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Abstract. The development of computational techniques in the last decade
has made possible to attack some classical problems of algebraic geometry

from a computational viewpoint. In this survey, we briefly describe some open

problems of computational algebraic geometry which can be approached from
such viewpoint. Some of the problems we discuss are the decomposition of

Jacobians of genus two curves, automorphisms groups of algebraic curves and
the corresponding loci in the moduli space of algebraic curves Mg , inclusions

among such loci, decomposition of Jacobians of algebraic curves with automor-

phisms, invariants of binary forms and the hyperelliptic moduli, theta functions
of curves with automorphisms, etc. We decompose Jacobians of genus 3 curves

with automorphisms and determine the inclusions among the loci for algebraic

curves with automorphisms of genus 3 and 4.
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1. Introduction

Computational algebraic geometry is a very active and rapidly growing field,
with many applications to other areas of mathematics, computer science, and engi-
neering. In this survey, we will focus on some open problems of algebraic geometry
which can be approached by a computational viewpoint.

The first version of this paper appeared in 2003 in the ACM, SIGSAM Bulletin,
Comm. Comp. Alg., see [26]. It was a list of problems on algebraic curves. Some
of those problems were solved and many papers were written based on that modest
paper. Since then I have updated the list with new problems and have included
problems on higher dimensional varieties.

In the first part, we focus on algebraic curves and revisit some of the problems
of the 2003 list. We report on some progress made on some of the problems and
work done in other problems. Most notably, there are many papers generated on
the field of moduli versus the field of definition problem.

This survey is organized in two parts. In Part 1 we survey some open problems,
related to algebraic curves, which can be attacked using computational techniques.
In Part 2 we discuss a couple of problems about higher dimensional varieties. When
we say computational techniques we don’t necessarily mean only Groebener basis
and elimination techniques. Instead our understanding of computational geometry
includes computational group theory, numerical methods using homotopy tech-
niques, complex integration, combinatorial methods, etc.

Part 1 contains sections 2-7. In the second section we describe genus 2 curves
with split Jacobians. There are many papers written on these topic going back to
Legendre and Jacobi in the context of elliptic integrals. The problem we suggest
is to compute the moduli space of covers of degree 5, 7 from a genus 2 curve to an
elliptic curve. This problem is completely computational and could lead to some
better understanding of some conjectures on elliptic curves; see Frey [9].

In section three, we discuss the automorphism groups of algebraic curves. There
has been some important progress on this topic lately, however much more can be
done. Extending some of the results to positive characteristic would be important.
Further we suggest computing the equations of Hurwitz curves of genus 14 and 17.

In section 4 we study automorphism groups of algebraic curves defined over fields
of positive characteristics. Determining such groups has theoretical applications as
well as applications in coding theory, cryptography, etc. While a complete answer
to this problem might still be out of reach, it seems that it is possible to determine
such groups and equations of curves for special classes of curves.

In section 5 we study the decomposition of Jacobians of curves via the automor-
phisms of curves. We completely deal with the case g = 3. As far as we are aware
this is the first time this result appears in the literature. Since now we have full
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knowledge of the list of automorphism groups for any genus it seems possible (and
reasonable) that such decomposition be determined for reasonably small genus (say
g ≤ 10).

In section 6, we go back to the problem of invariants of binary forms. The
reader might find interesting the fact that we believe that the result of Shioda is
not correct.

Denote by S(n, r) the graded ring of invariants of homogeneous polynomials of
order r in n variables over C. Shioda determines the structure of S(2, 8), which
turns out to be generated by nine invariants J2, · · · , J10 satisfying five relations; see
[35, On the graded ring of invariants of binary octavics. Amer. J. Math. 89 1967
1022–1046.]. He also computes explicitly five independent syzygies, and determines
the corresponding syzygy-sequence. We believe such relations are not correct and
should be determined using computational algebra tools.

In section 7 we introduce the problem of determining relations among theta
functions for algebraic curves with automorphisms. This is a long project of the
author and his collaborators; see for example [22] for more details. There is some
progress on this topic lately, by some attempts to generalize Thomae’s formula for
cyclic curves; see [22] for references. Such formula, when known, expresses branch
points of the cover X → P1 in terms of theta functions. Since such branch points
for cyclic curves are easily determined then it becomes a problem of computational
algebra to determine such relations.

Part 2 contains two sections. The problems stated here are of particular interest
to the author. No effort is made to have a comprehensive list of problems in higher
dimensional varieties. The first problem is to determine the degree of a rational
map and the second problem is that of parameterizing surfaces.

Most of the problems suggested in this survey and software programs connected
to them can be found in [8]. We have tried to make available most of the computer
files where the computations are performed at:

http://algcurves.albmath.org/

Throughout this paper it is assumed that the reader is familiar with computer
algebra packages as GAP [10] and the library of small groups in GAP.

Notation: Throughout this paper an ”algebraic curve” means the isomorphism
class of the curve defined over an algebraically closed field, unless otherwise stated.

Part 1. Algebraic curves

Algebraic curves are one of the oldest and most studied branches of algebraic
geometry and indeed one of the most studied areas of mathematics. They provide
some of the most exciting problems of classical mathematics. Meanwhile, they have
found applications in many different areas of science and technology, such as com-
puter vision, coding theory, cryptography, quantum information, biomathematics,
etc. However, amazingly enough, there are some vary basic questions about alge-
braic curves of deep theoretical interest which still elude the community of experts
in this area of research. We briefly describe a few problems of interest which can
be studied using computational techniques.
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2. Genus 2 curves with (n, n)-split Jacobian

In this section we focus on genus 2 curves whose Jacobians are isogenous to a
product of elliptic curves. These curves have been studied extensively in the 19-th
century in the context of elliptic integrals by Legendre, Jacobi, Clebsch, Hermite,
Goursat, Brioschi, and Bolza et al. In the late 20th century Frey and Kani, Kuhn,
Gaudry and Schost, Shaska and Voelklein, and many others have studied these
curves further. They are of interest for the arithmetic of genus 2 curves as well as
elliptic curves. For a complete survey on this topic see [32, 3] where [32] focuses on
the computational aspects and [3] on connections of such coverings to the elliptic
integral, mathematical physics, etc.

Let C be a curve of genus 2 and ψ1 : C −→ E a map of degree n, from C to an
elliptic curve E, both curves defined over C. The degree n cover φ : C → E induces
a degree n cover φ : P1 → P1 such that the following diagram commutes

C
πC //

ψ

��

P1

φ

��

E
πE // P1

Figure 1. The basic setup

Here πC : C → P1 and πE : E → P1 are the natural degree 2 covers. Let r be the
number of branch points of the cover φ : P1 → P1. Then r = 4 or r = 5, with r = 5
being the generic case and r = 4 occurring for a certain 1-dimensional sub-locus of
Ln. We refer to the case r = 5 (resp., r = 4) as the non-degenerate case, resp.,
the degenerate case; see [25, Thm 3.1].

If ψ1 : C −→ E1 is maximal1 (i.e., does not factor non-trivially) then there exists
a maximal map ψ2 : C −→ E2, of degree n, to some elliptic curve E2 such that
there is an isogeny of degree n2 from the Jacobian JC to E1 × E2. We say that
JC is (n, n)-decomposable. If the degree n is odd the pair (ψ2, E2) is canonically
determined; see [25] for details.

We denote the moduli space of such degree n coverings φ : P1 → P1 by Ln. It
can be viewed also as the Hurwitz space of covers φ : P1 → P1 with ramification
determined as in [25]. For our purposes, Ln will simply be the locus of genus 2
curves whose Jacobian is (n, n)-isogenous to a product of two elliptic curves.

The case n = 2 is a special case since the coverings φ : P1 → P1 are Galois. The
locus L2 of these genus 2 curves is a 2-dimensional subvariety of the moduli space
M2 and is studied in detail in [34]. An equation for L2 is already in the work of
Clebsch and Bolza. In [34] we found a birational parametrization of L2 by affine 2-
space to study the relation between the j-invariants of the degree 2 elliptic subfields.
We found a 1-dimensional family of genus 2 curves having exactly two isomorphic
elliptic subfields of degree 2; this family is parameterized by the j-invariant of these
subfields.

1Some authors would call such a map minimal covering.
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2.1. Covers of odd degree. If n > 2, the surface Ln is less understood. The
case n = 3 was initially studied by Kuhn [15] where some computations for n = 3
were performed. The computation of the equation of L3 was a major computa-
tional effort. Computational algebra techniques (i.e., Groebner basis, Buchberger
algorithm) and computational algebra packages (i.e, Maple, GAP) were used. Let
K = C(C) be genus 2 function fields of C. The ellipic subcovers E1, E2 correspond
to degree 3 elliptic subfields of K. The number of Aut(K)-classes of such subfields
of fixed K is 0, 1, 2 or 4; see [29] for details. Also, an equation for the locus of
such C in the moduli space of genus 2 curves is computed. It was the first time
to explicitly compute such spaces and the results were obtained with the help of
computer algebra.

The case n = 5 is studied in detail in [19]. This extends earlier work for n = 2, 3
in Shaska [25], [29], and Shaska/Völklein [34]. The cover φ : P1 → P1 has one of
the ramification structures given in Table 1. This data lists the ramification indices
> 1 over the branch points. E.g., in the last case there is one branch point that
has exactly one ramified point over it, of index 3, and each of the other 3 branch
points has exactly two ramified points over it, of index 2. The reader should check
[25] for ramification structures of arbitrary degree.

non-degenerate:
(

(2)2, (2)2, (2)2, (2), (2)
)

degenerate:
I)

(
(2)2, (2)2, (4), (2)

)
II)

(
(2)2, (2)2, (2) · (3), (2)

)
III)

(
(2)2, (2)2, (2)2, (3)

)
Table 1. ramification structure of φ

The main feature that distinguishes the case n = 5 from all other values n > 5
is that the cover φ does not determine ψ : C → E uniquely, but there is essentially
two choices of ψ for a given φ. These two choices correspond to the two branch
points of φ of ramification structure (2) (notation as in Table 1) – anyone of these
two branch points can be chosen to ramify in E while the other doesn’t. This
phenomenon implies that the function field of L5 is a quadratic extension of the
function field of the Hurwitz space parameterizing the covers φ.

The spaces Ln were studied by many authors in different contexts. The new
results obtained in [29, 19] were the result of applying successfully computational
tools and computer algebra. Continuing on the work of the above papers, we suggest
the following problem:

Problem 1. Determine the locus Ln in M2 for n = 7. Further, determine the
relation between the elliptic curves E1 and E2 in each case.

Using techniques from [34, 29] this becomes simply a computational problem.
However, determining such loci requires the use of a Groebner basis algorithm.
Computationally this seems to be difficult for n = 7. Notice that n = 7 is the first
generic case of the problem since all degenerate cases occur.

2.2. Covers of even degree. The case when n is even is less studied. In this case
there are several possible ramifications that can occur for the covering φ : P1 → P1;
see [25] for the following theorem.
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Theorem 2. If n is an even number then the generic case for ψ : C −→ E induce
the following three cases for φ : P1 −→ P1:

I.:
(

(2)
n−2
2 , (2)

n−2
2 , (2)

n−2
2 , (2)

n
2 , (2)

)
II.:

(
(2)

n−4
2 , (2)

n−2
2 , (2)

n
2 , (2)

n
2 , (2)

)
III.:

(
(2)

n−6
2 , (2)

n
2 , (2)

n
2 , (2)

n
2 , (2)

)
Each of the above cases has the following degenerations (two of the branch points
collapse to one)

I.: (1)
(

(2)
n
2 , (2)

n−2
2 , (2)

n−2
2 , (2)

n
2

)
(2)

(
(2)

n−2
2 , (2)

n−2
2 , (4)(2)

n−6
2 , (2)

n
2

)
(3)

(
(2)

n−2
2 , (2)

n−2
2 , (2)

n−2
2 , (4)(2)

n−4
2

)
(4)

(
(3)(2)

n−4
2 , (2)

n−2
2 , (2)

n−2
2 , (2)

n
2

)
II.: (1)

(
(2)

n−2
2 , (2)

n−2
2 , (2)

n
2 , (2)

n
2

)
(2)

(
(2)

n−4
2 , (2)

n
2 , (2)

n
2 , (2)

n
2

)
(3)

(
(4)(2)

n−8
2 , (2)

n−2
2 , (2)

n
2 , (2)

n
2

)
(4)

(
(2)

n−4
2 , (4)(2)

n−6
2 , (2)

n
2 , (2)

n
2

)
(5)

(
(2)

n−4
2 , (2)

n−2
2 , (2)

n−4
2 , (2)

n
2

)
(6)

(
(3)(2)

n−6
2 , (2)

n−2
2 , (4)(2)

n
2 , (2)

n
2

)
(7)

(
(2)

n−4
2 , (3)(2)

n−4
2 , (2)

n
2 , (2)

n
2

)
III.: (1)

(
(2)

n−4
2 , (2)

n
2 , (2)

n
2 , (4)(2)

n
2

)
(2)

(
(2)

n−6
2 , (4)(2)

n−4
2 , (2)

n
2 , (2)

n
2

)
(3)

(
(2)

n
2 , (2)

n
2 , (2)

n
2 , (4)(2)

n−10
2

)
(4)

(
(3)(2)

n−8
2 , (2)

n
2 , (2)

n
2 , (2)

n
2

)
The following problem is a natural extension of the techniques used in the odd

degree case to the even degree.

Problem 3. Determine the loci Ln in M2 for n = 4, 6. Further, determine the
relation between the elliptic curves E1 and E2 in each case.

We expect that the computation of such loci computationally to be easier than
in the cases n = 5. The ramification structure in the case n = 4 is:

non-degenerate:
(

(2)2, (2), (2), (2), (2)
)

degenerate:
i)

(
(2)2, (2), (2), (2)2

)
ii) ( (2), (2), (2), (4), )

Table 2. Ramification structures of φ for n = 4



PROBLEMS IN COMPUTATIONAL ALGEBRAIC GEOMETRY 303

Note that when n is even the choice of E2, on contrary to the odd case, is not
canonical. The reader who would like a more detailed survey on this topic should
check [32, 3].

3. The automorphism group of algebraic curves

Computation of automorphism groups of compact Riemann surfaces is a classical
problem that goes back to Schwartz, Hurwitz, Klein, Wiman and many others.
Hurwitz showed that the order of the automorphism group of a compact Riemann
surface of genus g is at most 84(g−1), which is known as the Hurwitz bound. Klein
was mostly interested with the real counterpart of the problem, hence the term
“compact Klein surfaces”. Wiman studied automorphism groups of hyperelliptic
curves and orders of single automorphisms.

The 20th century produced a huge amount of literature on the subject. Baily [6]
gave an analytical proof of a theorem of Hurwitz: if g ≥ 2, there exists a curve of
genus g with non-trivial automorphisms. In other papers was treated the number
of automorphisms of a Riemann surface; see Accola [2], Maclachlan [16], [17] among
others. Accola [1] gives a formula relating the genus of a Riemann surface with the
subgroups of the automorphism group; known as Accola’s theorem. Harvey studied
cyclic groups and Lehner and Newman maximal groups that occur as automorphism
groups of Riemann surfaces.

A group of automorphisms of a compact Riemann surface X of genus g can be
faithfully represented via its action on the Abelian differentials on X as a subgroup
of GL(g,C). There were many efforts to classify the subgroups G of GL(g,C) that
so arise, via the cyclic subgroups of G and conditions on the matrix elements of G.
In a series of papers, I. Kuribayashi, A. Kuribayashi, and Kimura compute the lists
of subgroups which arise this way for g = 3, 4, and 5.

By covering space theory, a finite group G acts (faithfully) on a genus g curve if
and only if it has a genus g generating system. Using this purely group-theoretic
condition, Breuer [7] classified all groups that act on a curve of genus ≤ 48. This was
a major computational effort using the computer algebra system GAP. It greatly
improved on several papers dealing with small genus, by various authors.

Of course, for each group in Breuer’s list, all subgroups are also in the list. This
raises the question how to pick out those groups that occur as the full automor-
phism group of a genus g curve.

Let G be a finite group, and g ≥ 2. In [18] is studied the locus of genus g curves
that admit a G-action of given type, and inclusions between such loci. We use this
to study the locus of genus g curves with prescribed automorphism group G. We
completely classify these loci for g = 3 (including equations for the corresponding
curves), and for g ≤ 10 we classify those loci corresponding to “large” G. Fur-
thermore, such work has been continued by K. Magaard who has given complete
answers for the list of groups (in characteristic 0) of algebraic curves of any genus
g.

3.1. Inclusion among the loci of curves with prescribed automorphism
group. Let H and G be groups which occur as automorphism groups of genus
g algebraic curves such that H < G. If the cover X → XH is obtained as a
degeneration (collapsing of branch points) of the cover X → XG then the locus
M(g,H) (locus of curves in Mg with automorphism group H) is a sublocus of
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M(g,G). We are avoiding signatures here, assuming that the reader is aware of
the details of moduli spaces of covers and Hurwitz spaces; for details see [18].

Problem 4. Determine the inclusion among the lociM(g,G) for algebraic curves
defined over C and genus g ≤ 10.

The case of genus 2 is well known and can be found in [34] among others. Here
we briefly describe the cases g = 3, 4.

3.1.1. Genus 3. Automorphism groups of genus 3 algebraic curves are well known.
Furthermore, the subvarieties of M3 determined by group actions and inclusions
among such loci are studied in detail; see [28, 27, 30, 12, 5] among others. There are
21 groups that occur as automorphism groups of genus 3 curves. Only two groups
occur with two different signatures, namely Z2 and V4. Such signatures distinguish
between the hyperelliptic and non-hyperelliptic case. Hence, overall we have 23
cases, twelve of which belong to the non-hyperelliptic curves and the other eleven
belong to the hyperelliptic locus.

Throughout this section we use the GAP identity of the library of small groups
to identify the groups. We display the list of groups in Table 1 and Table 2. The
equation of the family of curves, the signature, the number of involutions Ni and
the number of conjugacy classes of involutions Nc are also displayed.

Aut (Xg) Aut(Xg) δ equation y2 = f(x) Id.

1 Z2 {1} 5 x(x− 1)(x5 + ax4 + bx3 + cx2 + dx+ e) (2, 1)

2 Z2 × Z2 Z2 3 x8 + a3x
6 + a2x

4 + a1x
2 + 1 (4, 2)

3 Z4 Z2 2 x(x2 − 1)(x4 + ax2 + b) (4, 1)
4 Z14 Z7 0 x7 − 1 (14, 2)

5 Z3
2 D4 2 (x4 + ax2 + 1)(x4 + bx2 + 1) (8, 5)

6 Z2 ×D8 D8 1 x8 + ax4 + 1 (16, 11)
7 Z2 × Z4 D4 1 (x4 − 1)(x4 + ax2 + 1) (8, 2)
8 D12 D6 1 x(x6 + ax3 + 1) (12, 4)
9 U6 D12 0 x(x6 − 1) (24, 5)
10 V8 D16 0 x8 − 1 (32, 9)

11 Z2 × S4 S4 0 x8 + 14x2 + 1 (48, 48)

Table 3. Aut (X3) for hyperelliptic X3

Hyperelliptic curves: Let Xg be a genus g hyperelliptic curve, G := Aut (Xg)
the automorphism group, and σ ∈ G its hyperelliptic involution. Then σ is in
the center of G. The group Aut(Xg) := G/〈σ〉 is called the reduced automorphism

group of Xg. It is a finite group of PGL(2,C). Thus, Aut(Xg) is isomorphic to a
cyclic group, dihedral group, S4, A4, or A5. Then, Aut (X )g) is a degree 2 central
extension of Aut(Xg). Using these facts, for each g ≥ 2 one determines the list of
automorphism groups that occur, their signatures, and the parametric equation of
corresponding curve. Moreover the inclusion among the loci H(G,C) is also known;
see [27, 28, 11, 31, 11, 33, 24, 12] for details. Below we display the list of auto-
morphism groups, the reduced automorphism group, a parametric equation of the
curve, and the dimension of the corresponding locus. For the signature in each case
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and other details the reader can check [12]. The subvarieties of H3 corresponding
to each locus in the table are studied in details in [12]. In this paper we skip the
details for the hyperelliptic moduli.

Non-hyperelliptic curves: A genus 3 non-hyperelliptic curve X is a ternary
quartic. The group of automorphisms Aut (X ) is a finite group of order ≤ 168 with
notably the Klein curve having automorphism group the simple group of order
168. The list of groups that occur as full automorphism groups of genus 3 curves
are given in the table below. Each group is identified also with the Gap identity
number. This number uniquely (up to isomorphism) determines the group in the
library of small groups in GAP; see [10].

# G sig. genus g0 dim. δ Id Ni Nc

1 V4 (26) 0 3 (4,2) 3 3
2 D8 (25) 0 2 (8,3) 5 3
3 S4 (23, 3) 0 1 (24,12) 9 2
4 C2

4oS3 (2, 3, 8) 0 0 (96,64) 15 2
5 16 (23, 4) 0 1 (16,13) 7 4
6 48 (2, 3, 12) 0 0 (48,33) 7 2
7 C3 (35) 0 2 (3,1) 0 0
8 C6 (2, 3, 3, 6) 0 1 (6,2) 1 1
9 C9 (3, 9, 9) 0 0 (9,1) 0 0
10 L3(2) (2, 3, 7) 0 0 (168,42) 21 1
11 S3 (24, 3) 0 2 (6,1) 3 1
12 C2 (24) 1 4 (2,1) 1 1

Table 4. Automorphism groups of genus 3 non-hyperelliptic curves

Each of these cases is an irreducible locus inM3. It is reasonable to know the in-
clusions between such loci. Such inclusions could help in determining all the cases.
We display such inclusions in the following diagram.
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3.1.2. Genus 4. In the case of genus g = 4 we get the following groups and their
corresponding signatures. The Table is provided by K. Magaard.

# dim G ID sig type subs

1 0 S5 (120,34) 0-(2, 4, 5) 1
2 0 C3 × S4 (72,42) 0-(2, 3, 12) 3
3 0 (72,40) 0-(2, 4, 6) 4
4 0 V10 (40,8) 0-(2, 4, 10) 7
5 0 C6 × S3 (36,12) 0-(2, 6, 6) 10
6 0 U8 (32,19) 0-(2, 4, 16) 16
7 0 SL2(3) (24,3) 0-(3, 4, 6) 20
8 0 C18 (18,2) 0-(2, 9, 18) 27
9 0 C15 (15,1) 0-(3, 5, 15) 38
10 0 C12 (12,2) 0-(4, 6, 12) 45
11 0 C10 (10,2) 0-(5, 10, 10) 51
12 1 S2

3 (36,10) 0-(2, 2, 2, 3) 12 3
13 1 S4 (24,12) 0-(2, 2, 2, 4) 18 1, 2
14 1 C2 ×D5 (20,4) 0-(2, 2, 2, 5) 21 4
15 1 C3 × S3 (18,3) 0-(2, 2, 3, 3) 30 2, 5
16 1 D8 (16,7) 0-(2, 2, 2, 8) 35 6
17 1 C2 × C6 (12,5) 0-(2, 2, 3, 6) 46 2, 5
18 1 C2 × S3 (12,4) 0-(2, 2, 3, 6) 41 3
19 1 A4 (12,3) 0-(2, 3, 3, 3) 43 2
20 1 D10 (10,1) 0-(2, 2, 5, 5) 49 1
21 1 Q8 (8,4) 0-(2, 4, 4, 4) 59 6, 7
22 1 C6 (6,2) 0-(2, 6, 6, 6) 66 5, 10
23 1 C5 (5,1) 0-(5, 5, 5, 5) 69 9, 11
24 2 D6 (12,4) 0-(25) 40 1, 5, 12
25 2 D4 (8,3) 0-(24, 4) 57 3, 13
26 2 D4 (8,3) 0-(24, 4) 56 4, 16
27 2 C6 (6,2) 0-(23, 3, 6) 64 7, 8
28 2 C6 (6,2) 0-(22, 33) 65 15, 17
29 2 S3 (6,1) 0-(22, 33) 62 12, 18
30 2 C4 (4,1) 0-(2, 44) 77 10
31 3 S3 (6,1) 0-(26) 61 13, 15, 24
32 3 V4 (4,2) 1-(2, 2, 2) 72 18, 19, 25
33 3 C4 (4,1) 0-(24, 42) 76 21, 26
34 3 C3 (3,1) 0-(36) 80 9, 28
35 3 C3 (3,1) 0-(36) 81 29
36 3 C3 (3,1) 1-(3, 3, 3) 79 15, 19, 22, 27
37 4 V4 (4,2) 0-(27) 73 14, 26
38 4 V4 (4,2) 0-(27) 74 17, 24, 25
39 5 C2 (2,1) 2-(2, 2) 82 11, 20, 29, 32, 37, 38
40 6 C2 (2,1) 1-(26) 83 22, 28, 30, 31, 38
41 7 C2 (2,1) 0-(210) 84 27, 33, 37

Table 5. Hurwitz loci of genus 4 curves
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In the above diagram are given inclusions among the loci of genus 4 curves. K.
Magaard and S. Shpectorov have implemented programs that could compute such
inclusions among loci for any reasonable genus.

Problem 5. Determine the inclusions among the loci for all g ≤ 48

Problem 6. For any group G and a given signature σ such that G occurs as
automorphism group of some genus g curve, find the corresponding equation for
the curve.

Such problem is open even for small genus. For genus 3 such equations are
determined in [18]. However, for g > 3 we are unaware of a complete list of
equations.

3.2. Hurwitz curves. A Hurwitz curve is a genus g curve, defined over an al-
gebraically closed field of characteristic zero, which has 84(g − 1) automorphisms.
A group G that can be realized as an automorphism group of a Hurwitz curve is
called a Hurwitz group. There are a lot of papers by group-theoretists on Hurwitz
groups, surveyed by Conder. It follows from Hurwitz’s presentation that a Hur-
witz group is perfect. Thus every quotient is again a Hurwitz group, and if such a
quotient is minimal then it is a non-abelian simple group. Several infinite series of
simple Hurwitz groups have been found by Conder, Malle, Kuribayashi, Zalessky,
Zimmermann and others. In 2001, Wilson showed the monster is a Hurwitz group;
see [18] for a complete list of references.

Klein’s quartic is the only Hurwitz curve of genus g ≤ 3. Fricke showed that
the next Hurwitz group occurs for g = 7 and has order 504. Its group is SL(2, 8),
and an equation for it was computed by Macbeath in 1965. Klein’s quartic and
Macbeath’s curve are the only Hurwitz curves whose equations are known. Further
Hurwitz curves occur for g = 14 and g = 17 (and for no other values of g ≤ 19). It
is natural, to try to write equations for these Hurwitz curves of genus 14, 17.

Problem 7. Compute equations for the Hurwitz curves of genus 14, and possibly
17.

4. The automorphism groups of algebraic curves in positive
characteristic

The Hurwitz bound is not valid in prime characteristic. Roquette (1970) found
that the estimate

|G| ≤ 84(g − 1),

on the order of the automorphism group G, holds under the additional assumption
p > g+ 1, with one exception: the function field F = K(x, y) with yp − y = x2 has
genus g = 1

2 (p− 1) and 8g(g + 1)(2g + 1) automorphisms.
Stichtenoth (1973) gives a general estimate for the number of automorphisms of

a smooth projective curve in characteristic p > 0. He proves the inequality

|G| < 16 · g4,

but also with one series of exceptions: the function field F = K(x, y) with yp
n

+y =

xp
n+1

has genus g = 1
2p
n(pn − 1) and |G| = p3n(p3n + 1)(p2n − 1) automorphisms,

so |G| is in this case slightly larger than 16g4.
Let X denote a smooth, genus g algebraic curve defined over k, char k = p > 0.

A theorem of Blichfeld on invariants (in char 0) of subgroups of PGL3(k) implies
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that the genus g curve lifts to characteristic 0 for p > 2g + 1; see [20, pg. 236-
254]. Hence, for large enough p (i.e., p > 2g + 1) methods described in [18] can be
used to determine such groups. Thus, to determine the list of groups that occur as
automorphism groups of genus g curves we have to classify the groups that occur
for all primes p ≤ 2g + 1.

Since the methods used in [18] are no longer valid in characteristic p > 0, a new
approach is needed for cases of small characteristic. We suggest the following long
term problem:

Problem 8. Determine the list of groups which occur as full automorphism groups
for genus g ≤ 10 algebraic curves defined over a field of positive characteristic.

For g = 2 this list is well known (it appears also in [34]). However, for g > 3 such
list of groups is unknown. It would be nice to have a complete list for “small genus”,
say g ≤ 10. Since, such lists tend to grow as genus grows, such information could
be organized in a database and be very helpful to the mathematics community.

There is a class of curves for which the above problem is a bit easier. These are
”cyclic” curves which will be treated next. There is an attempt in [23] to classify all
groups which occur as full automorphism groups for genus g ≤ 10 algebraic curves
defined over a field of positive characteristic, including the equations of the curves.

4.1. Cyclic curves in characteristic p > 0. Let k be an algebraically closed field
of characteristic p and Xg be a genus g cyclic curve defined over k and given by
the equation yn = f(x). Let K := k(x, y) be the function field of Xg. Then k(x) is
degree n genus zero subfield of K. Let G = Aut(K/k). Since Cn := Gal(K/k(x)) =
〈τ〉, with τn = 1 such that 〈τ〉 C G, then group Ḡ := G/Cn, also Ḡ ≤ PGL2(k).
Hence Ḡ is isomorphic to one of the following: Cm, Dm, A4, S4, A5, semi direct
product of elementary Abelian group with cyclic group, PSL(2, q) and PGL(2, q),
see [23].

The group Ḡ acts on k(x) via the natural way. The fixed field is a genus 0 field,
say k(z). Thus z is a degree |Ḡ| rational function in x, say z = φ(x). We illustrate
with the following diagram:

K = k(x, y)

Cn

G

��

k(x, yn)

Ḡ

k(z)

Xg
φ0 Cn

��
Φ

��

P

φ Ḡ
��
P

Let φ0 : Xg −→ P1 be the cover which corresponds to the degree n extension
K/k(x). Then Φ := φ ◦ φ0 has monodromy group G := Aut(Xg). From the basic
covering theory, the group G is embedded in the group Sn where n = deg Φ. There
is an r-tuple σ := (σ1, ..., σr), where σi ∈ Sn such that σ1, ..., σr generate G and
σ1...σr = 1. The signature of φ is an r-tuple of conjugacy classes C := (C1, ..., Cr)
in Sn such that Ci is the conjugacy class of σi. We use the notation np to denote
the conjugacy class of permutations which are a product of p cycles of length n.
Using the signature of φ : P1 −→ P1 one finds out the signature of Φ : Xg −→ P1

for any given g and G.



PROBLEMS IN COMPUTATIONAL ALGEBRAIC GEOMETRY 311

Let E be the fixed field of G, the Hurwitz genus formula states that

(1) 2(gK − 1) = 2(gE − 1)|G|+ deg(DK/E)

with gK and gE the genera of K and E respectively and DK/E the different of

K/E. Let P 1, P 2, ..., P r be ramified primes of E. If we set di = deg(P i) and let
ei be the ramification index of the P i and let βi be the exponent of P i in DK/E .
Hence, Eq. (1) may be written as

(2) 2(gK − 1) = 2(gE − 1)|G|+ |G|
r∑
i=1

βi
ei
di

If P i is tamely ramified then βi = ei − 1 or if P i is wildly ramified then βi =
e∗i qi + qi − 2 with ei = e∗i qi, e

∗
i relatively prime to p, qi a power of p and e∗i |qi − 1.

Let Ḡ be a finite subgroup of PGL2(q) acting on the field IFq(x). Then, Ḡ is
isomorphic to one of the following groups Cm, Dm, A4, S4, A5, U = (Z/pZ)t, Km,
PSL2(q) and PGL2(q). Then, G is a degree n extension of one of these groups.

Problem 9. Determine the list of groups that occur as full automorphism groups
of cyclic curves defined over an algebraically closed field of characteristic p > 0.

As stated above, there is an attempt in [23] to completely solve this problem.

5. On the decomposition of Jacobians of algebraic curves with
automorphisms

Let X be a genus g algebraic curve with automorphism group G := Aut (X ).
Let H ≤ G such that H = H1 ∪ · · · ∪ Ht where the subgroups Hi ≤ H satisfy
Hi ∩Hj = {1} for all i 6= j. Then,

Jac t−1(X )× Jac |H|(X/H) ∼ Jac |H1|(X/H1)× · · · Jac |Ht|(X/Ht)

The group H satisfying these conditions is called a group with partition. Ele-
mentary abelian p-groups, the projective linear groups PSL2(q), Frobenius groups,
dihedral groups are all groups with partition.

Let H1, . . . ,Ht ≤ G be subgroups with Hi ·Hj = Hj ·Hi for all i, j ≤ t, and let
gij denote the genus of the quotient curve X/(Hi · Hj). Then, for n1, . . . , nt ∈ Z
the conditions ∑

ninjgij = 0,
t∑

j=1

njgij = 0,

imply the isogeny relation∏
ni>0

Jac ni(X/Hi) ∼
∏
nj<0

Jac |nj |(X/Hj)

In particular, if gij = 0 for 2 ≤ i < j ≤ t and if

g = gX/H2
+ · · ·+ gX/Ht

then

Jac (X ) ∼ Jac (X/H2)× · · · × Jac (X/Ht)

The reader can check [14, 13] for the proof of the above statements.

Problem 10. Using the structure of automorphism groups of algebraic curves of
genus g ≤ 48, determine possible decompositions of Jacobians for these curves.
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Next we focus on the case g = 3. This hopefully will give an idea to the reader
that such computations are possible.

5.1. Decomposing Jacobians of genus three algebraic curves with auto-
morphisms. The inclusions of the lociM3(G,C) will help us determine relations
in terms of the theta-nulls in each case. We need the following result the proof of
each is elementary and we skip the details.

Let X be a genus 3 curve and σ ∈ Aut (X ) an involution. Denote by π the
quotient map

π : X → X/〈σ〉
The quotient curve X/〈σ〉 has genus 0 or 1. If g(X/〈σ〉) = 0 then X is an hyperel-
liptic curve and σ is the hyperelliptic involution. If g(X/〈σ〉) = 1 then σ is called
an elliptic involution. Then, we have the following.

Lemma 11. Every involution of a genus 3 non-hyperelliptic curve is an elliptic
involution

Denote by Ni the number of elliptic involutions of a curve X and the number of
conjugacy classes of involutions in Aut (X ) by Nc. Both Ni and Nc are displayed
for non-hyperelliptic case. We use the information on the automorphism groups to
decompose the corresponding Jacobians of curves.

We will use the above facts to decompose the Jacobians of genus 3 non-hyperelliptic
curves. X denotes a genus 3 non-hyperelliptic curve unless otherwise stated and
X2 denotes a genus 2 curve.

5.1.1. The group C2. Then the curve X has an elliptic involution σ ∈ Aut (X ).
Hence, there is a Galois covering π : X → X/〈σ〉 =: E . We can assume that this
covering is maximal. The induced map π∗ : E → Jac (X ) is injective. Then, the
kernel projection Jac (X ) → E is a dimension 2 abelian variety. Hence, there is a
genus 2 curve X2 such that

Jac (X2) ∼ E × Jac (X2)

5.1.2. The Klein 4-group. Next, we focus on the automorphism groups G such that
V4 ↪→ G. As can be seen from Fig. 1, most groups contain an isomorphic copy of V4.
In this case, there are three elliptic involutions in V4, namely σ, τ, στ . Obviously
they form a partition. Hence, the Jacobian of X is the product

Jac 2(X ) ∼ E2
1 × E2

2 × E2
3

of three elliptic curves. By applying the Poincare duality we get

Jac (X ) ∼ E1 × E2 × E3
5.1.3. The dihedral group D8. In this case, we have 5 involutions in G in 3 conju-
gacy classes. No conjugacy class has three involutions. Hence, we can pick three
involutions such that two of them are conjugate to each other in G and all three of
them generate V4. Hence, Jac (X ) ∼ E2

1 × E2, for some elliptic curves E1, E2.

5.1.4. The symmetric group S4. The Jacobian of such curves splits into a product
of elliptic curves since V4 ↪→ S4. Below we give a direct proof of this.

We know that there are 9 involutions in S4, six of which are transpositions.
The other three are product of two 2-cycles and we denote them by σ1, σ2, σ3. Let
H1, H2, H3 denote the subgroups generated by σ1, σ2, σ3. They generate V4 and are
all isomorphic in G. Hence, Jac (X ) ∼ E3, for some elliptic curve E .
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5.1.5. The symmetric group S3. We know from above that the Jacobian is a direct
product of three elliptic curves. Here we will show that two of those elliptic curves
are isomorphic. Let H1, H2, H3 be the subgroups generated by transpositions and
H4 the subgroup of order 3. Then

Jac 3(X ) ∼ E2
1 × E2

2 × E2
3 × Jac 3(Y)

for three elliptic curves E1, E2, E3 fixed by involutions and a curve Y fixed by the
element of order 3. Simply by counting the dimensions we have Y to be another
elliptic curve E4. Since all the transpositions of S3 are in the same conjugacy class
then E1, E2, E3 are isomorphic. Then by applying the Poincare duality we have that

Jac (X) ∼ E2 × E ′

Summarizing, we have the following:

Theorem 12. Let X be a genus 3 curve and G its automorphism group. Then,
a) If X is hyperelliptic then

i) If G is isomorphic to V4 and C2×C4, then Jac (X) is isogenous to the product
of and elliptic curve and the Jacobian of a genus 2 curve X2

Jac (X ) ∼ E × Jac (X2)

ii) If G is isomorphic to C3
2 then Jac (X) is isogenous to the product of three elliptic

curves

Jac (X ) ∼ E1 × E2 × E3
iii) If G is isomorphic to D12, C2×S4 or any of the groups of order 24 or 32, then
Jac (X) is isogenous to the product of three elliptic curve such that two of them are
isomorphic

Jac (X ) ∼ E2
1 × E2

b) If X is non-hyperelliptic then the following hold

i) If G is isomorphic to C2 then Jac (X) is isogenous to the product of an elliptic
curve and the Jacobian of some genus 2 curve X2

Jac (X ) ∼ E × Jac (X2)

ii) If G is isomorphic to V4 then Jac (X) is isogenous to the product of three elliptic
curves

Jac (X ) ∼ E1 × E2 × E3
iii) If G is isomorphic to S3, D8 or has order 16 or 48 then Jac (X) is isogenous
to the product of three elliptic curves such that two of them are isomorphic to each
other

Jac (X ) ∼ E2
1 × E2

iv) If G is isomorphic to S4, L3(2) or C3
2oS3 then Jac (X) is isogenous to the

product of three elliptic curves such that all three of them are isomorphic to each
other

Jac (X ) ∼ E3.



314 TANUSH SHASKA

Proof. The proof of the hyperelliptic case is similar and we skip the details. The
reader interested in details can check [21].

Part b): When G is isomorphic to C2, V4, D8, S4, S3 the result follows from the
remarks above. The rest of the theorem is an immediate consequence of Fig. 2. If
|G| = 16, 48 then D8 ↪→ G. Then, from the remarks at the beginning of this section
the results follows. If G is isomorphic to L3(2) or C2

4oS3 then S4 ↪→ G. Hence the
Jacobian splits as in the case of S4. This completes the proof. �

It is possible that given the equation of X one can determine the equations of
the elliptic or genus 2 components in all cases of the theorem. However, we feel
that is outside the scope of this paper.

Problem 13. Determine all algebraic curves of genus g ≤ 10 such that their
Jacobian splits into a product of elliptic curves.

Of course, hyperelliptic curves are an easy exercise to do. There is a little more
work for non-hyperelliptic curves since a description of the automorphism group is
needed.

6. Invariants of binary forms

It is an interesting and difficult problem in algebraic geometry is to obtain a
generalization of the theory of elliptic modular functions to the case of higher genus.
In the elliptic case this is done by the so-called j-invariant of elliptic curves. In the
case of genus g = 2, Igusa (1960) gives a complete solution via absolute invariants
i1, i2, i3 of genus 2 curves. Generalizing such results to higher genus is much more
difficult due to the existence of non-hyperelliptic curves. However, even restricted
to the hyperelliptic moduli Hg the problem is still unsolved for g ≥ 3. In other
words, there is no known way of identifying isomorphism classes of hyperelliptic
curves of genus g ≥ 3. In terms of classical invariant theory this means that the
field of invariants of binary forms of degree 2g + 2 is not known for g ≥ 3.

The following is a special case of g = 3.

Problem 14. Find invariants which classify the isomorphism classes of genus 3
hyperelliptic curves.

This is equivalent with determining the field of invariants of binary octavics. The
covariants of binary octavics were determined in 1880 by von Gall. The generators
of the ring of invariants were determined by Shioda in 1965 where the relations
among the SL2(C) invariants were also determined. However, we believe that such
relations are not correct and have been unable to verify them using computational
algebra tools.

Problem 15. Determine the ring of invariants of binary octavics.

Other invariants: In a joint paper with J. Gutierrez, we find invariants that iden-
tify isomorphism classes of genus g hyperelliptic curves with extra (non-hyperelliptic)
involutions; see [11]. This result gives a nice way of doing computations with these
curves. We call such invariants dihedral invariants of hyperelliptic curves. Let Lg be
the locus in Hg of hyperelliptic curves with extra involutions. Lg is a g-dimensional
subvariety of Hg. The dihedral invariants yield a birational parametrization of Lg.
Computationally these invariants give an efficient way of determining a point of the
moduli space Lg.
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Dihedral invariants were generalized by Antoniadis and Kontogeorgis to all cyclic
curves defined over any algebraically closed field (positive characteristic included);
see [4] for details.

Recall that such invariants were defined for ”cyclic” curves with extra involu-
tions. Indeed they parameterize the locus of the cyclic curves on the top levels of
the diagrams; see genus 3 and 4 cases.

Problem 16. Define similar invariants for all cases of cyclic curves which corre-
spond to higher dimension locus in the moduli Mg. In other words, describe the
”cyclic” moduli similar to the hyperelliptic moduli in all cases.

Problem 17. Determine algebraic relations among ”dihedral” invariants for all
subloci of the ”cyclic” moduli.

7. Theta functions of algebraic curves

Let π : Xg → Xg0 be a m-sheeted covering of Riemann surfaces of genus g and
g0, where g0 ≥ 1. The general goal is to find properties that Xg (or rather, the
Jacobian of Xg) has, due to the existence of the covering π. This is done by the theta
functions of the Xg. This is an old problem that goes back to Riemann and Jacobi.
Many other mathematicians have worked on the cases of small genus and small
degree, most notably Frobenius, Prym, Königsberger, Rosenhein, Göpel, among
others. In [22] we give a historical account of such problems and the significance in
modern mathematics.

Let Xg be an irreducible, smooth, projective curve of genus g ≥ 3, defined over
the complex field C. We denote byMg the moduli space of smooth curves of genus
g and by Aut (Xg) the automorphism group of Xg. Each group G ≤ Aut (Xg) acts
faithfully on the g-dimensional vector space of holomorphic differential forms on
Xg.

The locus of curves in Mg with fixed automorphism group consists of finitely
many components; to determine their number requires mapping class group action
on generating systems. We denote by Mg(G, σ) be the sublocus in Mg of all the
genus g curves X with G ↪→ Aut (X ) and signature σ.

Problem 18. Describe the lociMg(G, σ) in terms of the theta nulls for any given
g, G, and σ.

Next we describe in more detail the basic definitions and what is known about
this problem.

7.1. Theta functions and Jacobians of curves. LetHg be the Siegel upper-half
space. The symplectic group Sp(2g,Z) acts on Hg and there is in injection

Mg ↪→ Hg/SP (2g,Z) =: Ag
For any z ∈ Cg and τ ∈ Hg the Riemann’s theta function is defined as

θ(z, τ) =
∑
u∈Zg

eπi(u
tτu+2utz).

It is holomorphic on Cg ×Hg and satisfies

θ(z + u, τ) = θ(z, τ), θ(z + uτ, τ) = e−πi(u
tτu+2ztu) · θ(z, τ),

where u ∈ Zg.
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Now let X be a genus g ≥ 2 algebraic curve. Choose a symplectic homology
basis for X , say

{A1, . . . Ag, B1, . . . , Bg}
such that the intersection products Ai ·Aj = Bi ·Bj = 0 and Ai ·Bj = δij .

Figure 2. A symplectic basis for a genus 3 Riemann surface

We choose a basis {wi} for the space of holomorphic 1-forms such that
∫
Ai
wj =

δij . The matrix Ω =
[∫
Bi
wj

]
is the period matrix of X and Ω ∈ Hg. The

columns of the matrix [I |Ω] form a lattice L in Cg and the Jacobian Jac (X ) of
X is Jac (X ) = Cg/L. The Riemann’s theta function of X with respect to the
above basis is

θ(z,Ω) =
∑
u∈Zg

eπi(u
tΩu+2utz),

and the locus

Θ := {z ∈ Cg/L : θ(z,Ω) = 0}
is called the theta divisor of X . Points of order n on Jac (X ) are called the 1

n -
periods. In the next section we will use the half-periods and quarter-periods to
describe the locus of curves in Mg with fixed automorphism group. For any two
half-periods α, β we identify them with their images in H1(Xg,Z2), then the Weil
pairing is defined as

|α, β| = (−1)α·β

where α · β is the intersection product.

Problem 19. Let G be an automorphism group of a genus Xg curve andMg(G, σ)
denote the locus of genus g curves with automorphism group G of some signature
σ. For g ≥ 4, describe the locus Mg(G, σ) in terms of the vanishing theta-nulls.

Part 2. Higher dimension varieties

In this part we suggest some problems on higher dimensional varieties. This is
by no means a list which includes the most important problems, but simply a list
of problems which have special interest to the author.
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8. The degree of a rational map

Let k be a field and φ : kn → km be a rational map. It is an important problem
in algebraic geometry to determine the degree of the map phi. Let us assume that

φ : kn → km

(x1, . . . , xn)→ (f1, . . . , fm)

where f1, . . . , fm ∈ k(x1, . . . , xm). We assume that fi = pi(x)
qi(x) and deg fi = di, for

i = 1, . . . ,m. The classical way to determine the degree of such map is as follows:
pick a general point y = (y1, . . . , ym) ∈ km such that φ(x) = y. Solve the system
of equations 

p1(x)− y1q1(x) = 0

. . .

. . .

pm(x)− ymqm(x) = 0

the number of solutions of such system is bounded by Πm
i=1di. There are some

computational issues with this approach though. First, how do we make sure that
the point y ∈ km is a generic point. Second, the solution of the above system will
involve a Groebener basis argument. Such method is extremely inefficient and will
not work well for high degrees.

Problem 20. Combine the symbolic and numerical methods to design an efficient
algorithm for determining the degree of a rational map.

There are some attempts to do this by Sommesse et al. However, we are still
not aware of how efficient their methods are and if they have been implemented.

9. Parameterizing surfaces

It is a well known fact that if an algebraic curve has genus zero than it can be
parameterizable. There are many papers on the parametrization of algebraic curves.
The algorithms on parametrization of curves are quite efficient. Furthermore, there
are even some results on how to find a ”good” parametrization. There are no
analogue results for higher dimensional varieties, even though there have been some
attempts for algebraic surfaces. The following problem is important theoretically
and in applications. [24]

Problem 21. Let X be a parametric algebraic surface. Design an algorithm which
finds a parametrization of X .

While many authors have studied this problem, we are not aware of any results
which would do this efficiently.
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