually and require avail-
ability of domain experts and ontology engineers familiar
with the theory and practice of ontology construction.
Once the ontology has been constructed, evolving know-
ledge and application requirements demand continuous
maintenance efforts [30]. In addition, the dramatic increase
in the volume of data over the last decade has made it vir-
tually impossible to transform all existing data manually
into knowledge under reasonable time constraints [31]. In
this paper, we propose an automated framework called
“Linked Open Data-Based Framework for Automatic Bio-
medical Ontology Generation” (LOD-ABOG) that resolves
each of the aforementioned challenges at once; to over-
come the high cost of the manual construction of a do-
main-specific ontology, transform large volume of data,
achieve domain independency, and achieve high degree of
domain coverage.
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Table 1 A comparison of LOD-ABOG with existing knowledge base approaches
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Modules Approaches
Harris et al. (2015) Cahyani et al. (2017) Qawasmeh et al. (2018) Proposed Approach
(LOD-ABOG)
Text processing
Methods NLP NLP Manual NLP
Concept Extraction
Methods Dictionary lookup, Dictionary lookup Manual UMLS Mapping, LOD
Statistical information
Evaluation Accuracy 60% (domain independence), Accuracy 72% (represent Not available recall 81.13%, precision
90% domain specific concepts and relations) 45.29%, F-measure 58.12%
Relation Extraction
Methods Syntactic Patterns Syntactic Patterns LOD Rule based, Syntactic
Patterns, Semantic
Enrichment, LOD, BSF
Evaluation Accuracy 31-67% Accuracy 72% (represent Accuracy in range Recall 63.82%, Precision

concepts and relations)

Type of extracted
data

List of concepts,
relations between them,
and synonyms

List of concepts, and relations
between them

(15-50%) 66.77%, F-measure 65.26%

List of classes, relations OWL Ontology
between them,

and instances of these class

The proposed framework performs a hybrid approach
using knowledge-base (UMLS) [32] and LOD [33] (Linked
life Data [34, 35] BioPortal [36]), to accurately identify bio-
medical concepts; applies semantic enrichment in simple
and concise way to enrich concepts by using LOD; uses
Breadth-First search (BFS) [37] algorithm to navigate LOD
repository and create high precise taxonomy and generates
a well-defined ontology that fulfills W3C semantic web
standards. In addition, the proposed framework was de-
signed and implemented specifically for biomedical do-
mains because it is built around the biomedical
knowledge-bases (UMLS and LOD). Also, the concept de-
tection module wuses biomedical specific knowledge
base-Unified Medical Language System (UMLS) for con-
cept detection. However, it is possible to extend it for
non-biomedical domain. Therefore, we will consider adding
support for non-medical domain in future works.

This paper answers the following research questions.
Whether LOD is sufficient to extract concepts, and rela-
tions between concepts from biomedical literature (e.g.
Medline/PubMed)? What is the impact of using LOD along
with traditional techniques like UMLS-based and Stanford
API for concept extraction? Although, LOD could help to
extract hierarchical relations, how can we affectively build
non-hierarchical relations for resultant ontology? What is
performance of proposed framework in terms of precision,
recall and F-measure compared to one generated by auto-
mated OntoGain framework, and manually built ontology?

Our main contributions compared to existing
knowledge-based approaches are as follows:

1. To address the weakness, and to improve the
quality of the current automated and semi-automated

approaches, our proposed framework integrates
natural language processing and semantic enrichment
to accurately detect concepts; uses semantic
relatedness for concept disambiguation, applies
graph search algorithm for triples mining, and
employs semantic enrichment to detect relations
between concepts. Another novel aspect of
proposed framework is usage of Freepal: a large
collection of patterns for relation extraction along
with pattern matching algorithm, to enhance the
extraction accuracy of non-taxonomical relations.
Moreover, proposed framework has capability to
perform large-scale knowledge extraction from
biomedical scientific literature, by using proposed
NLP and knowledge-based approaches.

2. Unlike existing approaches [23-26] that generate
collection of concepts, properties, and the relations,
the proposed framework generates well-defined for-
mal ontology that has inference capability to create
new knowledge from existing one.

Methods

Our methodology for automated ontology generation
from biomedical literatures is graphically depicted in
Fig. 1. A concise description of all LOD-ABOG modules
is given in Table 2.

NLP module

NLP module aims to analyze, interpret and manipulate hu-
man language for the purpose of achieving human-like lan-
guage processing. The input of NLP module is
unstructured biomedical literature taken from MEDLINE/
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PubMed [38] resources. The NLP module of LOD-ABOG
framework uses Stanford NLP APIs [39] to work out the
grammatical structure of sentences and perform tokeniza-
tion, segmentation, stemming, stop words removal, and
part-of-speech tagging (POS). Algorithm 1 -Text processing
shows the pseudo code of NLP module. Segmentation is
the task of recognizing the boundaries of sentences (line 3),
whereas part-of-speech tagging is the process of assigning
unambiguous lexical categories to each word (line 4). Toke-
nization is the process that splits the artifacts into tokens
(line 5) while stemming [40] is the process of converting or
removing inflected form to a common word form (line 6).
For example, jumped’ and jumps’ are changed to root term
jump’. Stop words removal is the process of removing the
most common words such as “a” and “the” (line 6).

Algorithm 1: Text Processing
. Input: corpus D

. Output: tokens, stemming, sentences, taggedPartOfSpeech

. sentences = Preform segmentation in {D}

1
2.
3
4. taggedPartOfSpeech = perform part of speech tagging for each sentence in sentences
5. tokens = For each token in sentence

6

. For each token in sentence preform stemming if token is not in StopWords (‘a’,’the’...)
End

Entity discovery module

Entity Discovery module is one of the main building
blocks of our proposed framework. The main tasks of
the entity discovery module are identifying the biomed-
ical concepts within free text, applying n-gram, and per-
forming concepts disambiguation. Identifying biomedical

concepts is a challenging task that we overcome by map-
ping every entity or compound entities to UMLS con-
cepts and LOD classes. Algorithm 2 entity detection
shows the pseudo code for entity discovery module. To
implement the mapping between entities and UMLS
concept ID, we use MetaMap API [41] that presents a
knowledge intensive approach based on computational
linguistic techniques (lines 3-5). To perform the map-
ping between entities and LOD classes, algorithm 2 per-
forms three steps; a) it excludes stop words and verbs
from the sentence (line 6), b) it identifies multi-words
entities (e.g. diabetes mellitus, intracranial aneurysm)
using n-gram [42] method with a window size in range

Table 2 The main modules of LOD-ABOG
Module Name
NLP

Functionality

Performs the linguistic analysis tasks such as
tokenization, segmentation, Part-of-Speech (POS)
[62], etc. that is required as input by subsequent
modules.

Entity Discovery Identifies biomedical concepts from free-form text

by UMLS and LOD authentication

Semantic Entity |dentifies biomedical concepts from free-form text

Enrichment using UMLS and LOD
RDF Triple Extracts well-defined information and URIs, as well
Extraction as taxonomic relations to enrich discovered

concepts using LOD.

Syntactic Patterns  Extracts non-taxonomic relations by identifying
triples within a sentence that match predefined

patterns of words against the input

Ontology Factory ~ Generates the ontology with respect to RDF, RDFS,

OWL and SKOS schemas.
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of unigram and eight-grams (line 7), c) After that it
queries LOD using owl:class, and skos:concept predi-
cates (lines 9-13) to identify concepts . For example, al-
gorithm 2 considers Antiandrogenic as a concept, if
there is a triple in the LOD such as the triple “bio: Anti-
androgenic rdf:itype owl:Class” or “bio: Antiandrogenic
rdf:type skos:Concept”, where bio: is the namespace of
the relevant ontology. Our detailed analysis shows that
using UMLS and LOD (LLD or BioPortal) as a hybrid
solution increases the precision and recall of entity dis-
covery. However, using LOD to discover concepts has a
co-reference [43] problem that occurs when a single URI
identifies more than one resource. For example, many
URIs in LOD are used for identifying a single author
where, in fact, there are many people with the same
name. In biomedical domain ‘common cold’ concept can
be related to weather or disease. Therefore, we apply
concept disambiguation for identifying the correct re-
source by using adaptive Lesk algorithm [44] for seman-
tic relatedness between concepts (lines 15-17). Basically,
we use the definition of the concept to measure the
overlap with other discovered concepts definitions
within the text, then we select the concepts that meet
the threshold and have high overlap.

Algorithm 2: Entity Detection

1. Input: tokens, stemming, sentences, POST, threshold
2. Output: concepts

3. For each sentence in sentences

4. concepts = invoke Metamap in sentence

5. End

6. tokens = remove verbs & stop words from tokens

7. entities = n-gram(tokens) // getting entities using n-gram method
8. // concept discovery using LOD

9. For each entity in entities

10.  If Query_LOD (entity,rdf:type,owl:class|skos:concept)

11. concepts = entity
12.  End
13. End

14. // concept resource disambiguation

15. For each concept in concepts

16.  Concepts = = perform concept disambiguation using adaptive Lesk algorithm
17. End

Semantic entity enrichment module

For the purpose of improving semantic interoperability
in ontology generation, the semantic enrichment mod-
ule aims to automatically enrich concepts (and impli-
citly the related resources) with formal semantics by
associating them to relevant concepts defined in LOD.
Semantic Entity Enrichment module reads all discov-
ered concepts by entity discovery module and enriches
each of them with additional, well-defined information
which can be processed by machines. An example of
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semantic entity enrichment output is given in Fig. 2,
and algorithm 3 shows pseudo code for Semantic Entity
Enrichment Module.

Algorithm 3: Semantic Enrichment

1. Input : Concept, A

2. Output: Enriches // data structure to hold the output
3. Begin

4. MaxLevel = L

5. Enriches. Add(Concept)
6. For all label,altLabel,prefLabel in LOD

7 stmt = LOD.triple

8 IF(stmt.label.literal|[stmt. altLabel.literal exactMatch(Concept))

9. Enrichs.Syn. Add(stmt.Subj,rdfs:label|skos:altlabel,stmt.literal||stmt.altLabel)

10.  Else IF(stmt.prefLabel.literal exactMatch(Concept))

11.  Enrichs.Pref.Add(stmt.Subj,skos:prefLabel,preflabel.literal)

12. End

13.  IF (definition|[note of stmt.Subj in LOD exist)

14.  Enrichs.Def.Add(stmt.Subj,skos:definition||skos:note,definition|[note)

15. End

16. Enriches.Ontologys.Add(parsing(stmt.Subj.URI)) // extract the scheme

17. Enriches.SType.Add(getSemanticType(stmt.Subj)) // retrieving the semantic type
18. Enriches.Taxonomic.Add(BFS(stmt.Subj.URI, visit only the nodes with edges {
skos:broader or owl:subclass or skos: narrower}, MaxLevel )) // retrieving the hierarchy
19. End // end for loop

20. End

The proposed enrichment process is summarized as
follows:

1. Algorithm 3 takes a concept extracted using
algorithm 2 and A (maximum level of ancestors in
graph) as input (line 1)
2. For each triple in LOD with predicate (label, altlabel,
preflabel) (lines 6-19).
2.1.Apply exact matching (input concept, value of
the predicate) (lines 8—12)
2.1.1. extract the triple as ‘altlabel or/and
preflabel ’

2.2.Retrieve the definition of the concept from LOD
by querying skos:definition and skos:note for the
preferable resource (lines 13—15)

2.3.Identify the concept schema that the concept
has been defined in by analyzing URIs (line 16).

2.4.Acquire the semantic type of a concept by
mapping it to UMLS semantic type. Since a
concept might map to more than one semantic
type, we consider all of them (line 17).

2.5.Acquire the hierarchy of a concept which is a
challenging task. In our proposed framework,
we use a graph algorithm since we consider
LOD as a large directed graph. Breadth-First
Search is used to traverse the nodes that have
skos:broader or owl:subclass or skos: narrower
edge. This implementation allows multi-level
hierarchy to be controlled by input A (line 18).

RDF triple extraction module

The main goal of RDF Triple Extraction module is to
identify the well-defined triple in LOD that represents a
relation between two concepts within the input biomed-
ical text. Our proposed approach provides a unique
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Concepts
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Fig. 2 An example of semantic entity enrichment output
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bowel][A0422679,ILEUS][A18607618,bowel obstruction causing colic, vomiting, and

[http://linkedlifedata.com/resource/diseaseontology/id/DOID:8440 , ileus]

NCI: A disorder characterized by failure of the ileum to transport intestinal contents

[Biologic Function, Pathologic Function, Disease or Syndrome, Event, Phenomenon or

Synonyms [A11987478,lleus] [A18589052,bowel ileus] [A8365612,lleus of
constipation]

PrefLabel

Definition

Ontology umls, diseaseontology

Category
Process, Natural Phenomenon or Process]

Hierarchy

lleus->intestinal obstruction->intestinal disease->gastrointestinal system disease->disease

J

solution using graph method for RDF triples mining,
measures the relatedness of existing triples in LOD, as
well as generates triple candidates. Algorithm 4 shows
the pseudo code for RDF Triple Extraction.

In our proposed Algorithm 4 Triple Extraction, the
depth of BreadthFirstSearch graph call is configurable
and provides scalability and efficiency at the same time.
We set the depth to optimal value 5 in line 4 for best re-
sults and performance. Line 5 retrieves all triples that
describe the source input concept using BreadthFirst-
Search algorithm. Algorithm 4 only considers the triples
that represent two different concepts. The code in lines
7-18 measures the relatedness by matching labels, syno-
nyms, overlapping definitions, and overlapping hier-
archy. To enhance the triple extraction as much as
possible, we set the matching threshold to 70%
(Algorithm 4 lines 13, 15, & 17) to remove the noise
of triples in our evaluation. More details on the depth
and threshold values are provided in the Discussion
section later.

In addition, the module has a subtask that semantic-
ally ranks URIs for a given concept by using our
algorithm URI_Ranking. The URIs are retrieved from
LOD by either the label or altlabel of a resource match.
For example, the resource http://linkedlifedata.com/re-
source/diseaseontology/id/DOID:8440 diseaseontology/
id/DOID:8440 is retrieved for the given concept “ileus”.
One of the main challenges of retrieving URIs is when
one concept can be represented by multiple URIs. For
example, concept “ileus” can be represented by more
than one as illustrated in Table 3.

To resolve this issue, we present algorithm URI_Rank-
ing for ranking the URIs of each concept based on their
semantic relatedness. More precisely, for a given concept,
the goal is to generate a URI ranking, whereby each URI is
assigned a positive real value, from which an ordinal rank-
ing can be used if desired. In a simple form, our algorithm
URI_Ranking assigns a numerical weighting to each URI
where it first builds for each, a feature vector that contains
UMLS semantic type and group type [45-47]. Then it
measures the average cosine relatedness between the vec-
tors of every two of those URIs that are relevant to the
same concept as written below in algorithm 5. Finally, it
sorts them based on their numerical weighting.

Syntactic patterns module

In our proposed approach, Syntactic Patterns module per-
forms pattern recognition to find a relation between two
concepts within a free text which is graphically depicted
in Fig. 3. The pattern repository is built by extracting all
biomedical patterns with their observer relation from

Table 3 URIs that represent concept “lleus”
URIN= http://linkedlifedata.com/resource/umls/id/C1258215

URI2= http://linkedlifedata.com/resource/pubmed/mesh/lleus

URI3= http://linkedlifedata.com/resource/phenotype/id/HP:0002595
URI4= http://linkedlifedata.com/resource/rxnorm/id/1026920

URI5= http://linkedlifedata.com/resource/diseaseontology/id/DOID:8440
URI6= http://linkedlifedata.com/resource/umls/id/C0030446

URI7= http://linkedlifedata.com/resource/diseaseontology/id/DOID:8442
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Freepal [48]. After that we ask an expert to map the ob-
tained patterns with their observer relations to
health-lifesci vocabulary [49]. In Table 4 we present a sam-
ple of patterns and their corresponding observed relations
and mapping predicates. In the next stage, we develop an
algorithm that reads a sentence, loops through all pat-
terns, applies parsing, and then transforms the matched
pattern into a triple candidate. This algorithm takes ad-
vantage of semantic enrichment information. For example,
if the pattern does not match any discovered concepts
within the sentence then the concept synonym is used.
This leads to an increase in the recall result. It is import-
ant to point out that the algorithm is not case sensitive.

Ontology factory
This module plays a central role in our proposed frame-
work where it automates the process of encoding the
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semantic enrichment information and triples candidates
to ontology using an ontology language such as RDF,
RDFS, OWL, and SKOS. We selected W3C specifica-
tions ontologies over the Open Biomedical Ontologies
(OBO) format because they provide well-defined stan-
dards for semantic web that expedite ontology develop-
ment and maintenance. Furthermore, they support the
inference of complex properties based on rule-based en-
gines. An example of ontology generated by our pro-
posed framework is given in Fig. 4.

In the context of ontology factory, two inputs are
needed to generate classes, properties, is-a relations, and
association relations. These two inputs are: 1) concepts
semantic enrichment from semantic enrichment module
and 2) triple candidates from RDF triple extraction and
syntactic patterns modules. There are many relations
that can be generated using semantic enrichment infor-
mation. Initially, domain-specific root classes are defined
by simply declaring a named class using the obtained
concepts. A class identifier (a URI reference) is defined
for each obtained class using the top ranked URI that
represents the concept. After defining the class of each
obtained concept, the other semantic relations are de-
fined. For example, the concepts can have super-concept
and sub-concepts, providing property rdfs:subClassof
that can be defined using the obtained hierarchy rela-
tions. In addition, if the concepts have synonyms then
they are given an equivalence defined axiom, “preflabel”
property is given for obtained preferable concept and
“inscheme” property is given for obtained scheme. Few
examples of generated relations from LOD-ABOG are
given in Table 5.

Evaluation

Our proposed approach offers a novel, simple, and concise
framework that is driven by LOD. We have used three dif-
ferent ontology evolution approaches [50] to evaluate our
automated ontology generation framework. First, we de-
velop and experimentally apply our automated biomedical
ontology generation algorithms to evaluate our framework
based on Task-based Evaluation [51, 52] using CDR cor-
pus [53] and SemMedDB [54]. Second, we have done

Table 4 Patterns and their corresponding observed relations and mapping predicates

Pattern Observed Relations in Freepal Predicates in lifesci
[X] causes by [Y] ns:medicine.disease.causes http://schema.org/causeOf
[X] disability [Y] ns:medicine.symptom.symptom_of http://schema.org/signOrSymptom

[X] treatment of [Y] treatrel.used_to_treat
[X] drug treatment [Y]
[X] cancer [Y]

example of [X] include [Y]

treatrel.used_to_treat

ns:medicine.risk_factor.diseases

s:medicine.drug_class.drugs

http://schema.org/possibleTreatment
http://schema.org/possibleTreatment
http://schema.org/diagnosis
http://schema.org/drug



http://schema.org/causeOf
http://schema.org/signOrSymptom
http://schema.org/possibleTreatment
http://schema.org/possibleTreatment
http://schema.org/diagnosis
http://schema.org/drug
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<rdf:RDF

<skos:aTltLabel>bacterium</skos:altLabel>
<rdf:type>Concept@en</rdf: type>

also called Eubacteria. </skos:definition>
<rdf:type>Entity</rdf: type>
<rdfs:1abel>Bacteria</rdfs:Tabel>
<skos:altLabel>bacteria.</skos:altLabel>
<rdf:type>UMLS Concept</rdf:type>
<skos:altLabel>eubacteria</skos:altLabel>

<skos:inScheme>umls</skos:inScheme>
<rdf:type>Idea or Concept</rdf:type>
<rdf:type>Conceptual Entity</rdf:type>
<rdf:type>Functional Concept</rdf:type>
<rdf:type>Bacterium</rdf: type>

<rdf:type>Physical Object</rdf:type>

<skos:altLabel>bacteria</skos:altLabel>

<rdf:type>0Organism</rdf: type>

<skos:PrefLabel>Bacteria</skos:PreflLabel>
</owl:Class>

xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:skos="http://www.w3.0rg/2004/02/skos/core#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">
<owl:Class rdf:about="http://Tinkedlifedata.com/resource/umls/id/C0004611">
<skos:broader rdf:resource="http://1linkedlifedata.com/resource/umls/id/c0004611"/>

<skos:definition>MSH: One of the three domains of 1ife (the others being Eukarya and ARCHAEA),

<skos:narrower rdf:resource="http://linkedlifedata.com/resource/umls/id/C0004611"/>

<skos:PreflLabel rdf:resource="http://1inkedlifedata.com/resource/umls/id/C0004611"/>

Fig. 4 A simplified partial example of ontology generated by LOD-ABOG

baseline ontology-based evaluation using Alzheimer’s dis-
ease ontology [55] as gold standard. Third, we compared
our proposed framework with one of the state of the art
ontology-learning frameworks called “OntoGain”. We use
Apache Jena framework [56] which is a development en-
vironment that provides a rich set of interactive tools and
we conduct experiments by using 4-core Intel(R)
Core(TM) i7-4810MQ CPU @ 2.80 GHz and 64 bits Java
JVM. Furthermore, during our evaluation, we found an
entity can consist of a single concept word or a
multi-word concept. Therefore, we considered only the
long concept match and ignored the short concept to in-
crease the precision. In addition, we found a limitation
where all entities cannot be mapped to UMLS concept ID
due to the large volume of entities and abbreviations in
biomedical literature and its dynamic nature given that
new entities are discovered every day. For example, the
entity “Antiandrogenic” has no concept ID in UMLS. To
resolve it we considered LOD-based technique. Also, we
applied different window sizes ranging from 1 to 8 as

Table 5 LOD-ABOG Ontology Relations

Semantic Enrichment/Triple

Ontology Relation

Candidate

Concept owl:class

Synonym owl:equivalentClass,
skos:altLabel

Preflabel skos:preflabel

Is-a rdfs:subClassOf

Concept scheme resource skos:inScheme

High ranked URI rdf.ID
Most high ranked URIs owl:sameAs
Semantic type rdf:type

Definition skos:definition

input for n-gram method. However, we found that win-
dow size equal to 4 was optimal as the other values de-
crease the entity detection module performance, recall
yielded a very low value, and an average precision when
window size was less than 4. On the other hand, recall in-
creased when window size was greater than 4 but preci-
sion was very low.

The dataset

For task base evaluation, first we employ CDR Corpus
[53] titles as input and as gold standard for entity
discovery evaluation: the annotated CDR corpus con-
tains 1500 PubMed titles of chemicals, diseases, and
chemical-induced disease relationships where Medical
Subject Headings 2017 (Mesh Synonym) [57] has
been used as gold standard for synonym extraction
evaluation. Furthermore, we manually build gold
standard for broader hierarchy relation for all discov-
ered concepts from CDR using Disease Ontology
(DO) [58] and Chemical Entities of Biological Interest
(ChEBI) [59]. On the other hand, we use relations be-
tween DISEASE/TREATMENT entities data set as the
gold standard for non-hierarchy relation discovery
evaluation [60].

Next, for task base evaluation, we downloaded Seman-
tic MEDLINE Database (SemMedDB) ver 31, December
2017, release [54], which is a repository of biomedical
semantic predications that extracted from MEDLINE ab-
stracts by the NLP program SemRep [61]. We con-
structed benchmark dataset from SemMedDB. The
dataset consists of 50,000 sentences that represent all re-
lation types that exist in SemMedDB. Furthermore, we
extracted all semantic predications and entities for each
sentence from SemMedDB and used them as benchmark
for relation extraction and concept extraction evaluation,
respectively.
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For baseline ontology evaluation, we selected 40,000
titles that relevant to the “Alzheimer” domain from
MEDLINE citations published between Jan-2017 to
April-2018. Furthermore, we have extracted a subgraph
of Alzheimer’s disease Ontology. The process of
extracting subgraph out of the Alzheimer’s Disease
Ontology was done using following steps: a) we down-
loaded the complete Alzheimer’s Disease Ontology
from Bioportal as an OWL file, b) uploaded the OWL
file as model graph using Jena APIs, c) retrieved the
concepts that match to the entity “Alzheimer”, d)
retrieved properties (synonyms), and relations for the
extracted concepts in step c. This resultant subgraph
contained 500 concepts, 1420 relations, and 500 prop-
erties (synonyms).

Results

To evaluate our proposed entity-discovery ability to
classify concepts mentioned in context, we annotate the
CDR corpus titles of chemicals and diseases. In this
evaluation, we use precision, recall, and F-measure as
evaluation parameters. Precision is the ratio of the
number of true positive concepts annotated over the
total number of concepts annotated as in Eq. (1),
whereas, recall is the ratio of the number of true
positive concepts annotated over the total number of
true positive concepts in gold standard set as in Eq. (2).
F-measure is the harmonic mean of precision and recall
as in Eq. (3). Table 6 compares the precision, recall,
and F-measure of MetaMap, LOD, and the hybrid
method.

The evaluation results of hierarchy extraction was
measured using recall as in Eq. (4), precision as in Eq.
(5), and F-measure as in Eq. (3). In addition, the evalu-
ation result of non-hierarchy extraction was measured
using recall as in Eq. (6), precision as in Eq. (7), and
F-measure again as Eq. (3). Table 7 compares the preci-
sion, recall, and F-measure of hierarchy extraction,
while Table 8 compares the precision, recall, and
F-measure of non-hierarchy extraction. The results of
the main ontology generation tasks are graphically
depicted in Fig. 5. Nevertheless, we assessed our pro-
posed framework with one of the state of the art ontol-
ogy acquisition tools: namely, OntoGain. We selected

Table 6 Comparison of different methods for concepts

discovery
Method Concepts Discovery
Recall % Precision % F-Measure %
UMLS 63.12 22.53 33.20
LOD 77.01 2336 35.84
UMLS + LOD 81.13 45.29 58.12
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Table 7 Evaluation of hierarchy extraction results

Hierarchical Relation Extraction

Recall %  Precision %  F-Measure %
Disease Concepts 7744 80.11 78.75
Chemical Concepts 50.20 5343 51.76
Disease + Chemical Concepts ~ 63.82 66.77 65.26

OntoGain tools because it is one of the latest tools, that
has been evaluated using the medical domain and the
output result is in OWL. Figures 6 and 7 depict the
comparison between our proposed framework and
OntoGain tools using recall and precision measure-
ment. These figures provide an indication of the effect-
iveness of LOD in ontology generation.

correct retrieved Concepts

Concept Precision =
P total retrieved Concepts

correct retrieved Concepts

(2)

Concept Recall =2 x
total correct concepts

precision x recall
F-measure = 2 X

(3)

precision + recall

old standardnHierarachy extracted

Hi hy Recall =
lerarcly Reca Gold standard

(4)

Gold standardnHierarachy extracted

Hierarchy Precision = -
Hierarachy extracted

(5)

Gold standardnNon-Hierarachy extracted
old standard
(6)

Non-Hierarchy Recall =

Non-Hierarchy Precision
_ Gold standardnNon-Hierarachy extracted

Hierarachy extracted

(7)

Moreover, we compared the generated ontology from
the proposed framework to Alzheimer’s disease ontol-
ogy that has been constructed by domain expert [55].
Table 9 compares results of our ontology generation to
Alzheimer’s disease Ontology. The results indicate
F-measure of 72.48% for concepts detection, 76.27% for

Table 8 Evaluation of non-hierarchy extraction results

Non-Hierarchical Relation Extraction
Recall %

77.20 40.1

Precision % F-Measure %

52.78
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Evaluation Metrics in %

Entity Discovery

Taxonomic Extraction

Fig. 5 Results Evaluation of the primary ontology generation tasks in LOD-ABOG
.

W Recall

M Precision

Non-Taxonomic
Extraction

relation extraction, and 83.28% for property extraction.
This shows satisfactory performance of the proposed
framework; however, the F-measure could be improved
further by domain expert during verification phase.
Table 10 compares our concept and relation extraction
results against SemMedDB.

Discussion

Our deep dive analysis shows the effectiveness of LOD
in automated ontology generation. In addition, re-use
of the crafted ontologies will improve the accuracy
and quality of the ontology generation. All of these
measures address some of the shortcomings of exist-
ent ontology generation. Moreover, the evaluation re-
sults in Table 6 show that our concept discovery
approach performs very well and matches the results
reported in the literature. However, the evaluation re-
sults in Figs. 6 and 7 shows OntoGain outperforms
our concept discovery approach. Whereas OntoGain

considers only multi-word concepts in computing pre-
cision and recall, our approach considers both
multi-word terms and single-word terms. In the hier-
archical extraction task, our hierarchy extraction has
significant improvement results than OntoGain.
Likewise, our syntactic patterns approach on
non-taxonomic extraction delivers better results in
comparison to OntoGain. In Algorithm 4, we used a
threshold parameter 8§ to increase the accuracy of
extracting non-hierarchy relations. We found that set-
ting § to low value generated a lot of noise relations,
whereas increasing it generated better accuracy. How-
ever, setting 8 to a value higher than 70% yielded a
lower recall. Also, we used the depth parameter y to
control the depth of knowledge extraction from LOD.
We observed a lesser degree domain coverage when y
is in range [1, 2], but the coverage gradually improved
when vy is in range [3, 5]. Nevertheless, when y> 5 then
noise data increased so rapidly. Though the relations

Recall %
3

Taxonomic
Extraction

Entity Discovery

Fig. 6 Comparison of Recall between LOD-ABOG and OntoGain Framework

iuhl

Non-Taxonomic
Extraction

B LOD-ABOG

M OntoGain

Synonyms
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Fig. 7 Comparison of Precision between LOD-ABOG and OntoGain Framework
defined in the ontology are limited; for example, the Conclusion

disease ontology only defines the hierarchy relations,
but very few of the non-hierarchy relations are de-
fined. This is like most existent ontologies which do
not define constraints such as rdfs:domain, which
helps improve the ability of an ontology extraction
system to make accurate inferences. Despite the bene-
fits brought by Linked Open Data, its use in the indus-
trial internet and healthcare sector has not been fully
welcomed due to some of its performance issues. To
correct its flaws, we proposed a graph-traversal ap-
proach using breadth first search, which leads to im-
prove the speed of moving from one node to another
without writing very complex queries. As shown in
Table 10, the concept extraction and hierarchy relation
extraction tasks are competitive in comparison to
SemMedDB. However, the non-hierarchy extraction
shows low recall due to the syntactic pattern limita-
tion, therefore improving the non-hierarchy extraction
is part of our future works.

Furthermore, the precision and recall of our proposed
framework could be further improved by domain experts
during the verification phase. The results are encour-
aging and show that we can downsize the requirement
for intensive labor. In addition, the framework will en-
able experts to enforce ontology engineering in a more
efficient and effective way.

Table 9 Comparison of results with baseline ontology
(Alzheimer ontology)

Ontology is the cornerstone of the semantic web vi-
sion. In addition, it provides a common and shared
understanding about concepts in a specific domain,
reuse domain knowledge, and data interoperability.
However, the manual ontology construction is a com-
plex task and is very time consuming. Therefore, we
presented a fully automated ontology generation
framework that is empowered by biomedical Linked
Open Data, integrates natural language processing,
syntactic pattern, graph algorithms, semantic ranking
algorithms, semantic enrichment, and RDF triples
mining to make automatic large-scale machine pro-
cessing possible, minimize and downsize requirements
and complexity, and improve the accuracy of ontology
generation. Ontology is not used only for better
search, data interoperability, and presentation of con-
tent, but more importantly it represents the founda-
tion of future innovative ways to manage dormant
content assets and transform the Web of document to
Web of Data.

Future work

Our future work includes an extension of the framework
to support non-biomedical domain ontology generation.
In addition, we plan to integrate machine learning and
repository of semantic predications (SemMedDB) to the
framework to further improve F-measure of concepts
and non-hierarchy relations extractions.

Table 10 Comparison of results with SemMedDB

Extraction Recall % Precision % F-measure %  Extraction Recall % Precision % F-Measure %
Concepts 87.28 62.50 7248 concepts 89.34 75.23 81.68
Relations 7747 7512 76.27 Hierarchy relations 82.64 72.86 7744
Properties 87.21 79.68 83.28 Non-Hierarchy relations 45.25 81.25 58.12
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