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1 Overview

The first part of the paper will begin with the history of monstrous moonshine and a general
overview of its subject matter. This is Section 2.

The second part of the paper—Sections 3 through 8—will be devoted to the study of modular
forms; a fluency in undergraduate complex analysis will be assumed. We will start from the bottom
by introducing Eisenstein series (the most basic example of modular forms). We will proceed to
characterize all modular forms by means of these series, and in particular define the j-invariant.
Then, in Section 6, we directly calculate the Fourier series coefficients of the Eisenstein series.
Carrying these calculations through to the j-invariant will give us the raw data behind one half of
the "mysterious" connection between complex analysis and representation theory.

The third part of the paper—Sections 9 through 11—will introduce the core concepts of linear
representation and character theory. We build up the theory of characters in the context of finite
groups, and discuss character tables. Although we shall not have the leisure of working out the
character table of the Monster group ourselves, we shall hopefully acquire a taste for the mathematics
involved.

2 History and Background

The first rigorous formulation and study of the mathematical object known as a group began in the
mid-19th century with the work of Galois and Cauchy. They arose in the context of what would
come to be known as Galois theory, in the form of permutation groups which acted on the roots
of rational polynomial functions. Despite the field’s infancy, even Galois at his time realized the
important notion that complex groups could be collapsed into simpler groups by taking the quotient
of it by a normal subgroup. Those groups that could be collapsed no further (nontrivially speaking)
were known as simple groups. Galois provided the first example of a family of finite noncyclic simple
groups in order to conclude his proof of the unsolvability of the quintic, namely, the alternating
groups An for n ≥ 5. He would also introduce and prove the simplicity of the projective special
linear groups PSL(2, p).

In the best of cases, when a group G contains a nontrivial proper normal subgroup N , we may
precisely describe the more complex group structure G in terms of the relatively less complex group
structures N and G/N (such is the case if G contains a subgroup complement to N—then G
decomposes as a semidirect product involving N). Although even today we do not possess every
possible tool in constructing larger groups out of smaller ones, this motivated mathematicians to
completely classify finite simple groups. This task—which spanned tens of thousands of pages from
hundreds of authors over 150 years—was finally considered complete in 2004 ( [1]; although a small
error was discovered and fixed in 2008). The conclusion:

Theorem. Every finite simple group is isomorphic to one of the following:

• A cyclic group of prime order

• An alternating group of order ≥ 5

• A so-called group of Lie type

• The Tits group (sometimes considered a group of Lie type)

• One of the 26 "sporadic groups"
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The sporadic groups were always considered rather mysterious and exceptional objects. The
largest one of these (and the final simple group proven to exist, first by Griess in 1982 [9] and later
more simply by Conway in 1985 [2]) is known as the Monster group, and contains

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 =

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000 ≈

8× 1053

elements. Although the infinite families of simple groups such as the alternating groups or the
groups of Lie type obviously contain examples of simple groups with more elements, the Monster
group is special in that there is no known "easy" or efficient way to represent its elements (in terms
of, for example, relatively small permutation or linear representations) and is the only finite simple
group that is still highly resistant to calculations by computer.

The entirety of the character table (an important set of invariants associated to a finite group,
explored in Section 10) of the Monster group was calculated in 1979 (one would be surprised how
much mathematicians manage to prove about an object before they can even prove it exists!), where-
upon it was found the smallest nontrivial complex representation of the Monster was in dimension
196,883.

This number would’ve lived out an otherwise innocuous life in but a handful of dusty academic
papers were it not for John McKay’s closer look at the first few terms of something called the
(normalized) j-invariant in 1978:

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + ...

1 = 1

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

where 1, 196883, 21296876... are the dimensions of the irreducible representations of the Monster
group in increasing order. This was most startling because the j-invariant was native to modular
curve theory, a field of mathematics that was completely unrelated to the theory of finite simple
groups, and there was no explanation for this infinite set of seeming "coincidences." As such, the
study behind this serendipitous phenomenon became known as "monstrous moonshine" [3].

An even stronger formulation of the link between the monster group and modular curve theory was
finally standardized, and proven in a landmark paper by Borcherds in 1992, for which he received
the Fields medal in 1998.

3 Modular Forms

Allow us to begin by considering a special symmetry, known as the modular action on the upper-
half plane. If H = {z ∈ C | Im z > 0} denotes the upper-half plane, and SL2(Z) = {M ∈
GL2(Z) | detM = 1} denotes the (integral) special linear group, then SL2(Z) affords a left action
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on H via linear fractional transformations. That is, for τ ∈ H,[
a b
c d

]
τ =

aτ + b

cτ + d

Left associativity of this action can be seen by a routine computation; that Mτ is also in H follows
from said associativity, and the fact that SL2(Z) is generated as a group under composition by the

elements
[
1 1
0 1

]
and

[
0 1
−1 0

]
(a fact itself following from the existence of reduced row echelon form

of matrices in SL2(Z)), which correspond respectively to the operations τ 7→ τ + 1 and τ 7→ − 1
τ ,

both of which preserve H. We see that the kernel of this action is precisely ±I, so this action factors
through to the quotient SL2(Z)/{±I}, hereafter referred to as the modular group and notated as Γ.

Throughout this paper, γ is to refer to an element of Γ represented by ±
[
a b
c d

]
.

Definition 3.1. For given even k ∈ N, we define the (kth) factor of automorphy to be a map j from
Γ to the set of invertible holomorphic functions on H, given by jγ(τ) = (cτ + d)k. A holomorphic
function f is said to be a modular form (of weight k) if it satisfies the weak modularity condition:
f(γτ) = jγ(τ)f(τ) for all γ ∈ Γ and all τ ∈ H, and is bounded as τ → i∞. (In the more general
context, which we shall not explore in this paper, Γ may be any group acting on a complex-analytic
manifold H, and the automorphic functions are those holomorphic functions on H satisfying a
similar relationship together with a pre-defined factor of automorphy.)

Remark. The condition of boundedness as τ → i∞ is also referred to as "holomorphy at infinity";
the justification for this will become apparent in Section 4.

It is convenient to define linear operators [γ]k (for all real matrices γ of positive determinant) on
the space of holomorphic functions on H given by f [γ]k(τ) = jγ(τ)−1f(γτ), so that the modular
forms are precisely the common fixed points of each operator [γ]k. Since the correspondence γ 7→ [γ]k
is associative as a right action on the holomorphic functions on H (another routine computation),
again by considering generators of Γ we deduce that a holomorphic function is a modular form if
and only if f(τ + 1) = f(τ) (i.e. is Z-periodic) and f(−1/τ) = τkf(τ) for all τ ∈ H.

Modular forms may perhaps be understood most simply as complex-valued functions on (the
moduli space of) lattices satisfying a certain homogeneity property. By a lattice, we mean an
abelian group L ⊆ C of rank two that generates C as a vector space over R. Figure 1 shows a
prototypical lattice generated by ω1 = 1 and ω2 = 1

2 +
√

3
2 i, denoted [ω1, ω2].

We may assume that any lattice given in these terms is such that ω2
ω1
∈ H.

Let L denote the set of all lattices. There is an action of C× on L via λL = {λω | ω ∈ L}. We
prove the following correspondence:

Proposition 1. Let an even k ∈ N be fixed. Consider the collection of functions F : L → C such
that F (λL) = λ−kF (L) for all L ∈ L and all λ ∈ C×. Consider also the collection of functions
f : H → C such that f [γ]k = f for all γ ∈ Γ. There is a correspondence between the two F ↔ f
which is uniquely constrained by

F ([1, ω]) = f(ω)

Proof. Suppose first that we have such an F ; we define f(ω) to be the value of F on the lattice
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Figure 1: The lattice [ω1, ω2]

[1, ω]. Then

f [γ]k(ω) = (cω + d)−k · F ([1,
aω + b

cω + d
]) = F ([cω + d, aω + b]) = F ([1, ω]) = f(ω)

so that f [γ]k = f as claimed. Now, suppose we have a function f satisfying the weak modularity
condition of weight k; in this case we define F ([ω1, ω2]) = ω−k1 f(ω2

ω1
). Our first order, of course, is

to prove that this is well defined independent of ω1, ω2: Suppose [ω1, ω2] = [ω′1, ω
′
2]. Then[

ω′1
ω′2

]
= γ

[
ω1

ω2

]
for some γ ∈ Γ (this will follow, for example, from Proposition 4 together with the fact that if
det γ = −1 then ω′2

ω′1
6∈ H). As such, if γ′ ∈ Γ is the matrix γ with first its columns and then its rows

interchanged (i.e. conjugated by
[
0 1
1 0

]
), we have

F ([ω′1, ω
′
2]) = F ([aω1 + bω2, cω1 + dω2]) = (aω1 + bω2)−kf(

cω1 + dω2

aω1 + bω2
) =

ω−k1 (b
ω2

ω1
+ a)−kf

(dω2
ω1

+ c

bω2
ω1

+ a

)
= ω−k1 f [γ′]k(

ω2

ω1
) = ω−k1 f(

ω2

ω1
) = F ([ω1, ω2])

Last but not least, the desired property F (λL) = λ−kF (L) follows immediately from the definition.

Thus, from this point forward, we shall frequently cross-interpret the two concepts without undue
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formalism.

Now that we understand the basics of the modular action and what modular forms are, what are
some examples? If we wish to construct an example of a modular form of weight k, it seems easiest
to approach it from the point of view of assigning complex values to lattices in such a way that the
homogeneity property is satisfied. Therefore, examining the function that takes a given lattice and
sums up the −kth powers of its nonzero elements is a perfectly natural idea. This leads us to the
Eisenstein series of weight k.

Proposition 2. Let k > 2 be an even integer, and consider the following function Gk : H → C:

Gk(τ) =
∑

(c,d)∈Z2−(0,0)

1

(cτ + d)k

The series above converges absolutely for all τ in the upper half plane, and as such the summands
may be permuted freely. The series also converges uniformly on compact subsets, and thus defines a
holomorphic function on the upper-half plane. Gk(τ) is bounded as τ → i∞, and Gk is also weakly
modular, and so defines a modular form of weight k. The Gk are not constantly zero, and in fact
Gk(τ)→ 2ζ(k) as τ → i∞.

Proof. Proving that the series absolutely converges for any given τ amounts to showing the same for
the Weierstrass series with respect to the lattice L = [1, τ ]; a proof may be found in any introductory
book on elliptic curves (e.g. [10], Chapter I, Section 4), so we merely outline the idea. One may
contain the lattice points of L in disjoint balls of uniform size δ > 0. Since each annulus of radii
R−1, R+2 has area O(R), the convergence of

∑ 1
|cτ+d|k follows by comparison with the convergent

series
∑∞

R=1
1

Rk−1 .

For positive real numbers A,B, let Ω = {τ | |Re(τ)| ≤ A, |Im(τ)| ≥ B}. We show Gk(τ)
converges uniformly on Ω, and hence on compact subsets in general, thereby proving Gk(τ) defines
a holomorphic function. We do this by showing that

∑
(c,d)∈Z2−(0,0) σc,d converges on Ω, where

σc,d = sup
τ∈Ω

1

|cτ + d|k

When A = 1, this will be enough to show Gk(τ) is bounded as τ → i∞, once we demonstrate
weak modularity (since this implies Z-periodicity). Note that this supremum is approached by
bringing cτ as close to −d as possible. If c, d are not both 0, it is clear that |cτ + d| > | cB2 |,
and also that |cτ + d| > |BdA |, for all τ ∈ Ω. That is to say, there exists real C > 0 such that
|cτ + d| ≥ C · sup{|c|, |d|} ≥ C√

2
· |c+ di|. This implies

∑
σc,d ≤

(√2

C

)k∑ 1

|c+ di|k

which is finite, so that Gk(τ) is indeed holomorphic on H. Finally, weak modularity of Gk(τ)
follows from Proposition 1 and the fact that Gk(τ) represents the analytic form of a complex-valued
function on lattices we know to satisfy the homogeneity property.

Finally, that Gk(τ)→ 2ζ(k) as τ → i∞ may be observed by considering the limit of the sequence
Gk(2

ni) as n → ∞. Each term of this sequence is by definition the sum of the kth powers of the
reciprocals of some subset Yn of the Gaussian integers, which we may partition into Z \ {0} and its

7



complement in Y which we denote Xn. As Xn+1 ⊆ Xn and Xn → ∅ as n→∞, this leaves us with
only the sum of powers of Z \ {0} which is equal to 2ζ(k).

Our mentioning of the Eisenstein series is not merely to satisfy our constructivist insecurities; as
we shall see in Section 5, the Eisenstein series are all that we shall need in our goal to completely
characterize modular forms of any weight!

4 q-Expansions, Modular Functions, and the Fundamental Domain

It has been noted that modular forms exhibit Z-periodicity, that is, f(τ + z) = f(τ) for all z ∈ Z.
If B′ = {z ∈ C | |z| < 1} \ {0}, consider the covering map q : H → B′ given by q(τ) = e2πiτ .

Remark. It is customary to write merely q in referring to q(τ), and to interpret statements involving
complex exponentiation qz as e2zπiτ (of course, this distinction is of no consequence when z is
integral).

Note that at each point of B′, there is a family of local holomorphic inverses that differ from each
other merely by addition of some integer. Thus, given a holomorphic Z-periodic function f on H,
there is a unique holomorphic function F on B′ that satisfies f = F ◦ q. If we expand the Laurent
series for F about the origin and plug in q instead, we arrive at the following series for f , referred
to as its q-expansion:

f(τ) =
∞∑

m=−∞
amq

m

Note that in the case of modular forms, by definition f is bounded as τ → i∞. This is to say,
F is bounded as q → 0, so that by Riemann’s Removable Singularities Theorem, am = 0 for all
m < 0, i.e. F extends to a holomorphic function on all of the open unit ball B.

Definition 4.1. A function f : H → C is said to be a modular function if it satisfies the following
criteria:

1. f is meromorphic on H.

2. f is weakly modular of weight 0, i.e. f(γτ) = f(τ) for all γ ∈ Γ.

3. The corresponding F : B′ → C is meromorphic at q = 0. This is equivalent to the condition
that either f(τ) be bounded as τ → i∞ or f(τ)→∞ as τ → i∞.

From now on, we shall use H∗ to refer to the upper-half plane together with i∞, so that, for
example, (1) and (3) may be subsumed under the condition "meromorphic on H∗."

Definition 4.2. If Y is a space with an afforded equivalence relation ∼, then a subspace X ⊆ Y
is called a fundamental domain for this relation if x ∼ y if and only if x = y for x, y ∈ X, and the
closure of X provides the full set of representatives for ∼.

It is well known that the region Ω = {z ∈ C | |z| > 1,−1
2 < Re(z) < 1

2} constitutes a fundamental
domain for H under the action of Γ (see Figure 2) with only border points of equal absolute real
part being equivalent under the action. This may be proven via elementary albeit tedious methods,
so we take it as granted ( [11], Chapter 3, Section 1).
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Figure 2: The fundamental domain of the modular action

From a geometrical point of view, we may view modular functions as being the meromorphic
functions on the compact Riemann surface obtained by stitching opposite ends of the border of Ω
together and adding an appropriate compactifying point at i∞. Naturally, this implies that the only
modular forms of weight 0 are constant, since any holomorphic function on a compact Riemann
surface is constant.

5 The Graded Algebra of Modular Forms

Let nonzero f be weakly modular of weight k, meromorphic on H∗, and not constantly zero. Let
ρ = 1

2 +
√

3
2 i and −ρ = −1

2 +
√

3
2 i be the bottom corners of the fundamental domain of the modular

action. We shall integrate f ′(z)
f(z) over the contour indicated in Figure 3 (as R approaches ∞ and

the radii of the detour arcs around the zeros/poles of f approaches 0) using two different methods
which we shall compare in order to obtain useful information relating the order of the zeros of f .

Firstly, f ′(z)
f(z) will have a simple pole at and only at each zero/pole z of f , with residue the

corresponding order vz(p) of the zero/pole. As such, the residue theorem tells us that the value of
the (limit of) the integral is

−2πi
∑
z 6=ρ,i

vz(f)

where z ∈ H varies over the zeros/poles of f unique up to the modular action, excluding represen-
tatives for i and ρ.

Secondly, we compute the integral a bit more directly. It is clear that Z-periodicity of f ′(z)
f(z) will
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Figure 3: Integrating along the fundamental domain

entail that the integral over paths A and C (neither of which contain the detour arcs around ρ and
−ρ) cancel out. As well, integrating over the contour B, after applying the q-change of variables, is
2πi times the order of the zero/pole at q = 0, here notated by v∞(f). Continuing on, we split the
contour D (not including the detour arcs around ρ, −ρ, or i) into its right and left halves, say E
and F , respectively, and work with the complex change of variables z → −1

z sending E to F (and
inverting orientation):

∮
F

f ′(z)

f(z)
dz = −

∮
E

f ′(−1
z )

z2f(−1
z )
dz (1)

Now, if we take the equality

f(−1

z
) = zkf(z)

and differentiate both sides, we get

f ′(−1
z )

z2
= kzk−1f(z) + zkf ′(z) =⇒ f ′(−1

z
) = kzk+1f(z) + zk+2f ′(z)

so that we can plug this expression for f ′(−1
z ) into (1) to get

−
∮
E

f ′(−1
z )

z2f(−1
z )
dz = −

∮
E

k

z
+
f ′(z)

f(z)
dz
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Thus, ∮
D

f ′(z)

f(z)
dz =

∮
E

f ′(z)

f(z)
dz +

∮
F

f ′(z)

f(z)
dz = 2πi · k

12

Finally, f
′(z)
f(z) composed with a suitable translation will look like

m

z
+ holomorphic term

at a zero/pole of f of degree m. Since the integral of a holomorphic term along a vanishingly small
arc will itself vanish, we conclude that the integral of the detour arc around i is πi, and the sum of
the integrals of the detour arcs around ρ and −ρ is 2πi

3 .

Comparing the results of our two different methods of computing the integral yields the following
theorem.

Theorem 1. Let f be weakly modular of weight k, meromorphic on H∗, and not constantly zero.
Let ρ = 1

2 +
√

3
2 i and −ρ = −1

2 +
√

3
2 i be the bottom corners of the fundamental domain of the

modular action. If vz(f) denotes the order of the zero/pole of f at z, then

4vρ(f) + 6vi(f) + 12v∞(f) + 12
∑
z 6=ρ,i

vz(f) = k

where z ∈ H varies over the zeros/poles of f unique up to the modular action, excluding represen-
tatives for i and ρ.

Remark. Those familiar with Riemann surface theory and the branched mapping principle (if
f : X → Y is a proper nonconstant holomorphic map between Riemann surfaces, then up to
multiplicities, f takes any value the same number of times; thus, any meromorphic function on a
compact Riemann surface has as many zeros as poles) might notice that when k = 0 (i.e. when f
is a modular function), this is merely the statement that the analytic quotient map H∗ → H∗/Γ
(where the latter is endowed with an appropriate complex structure) ramifies with index 3 over ρ
and index 2 over i.

Believe it or not, this formula together with our Eisenstein series are all that we need to construct
any modular form imaginable!

Theorem 2. Let Mk denote the complex vector space of modular forms of weight k, and let M
denote the C-algebra that is generated by Mk for all natural k. Then M = ⊕Mk is a graded C-
algebra, and if G4 and G6 represent the Eisenstein series of weights 4 and 6 respectively, then
C[x, y]→M given by x 7→ G4 and y 7→ G6 is an isomorphism of C-algebras.

Proof. Note that MnMm ⊆ Mn+m, so that to verify M = ⊕Mk it only remains to show that
nontrivial finite sums of modular functions of varying weights is nonzero (we shall in fact have to
prove something slightly stronger). Suppose this is not the case, and that we have a set f1, f2, ..., fn
of nonzero forms of weights k1 < k2 < ... < kn respectively satisfying a linear dependence not
necessarily over C, but merely over C(τ) (the set of complex rational functions):

p1f1 + p2f2 + ...+ pnfn = 0

We may assume p1 = 1. Now, it is clear that no nonconstant rational function is Z-periodic, for
otherwise roots and poles would not be preserved. If one of pi is not constant, then applying the
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transformation τ 7→ τ+1 to both sides of this expression and subtracting this new dependence from
the original would give us a nontrivial C(τ)-linear dependence among the f2, ..., fn. If the pi are
constant for all i, then apply the transformation τ 7→ − 1

τ to both sides, divide by τk1 , and again
subtract one dependence from the other to obtain a nontrivial C(τ)-linear dependence among the
f2, ..., fn. Induction now applies to verify M = ⊕Mk.

Now, we shall first show that the aforementioned map C[x, y]→M is surjective. We shall proceed
by induction on k to show that Mk is within the image of this map. In each case suppose f is a
nonzero modular form of weight k.

Case k = 0: Since modular forms have no poles on H∗, the variables in the formula of Theorem
1 must be nonnegative integers. When k = 0 necessarily all these must be 0, so that f has no zeros.
Subtracting an appropriate constant to give it a zero will force the result to be constantly zero,
from which we deduce f is constant. M0 = C.
Case k = 2: There is no way to satisfy Theorem 1. M2 = ∅.

Case k = 4: The only possibility is that f has a unique and simple zero at ρ (and its Γ-
equivalents). For some constant c, we observe f − cG4 will have another zero, and be forced to be
constantly zero. M4 = CG4.

Case k = 6: The only possibility is that f has a unique and simple zero at i. For some constant
c, we observe f − cG6 will have another zero, and be forced to be constantly zero. M6 = CG6.

Case k = 8: The only possibility is that f has a unique and double zero at ρ. For some constant
c, we observe f − cG2

4 will have another zero, and be forced to be constantly zero. M8 = CG2
4.

Case k = 10: The only possibility is that f have unique and simple zeros at ρ and i. For some
constant c, we observe f − cG4G6 will have another zero, and be forced to be constantly zero.
M8 = CG4G6.

Case k ≥ 12: Note that G4 and G6 have unique and simple zeros at ρ and i, respectively, so that
for any other point τ , we may choose an appropriate constant c so that G3

4− cG2
6 has a (necessarily

unique and simple) zero at τ . We now have, for every point τ ∈ H∗, a modular form G, generated
by G4 and G6, with a unique and simple zero at τ . If τ is chosen to be a zero of f , we may write f

G
to get a modular form of smaller weight; we conclude the case analysis by an appeal to induction
and multiplying both sides by G.

All that remains is to prove that the map C[x, y] → M is injective, i.e. that G4 and G6 are
algebraically independent over C. But this should be clear in light of what we have already worked
out: If c1G

r
4 + c2G

r−3
4 G2

6 + etc. is a weight-balanced expression that is constantly zero (recall we
have already proven that sums of nonzero weight-balanced expressions of distinct weights will be
nonzero), then c1G

r
4(i) = 0, so c1 = 0; we may thus divide by G6 and appeal to induction.

In the case that τ = i∞ in the last case, this makes G an example of a cusp form. Ater multiplying
G by a constant so that a1 = 1 in its q-expansion (technically we don’t yet know this is possible), we
arrive at ∆, known as the modular discriminant (the term "discriminant" comes from its appearance
in elliptic curve theory). Now, we are in a position to define the elusive j-invariant: j =

G3
4

8ζ(4)3∆
.

Note that j is a modular function with a q-expansion beginning

j(τ) =
1

q
+ ...

Similar in utility to the Eisenstein series, j generates the space of modular functions:
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Proposition 3. Every modular function can be represented as a (complex) rational function of j.

Proof. Note that by Theorem 1, j induces a bijection (in fact, an analytic isomorphism) from
H∗/Γ to the Riemann sphere. Thus, for any nonconstant modular function g with some prescribed
zero/pole at τ , we may divide/multiply it by j − c for some constant c with j(c) = τ and proceed
by induction until g is constant.

We can almost taste the moonshine. We merely need a clever way of computing the Fourier
coefficients of G4 and G6.

6 Cotangent Cleverness

Consider the function f(τ) = π cot(πτ). It is a Z-periodic meromorphic function on C with unique
and simple poles at each integer, each with residue 1. It is also bounded in each open set of uniform
distance away from each integer. But these exact same properties are also shared by the function

g(τ) =
1

τ
+

∞∑
d=1

1

τ + d
+

1

τ − d

It follows that the function f − g is a bounded entire function, and thus constant by Liouville’s
theorem. But in a Laurent series expansion about the origin, both of f and g have zero constant
term. It follows that f = g.

As the astute reader might already sense, the (k−1)th derivative of g can be used to construct the
Eisenstein series. Before we perform this, then, we calculate the q-expansion of g, or equivalently,
of f :

π cot(πτ) = π
cos(πτ)

sin(πτ)
= π

i(q1/2 + q−1/2)

q1/2 − q1/2
= π

i(q + 1)

q − 1
=

−πi(q + 1)(1 + q + q2 + ...) = πi− 2πi
∞∑
m=0

qm

Now, when k > 2 is an even integer, we take the (k − 1)th derivative of both sides of the equality
1
τ +

∑ 1
τ+d + 1

τ−d = πi− 2πi
∑
qm to obtain

(−1)k−1(k − 1)!
∑
d∈Z

1

τ + d

k

= −(2πi)k
∞∑
m=0

mk−1qm

Since k is even, (−1)k−1 = −1; multiply through appropriately to get

∑
d∈Z

1

(τ + d)k
=

(2πi)k

(k − 1)!

∞∑
m=0

mk−1qm

Sum this equality with the substitutions cτ for c ∈ Z\{0}, and also add the equality
∑

d∈Z\{0}
1
dk

=
2ζ(k) to arrive at a formula for Gk(τ). Since k is even, the sums will simplify to

Gk(τ) = 2ζ(k) + 2

∞∑
c=1

∑
d∈Z

1

(cτ + d)k
= 2ζ(k) + 2

(2πi)k

(k − 1)!

∞∑
c=1

∞∑
m=0

mk−1qcm =
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2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
m=1

σk−1(m)qm

where σk(N) denotes the sum of the kth powers of the positive divisors of a number N .

Recall ζ(4) = π4

90 and ζ(6) = π6

945 . As such, the first few values of the q-expansions of G4 and G6

are

G4(τ) =
π4

45
(1 + 240

∞∑
m=1

σ3(m)qm) =
π4

45
(1 + 240q + 2160q2 + 6720q3 + ...)

G6(τ) =
2π6

945
(1− 504

∞∑
m=1

σ5(m)qm) =
2π6

945
(1− 504q − 16672q2 − 122976q3 − ...)

In fact, after normalizing Gk(τ) so that its constant term is equal to 1, the resulting q-coefficients
will always be straight integers, due to the relation ζ(2n) = (−1)n+1B2n(2π)2n

2(2n)! .

After performing the necessary arithmetic with the Fourier series of G4 and G6, we may rotely
compute the Fourier series for the j-invariant:

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + ...

7 A Brief Sideline on Integral Matrices

Before we continue, it is important to understand a fact or two about (integer-valued) matrices
and their corresponding action on lattices. If as before we pass to the moduli space of lattices
by associating τ with [1, τ ], then the modular action τ 7→ aτ+b

cτ+d induces an action on lattices
[1, τ ] 7→ 1

cτ+d [cτ + d, aτ + b] = 1
cτ+d [1, τ ] (those familiar with elliptic curve theory will know that

this latter lattice is analytically isomorphic to the original), but this is not quite what we’re talking
about. Instead, similar to the case for vector spaces, we consider integral matrices as endomorphisms
of free Z-modules and their resultant images.

Proposition 4. Let L be a finitely generated free Z-module with a prescribed basis e1, ..., en. Then if
M is a nonsingular n×n matrix with integer entries and we interpret M as a linear transformation
M : L→ L, then [L : M(L)] = | detM |, i.e. L/M(L) is an abelian group of order |det(M)|.

Proof. By repeated application of the Euclidean algorithm, put M into row echelon form M ′ by
interchanging, adding, and subtracting rows. Then M(L) = M ′(L) and | detM | = |detM ′|; write
detM ′ =

∏
di, where the di are the diagonal entries of M ′. It is clear that every element of the

quotient L/M ′(L) may be written in a reduced form with respect to the generatorsM ′(ei) where the
ith coefficient ci satisfies 0 ≤ ci < |di|; as well, by upper-triangularity ofM ′, this reduced form will be
unique. As such, L/M(L) = L/M ′(L) is an abelian group of order |

∏
di| = |detM ′| = | detM |.

With L as in the above proposition, it is a well-known fact (cf. [4], Chapter 12) that every
subgroup of L will be free of rank ≤ n. As such, every subgroup of L will be the image of some M .
Or, put in different terms, the orbit of L under the ring action of GLn(Z) on the subgroup lattice
of L is the entire subgroup lattice.
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If we are interested only in subgroups of L of a given finite indexm, then it is necessary to consider
which matrices/linear transformations yield identical images. Since ±SLn(Z) consists of precisely
the matrices that correspond to linear isomorphisms of free Z-modules of rank n, the answer is that it
is the size of the set of integral matrices of determinant ±m quotiented out by the action of ±SLn(Z)
under left multiplication. Since ±SLn(Z) contains (and is in fact generated by) all the matrices that
correspond to row addition/subtraction/interchanging, the row echelon form considered in the proof
of the above proposition gives us a way to obtain a class representative of a matrix under this action.
In fact, if a matrix is put into lower-triangular form with positive diagonal entries such that each
lower entry ci,j satisfies 0 ≤ ci,j < dj , then this form will be unique, for the entries are uniquely
determined by M(L): With respect to the lexicographic ordering en > en−1 > ... > e1, row i of
our reduced matrix represents the smallest element of M(L) subject to nonnegative entries and a
nonzero ith coefficient. The number of such reduced forms is easy to compute, and the result is
stated below:

Theorem 3. Let L be a finitely generated free Z-module of rank n. Then the number of subgroups
of L of finite index m is given by ∑

(q1,...,qn)

∏
i

qi−1
i

where (q1, ..., qn) runs over all positive n-tuples with
∏
qi = m.

Corollary 1. The number of sublattices of a given lattice in C of finite index m is given by σ(m),
the sum of the divisors of m.

8 Hecke Operators

Given a modular form of given weight, how can we apply some interesting and natural transformation
to yield another modular form of the same weight? If this transformation is required to be linear
Mk → Mk, then there is a good chance that complex scalar multiplication is the only way to go
about it, sinceMk for small k (specifically, k = 0, 4, 6, 8, 10, 14) is one-dimensional. But this doesn’t
make the endeavor fruitless; in fact, a prima facie "interesting" transformation that turns out to
be "uninteresting" means that we have discovered some simple way to describe the not-so-simple.
This is what happens when one considers Hecke operators and the corresponding Hecke eigenforms.

To define some action on the analytic f , we shall again turn to its interpretation as a complex-
valued function on lattices.

Definition 8.1. Let L denote the free abelian group on the generators L. We define the Hecke
operator T (n) of order n to be the endomorphism T (n) : L→ L induced by

T (n)(L) =
∑

[L:L′]=n

L′

Any complex-valued function on lattices extends uniquely to a morphism L → C, so extend the
action of T (n) to complex-valude functions on lattices by T (n)F (L) = F (T (n)L) =

∑
[L:L′]=n F (L′).

Once again extend the action of T (n) to modular functions by T (n)f(τ) = T (n)F ([1, τ ]).

Remark. At this point it’s necessary to disambiguate nL ∈ L as signifying either
∑n

i=1 L, or
{nω | ω ∈ L} as in the preceding sections. From now on, we shall use nL to mean exclusively
the former, and R(λ)L for λ ∈ C× will mean the latter.
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Definition 8.2. The algebra of operators generated by the T (n) and R(m) for all n,m with com-
position for multiplication is called the Hecke algebra, notated by H.

It is easy to verify that if F satisfies the homogeneity property, then so does T (n)F , since the
operator R(λ) : L→ R(λ)L is an isomorphism and thus provides a bijection between sublattices of
index n. As well, it will soon become clear that if f is a modular form, then T (n)f is holomorphic
on H∗, and is thus a modular form.

Note that, by the results of the preceding section, we can write

T (n)L =
∑
γ

γL

where the sum runs over the integral matrices

γ =

[
a 0
c d

]
with a, d > 0, ad = n, and 0 ≤ c < a. We may thus compute

T (n)f(τ) =
∑
γ

F (γ[1, τ ]) =
∑

F ([a, c+ dτ ]) =
∑

F ((a)[1,
c+ dτ

a
]) =

∑
a−kF ([1,

c+ dτ

a
]) =

∑
a−kf(

c+ dτ

a
)

From this vantage, we may explicitly compute the effect of T (n) on the q-expansion of f . If as
before

f(τ) =
∞∑
m=0

amq
m

then

T (n)f(τ) =
∑
a|n

a−1∑
c=0

∞∑
m=0

ame
2πi( c+dτ

a
)m =

∞∑
m=0

∑
a|n

a−kame
2πi dm

a
τ
a−1∑
c=0

e2πicm/a

Focus on the expression
a−1∑
c=0

e2πicm/a; note that multiplying it by e2πim/a will not affect the sum.

If a - m, then e2πim/a 6= 1, so this is to say
a−1∑
c=0

e2πicm/a = 0 in this case. If instead a | m, then

a−1∑
c=0

e2πi c
a
m =

a−1∑
c=0

1 = a. So we continue:

T (n)f(τ) =

∞∑
m=0

∑
a|(n,m)

a−k+1amq
dm/a =

∞∑
m′=0

∑
a|n

a−k+1am′aq
dm′ =

∞∑
m′′=0

∑
d|(n,m′′)

(n
d

)−k+1
am′′n/d2q

m′′

This is finally in a form we want. We clean up the notation and summarize the result in the following
theorem.

Theorem 4. Let f be a modular form of weight k, and let T (n) be the Hecke operator of order n.
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If f has q-expansion
∑
amq

m, then T (n)f is a modular form with q-expansion
∑
bmq

m, where

bm = n−k+1
∑

d|(n,m)

dk−1amn/d2

If σk(N) denotes the sum of the kth powers of the positive divisors of a number N , then in particular

b0 = n−k+1σk−1(n)a0 b1 = n−k+1an

Proposition 5. Every Eisenstein series Gk is a Hecke eigenform of every order, i.e. for every
natural n, there exists a constant λ ∈ C such that T (n)Gk = λGk.

Proof. The proof of the proposition is split into three parts. First, we show that the Hecke operator
assignment is a multiplicative function, i.e. T (nm) = T (n)T (m) when n and m are relatively prime.
Second, we show that in the algebra of Hecke operators (with composition as multiplication) T (pr) is
in the subalgebra generated by T (p) for each prime p and all r. Third, we show that every Eisenstein
series is a Hecke eigenform of every prime order. This will be enough to verify the statement.

The first step is the easiest. Let L′ be a subblattice of L of index mn, and consider the abelian
group L/L′; it contains unique subgroups of index m and n, which is to say that there are unique
sublattices Ln and Lm of of L of index n and m respectively containing L′. Thus, the list of all
sublattices of index n in another sublattice of index m in L is the same as the list of all sublattices
of index mn in L, including (nonexistent) multiplicities. This carries over to Hecke operators to
verify T (nm) = T (n)T (m).

Now, consider T (pr) for n ≥ 2. We verify

T (pr) = T (pr−1)T (p)− pR(p)T (pr−2)

We must show that the multiplicities of the sublattices associated to each operator are the same.
To this end, let L′ ⊆ L be of index pn, and suppose L′ ⊆ R(p)L. Then since R(p)L is contained in
every sublattice of index p (of which there are σ(p) = p + 1), and since R(n) and T (m) commute
for all n,m (R(n) : L→ L is an embedding), both sides of the equation assign the multiplicity 1 to
L′. So suppose L′ 6⊆ R(p)L. Then since the intersection of any two distinct sublattices of index p
is R(p)L, we again find that both sides of the equation assign the multiplicity 1 to L′.

Finally, interpret Gk as a complex-valued function on lattices.

T (p)Gk(L) =
∑

[L:L′]=p

Gk(L
′)

Note that the L′ form a cover of L with multiplicity p+ 1 on elements of R(p)L and multiplicity 1
elsewhere. By definition of the Eisenstein series, we may thus equate∑

[L:L′]=p

Gk(L
′) = Gk(L) + pGk(pL) = (1 + p1−k)Gk(L)

Although we will not have a chance to apply our theory of Hecke operators further to modular
form theory, they are a basic tool for any interested reader moving forward. One interesting result
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that can already be obtained from our study of Hecke operators, though, is number-theoretic: If f is
a Hecke eigenform of all orders with Fourier coefficients an such that a1 = 1, then the third equation
of Theorem 4 together with our previous observation that T (nm) = T (n)T (m) for relatively prime
n and m implies Fourier coefficient assignment is actually multiplicative: anm = anam if n and m
are relatively prime. This is precisely how Mordell [12] in 1917 proved the Ramanujan tau function
τ(n) is multiplicative, where τ(n) is the nth Fourier coefficient of the modular discriminant form
∆ (∆ must a Hecke eigenform of all orders as it is the unique cusp form of weight 12 up to scalar
multiplication), among other interesting properties.

9 Representation Theory

It’s no secret that groups like to act on things. It’s also no secret that mathematicians understand
linear algebra better than almost any other subject. It is as such that the following investigation of
(finite) groups acting on vector spaces is motivated.

Definition 9.1. Let G be a finite group, let F be a field, and let V be a vector space over F of
finite rank. Then a representation of G over F is a group morphism ϕ : G→ GL(V ). Alternatively,
G is said to act on the space V , namely by g · v = ϕ(g)(v). The degree of the representation is
defined to be the rank of the V over F .

Definition 9.2. Consider the vector space W of rank |G| over F , with some basis eg indexed by
g ∈ G. Then there is an action of G on W induced by h · eg = ehg for each h, g ∈ G, affording a
representation ϕ. As elements of GL(V ), the ϕ(h) are linearly independent over F , since only the
null linear combination of them will send e1 to 0. We call the F -algebra generated by the elements
ϕ(h) the group ring FG, and it is customary to write the elements as linear sums of elements of G
over F , omitting ϕ. For example,

3 +
4

3
r − r3 + s

is an element of QD8.

If we consider G as being contained in FG and inheriting its multiplicative structure, then given
a representation ϕ : G → GL(V ), there is a unique morphism of F -algebras ϕ : FG → GL(V )
extending ϕ. Conversely, every morphism of F -algebras ϕ restricts to a representation of G over F .
In perhaps more familiar terms, a morphism of F -algebras ϕ : FG → GL(V ) is just the definition
of an FG-module structure on V . It is as such that we note the following correspondences:{

V an FG-module

}
←→

{ V a vector space over F
and

ϕ : G→ GL(V )

}
←→

{ V a vector space over F
and

G acts on V

}

Example 1. If V = F , we may define a trivial action of G on V via gv = v. This is known as the
principal representation of G, and (believe it or not) carries some interest in the character theory
presented in the next section.

Example 2. FG acting on itself by left multiplication gives it the structure of an FG-module. The
associated representation is known as the regular representation of G.

Proposition 6. Let G be a finite group with two representations ϕ : G→ GL(V ), ψ : G→ GL(W )
of the same degree over the same field F . The following three conditions are equivalent:
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(1) Ring/module theoretic: V and W are isomorphic as FG-modules.

(2) Matrix computational: There exists some nonsingular matrix A that simultaneously conjugates
ϕ(g) into ψ(g) for all g ∈ G.
(3) Category theoretic: There exists some linear isomorphism T : V → W allowing the following

diagram to commute for all g ∈ G:

V W

V W

T

ϕ(g) ψ(g)

T

In such a case, the representations ϕ and ψ are said to be equivalent.

Proof. (1) =⇒ (2): Suppose A : V → W is an FG-module isomorphism. Then A may be
considered as a linear isomorphism of vector spaces over F such that A(g ·v) = g ·A(v) for all v ∈ V
and g ∈ G. That is to say as matrices A · ϕ(g) = ψ(g) ·A, from which (2) follows.

(2) =⇒ (3): This is simply (2) with T in place of A and converted into the language of linear
transformations.

(3) =⇒ (1): We see T must also be a morphism of FG-modules, as T (g · v) = T (ϕ(g)(v) =
ψ(g)(Tv) = g · T (v), and hence also an isomorphism.

Suppose FG is a group ring with V an FG-module. The module/representation/group action is
said to be faithful if the associated representation ϕ : G → GL(V ) is injective; as such, the group
structure is fully demonstrated in its action on V . Suppose further that W1 ⊂ V is a proper FG-
submodule (this is equivalent to the condition that gW1 ⊆ W1 for all g ∈ G, i.e. W1 is stabilized
under the action of G). The associated action of G on W1 is in a certain sense simpler than that on
V , although it may lose its faithfulness. In ideal circumstances, we should wish that V decomposes
as a direct FG-module sum involving W1:

V = W1 ⊕W2

in which case the action of G on V is completely described by the corresponding actions on
W1 and W2, and ϕ = ψ1 × ψ2 for the corresponding representations ψ1 and ψ2. The following
theorem demonstrates that this is always the case given nice F and G, and is fundamental to the
representation theory of finite groups.

Theorem 5. (Maschke’s Theorem) Let G be a finite group of order n, and let F be a field of
characteristic not dividing n. Then every FG-module is injective, i.e. for every pair of FG-modules
W1 and V such that W1 ⊆ V , there is another FG-submodule W2 of V such that V = W1 ⊕W2.

Proof. Since W1 and V are in particular vector spaces over F , we may assume that there is a direct
sum decomposition of V involving W1 in terms of vector spaces. By means of this decomposition,
let π : V → W1 be an F -linear projection, i.e. a linear transformation such that π(w) = w for
all w ∈ W1. Then the idea is to construct from π an FG-module projection τ of V onto W1; the
theorem will then follow immediately with W2 = ker τ .
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Given a linear transformation ϕ : M → N of vector spaces over F , we may define gϕ and ϕg
in the obvious way, and also define g ∗ ϕ = gϕg−1. These are seen to be actions of G on the set
Hom(M,N), which uniquely extend in order to give Hom(M,N) FG-module structures. By similar
reasoning as in Proposition 6, it is a necessary and sufficient condition that g ∗ ϕ = ϕ for all g in
order for ϕ to be a morphism of FG-modules. As such, we shall "average" π over G in order to
construct τ (this is where char F - n is necessary):

τ = (
1

n

∑
g∈G

g) ∗ π

Since 1
n

∑
g absorbs multiplication by elements of G, and ∗ is associative, τ is by the above a

morphism of FG-modules. Since as well τ(w) = 1
n

∑
gπ(g−1w) = 1

n

∑
gg−1w = w, we have τ is a

projection, completing the proof.

Example 3. Without the condition char F - n, Maschke’s Theorem does not hold in general. For
example, let F be a field of characteristic p, and let P be a nontrivial p-group. Then the one-
dimensional subspace of FP generated by

∑
g∈P g is also an FP -submodule, yet we shall show FP

does not decompose as a direct sum of any two proper submodules (this proof may be skipped
without any hindrance to the rest of this paper’s exposition). First, a lemma:

Lemma 1. Let G be a group (not necessarily finite), let F be a field, and let V be an FG-module. If
NEG is a normal subgroup, then the set of elementsW ⊆ V that are fixed by N is an FG-submodule,
and there is a natural F (G/N)-module action on W . The FG-submodules and F (G/N)-submodules
of W are the same. Furthermore, if the module V is itself FG affording the regular representation
on G, then the induced module is isomorphic to the regular representation of G/N .

Proof. It is clear W is a subspace, and if n ∈ N , g ∈ G, and w ∈ W , then ng · w = gg−1ng · w =
g(g−1ng) ·w = g ·w, so thatW is G-stable. There is a natural action of G/N onW , thereby turning
W into a F (G/N)-module under this action. We see an F -subspace of W is G-stable if and only if
it is G/N -stable, so its FG-submodules and F (G/N)-submodules are the same.

Suppose V is the module given by the regular representation. For each distinct left coset xN
define

αxN =
∑
g∈xN

g

as an element of FG. It is clear, then, that αxN ∈W and the αxN are linearly independent over F .
Conversely, any element of FG fixed by each element of N must retain equivalent coefficients on
elements in the same left coset of N , hence be an F -linear combination of the αxN . As such, the αxN
form an F -basis for W . Define an F -linear isomorphism ϕ : W → F (G/N) given by ϕ(αxN ) = x.
This is in fact an F (G/N)-module isomorphism, since ϕ(gαxN ) = ϕ(αgxN ) = gx = gϕ(αxN ).

We proceed by induction on the order of P . The base case will obviously be satisfied when |P | = 1.
Suppose FP = V1 ⊕ V2 as FP -modules. If P is nontrivial, let x ∈ Z(P ) be of order p. Then on
any FP -submodule of FP , we have (x − 1)p = xp − 1 = 0 as FP -module transformations, hence
x− 1 has nontrivial kernel in each of V1, V2; this is to say the subspaces of elements fixed by 〈 x 〉
in each of V1, V2 are nontrivial, call them W1,W2 respectively. Then if W is the FP -submodule of
elements of FP fixed by 〈 x 〉, we in fact have W = W1⊕W2. This nontrivial direct sum expression
as FP -modules translates to the same as F (P/〈 x 〉)-modules. But now W ∼= F (P/〈 x 〉) may be
written as a nontrivial direct sum, a contradiction. �
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A module is said to be irreducible if it contains no nonzero proper submodules (and reducible
otherwise), and a representation is said to be irreducible (or simple) if the FG-module affording
it is irreducible. By repeated application of Maschke’s Theorem, we may write any finite-degree
representation of G as a direct product of irreducible representations; as for the afforded module,
we say that it is completely reducible (confusing terminology note: completely redicible does not
imply reducible, for irreducible modules are trivially completely reducible!). In the next section, we
shall find that this decomposition is unique. Before that, however, we will establish Wedderburn’s
Theorem, which tells us among other things that there are a finite number of distinct irreducible
representations.

Theorem 6. (Wedderburn’s Theorem) Let R be a ring with identity. The following five conditions
are equivalent:

(1) Every R-module is injective.

(2) Every R-module is completely reducible.

(3) For every R-module M and proper submodule N ⊂ M , there exists an irreducible submodule
L ⊆M such that N ∩ L = 0.

(4) Considering R as a left R-module, we have the following decomposition of R into irreducible
submodules (i.e. left ideals):

R = Re1 ⊕Re2 ⊕ ...⊕Ren
where the ei are orthogonal idempotents summing to 1.

(5) As a ring, R is isomorphic to the m-fold direct product of ni×ni matrix rings of over division
rings ∆i. Up to permutation of the factors, this decomposition is unique, with m, ni, and ∆i being
uniquely determined by R.

Under any of these conditions, R is said to be semisimple with minimum condition.

Proof. (2) =⇒ (1): Suppose N ⊆ M are R-modules. Consider the collection L of submodules
of M that have trivial intersection with N , partially ordered by inclusion. Since every chain in L
has an upper bound (namely, by taking the union of the chain), by Zorn’s Lemma, we may choose
a maximal member L ∈ L. Suppose N ⊕ L 6= M ; then completely reducing M/L, there is an
irreducible submodule L′ with trivial intersection with N . If L′ is the complete preimage of this
submodule, then L ⊂ L′ and L′ has trivial intersection with N , contradicting the maximality of L.

(3) =⇒ (2): Let M be an R-module. Consider the collection N of submodules of M which have
a direct sum decomposition, partially ordered by N1 ≤ N2 if N1 has a direct sum complement in
N2. Since every chain in N has an upper bound (namely, by taking the union of the chain), by
Zorn’s Lemma we may choose a maximal member N ∈ N. If N 6= M , then choose an irreducible
submodule L ⊆M with L ∩N = 0; then L⊕N contradicts the maximality of N .

(4) =⇒ (3): Choose an element m ∈M \N ; then for some i, we have eim 6= 0. Then Reim will
be irreducible, as Rei is an irreducible left ideal in R, and necessarily have empty intersection with
N (lest Reim ∩N be a nonzero proper submodule of Reim).

(5) =⇒ (4): We may assume without loss of generality that R is but a single matrix ring over
a division ring; then if ei are the matrices with 1 in the (i, i)-entry and 0 elsewhere, Rei will be the
submodule of R consisting of matrices with 0 in every column besides the ith. As can be readily
checked, every nonzero element of Rei generates Rei as a submodule, hence Rei is irreducible.
Clearly R = Re1 ⊕Re2 ⊕ ...⊕Ren, and the ei will be orthogonal idempotents summing to 1.
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(1) =⇒ (5): This requires the most effort. First, we show that R satisfies the descending
chain condition (DCC) on left ideals (since every R-module is injective, it will also demonstrate
the ascending chain condition [ACC], since decreasing left ideals leads to increasing direct sum
complements, and vice versa). Suppose there existed an infinite decreasing chain of left ideals of R:

R = M0 ⊃M1 ⊃M2 ⊃M3 ⊃ ...

Then, if N = ∩Mi, and Mi = Ni+1 ⊕Mi, we may decompose R as an infinite direct sum R =
N ⊕ (

⊕
Ni). But this is impossible for a ring with identity, for then the identity could be written as

a sum involving terms from only a finite number of the direct summands, which summands would
then generate the whole ring as a left ideal. Therefore, R satisfies the DCC, and so too does every
quotient of R.

By the DCC, we may obtain a minimal nonzero two-sided ideal R1 of R. Let R′ be its direct sum
complement in R. Suppose R′ were not a two-sided ideal; then the right-sided closure of R′ would
be a two-sided ideal containing both R1 and R′, hence be all of R, hence contain the identity, so we
could write 1 = s1r1 + s2r2 + ...+ smrm for some si ∈ R′ and ri ∈ R. Let q ∈ R1 be nonzero. Then
qsi ∈ R1 ∩R′ = 0, yet q · 1 = q(s1r1 + s2r2 + ...+ smrm) = 0, a contradiction. Thus R1 and R′ are
two-sided ideals. They are seen to be orthogonal, so we may write R = R1 ×R′ as rings. Continue
this process for R′, and by the DCC we will arrive at a finite direct product decomposition of R
into minimal two-sided ideals:

R = R1 ×R2 × ...×Rm
Since R contains an identity, each Ri contains an identity zi. Let Li be an irreducible left ideal of
Ri (note that it is irreducible both over R and over Ri); then the right-sided closure of Li generates
Ri, so write zi = si,1r1 +si,2r2 + ...+si,nirni with si,j ∈ Li, rj ∈ Ri, and with minimal ni. Note that
each Lirj is a left ideal isomorphic as a left R-module to Li. As well, if Lirj ∩ (Lir1 + ...+Lirj−1 +
Lirj+1 + ...+ Lirni) 6= 0, then we could write another expression for ei which would contradict the
minimality of ni. Therefore, Ri ∼= Lnii as left R-modules.

For each r ∈ Ri, consider the left Ri-module endomorphism on Ri given by right multiplication by
r. This is an embedding of Ropp

i (same element and addition as Ri, with multiplication given by x ·
y = yx, where the latter is computed in Ri) into the ring EndRi(Ri). Since such endomorphisms are
uniquely determined by their action on the identity, this is in fact an isomorphism. But EndRi(Ri) =
HomRi(L

ni
i , L

ni
i ) ∼= Mni(Qi), where Qi = EndRi(Li) is a division ring since Li is an irreducible

module (a simple but satisfying result known as Schur’s Lemma). There is an isomorphism between
Mn(Qi)

opp and Mn(Qopp
i ) given by taking the transpose of a matrix. We conclude

R ∼= Mn1(∆1)×Mn2(∆2)× ...×Mnm(∆m)

where ∆i is the division ring Qopp
i .

All that remains to be shown is the uniqueness of the ∆i and ni. Suppose R ∼=
∏m
i Mni(∆i) ∼=∏m′

i Mn′i
(∆′i). Then the factor matrix rings in each direct product are the complete set of minimal

two-sided ideals, so it suffices to show that if S ∼= Mn(∆) ∼= Mn′(∆
′) then ∆ ∼= ∆′ and n = n′. There

is only one irreducible left-sided ideal up to isomorphism in each ring: the set of matrices with zeros
everywhere outside the first column, denoted in each ring by L and L′. Since L is irreducible, an
S-module endomorphism of L is uniquely determined by its action on e1,1, the matrix with a 1 in the
(1, 1) entry and zeros elsewher. On the other hand, since e1,1 is idempotent in S, any endomorphism
must map e1,1 to a ∆-multiple of itself. This is enough to show that EndS(L) ∼= ∆opp, as right
scalar multiplication by ∆ is an S-module endomorphism. By similar reasoning, EndS(L′) ∼= ∆′opp,
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and now ∆ ∼= ∆′. Finally, n = n′ since this is the number of minimal left ideals of S.

We apply our results to the group ring FG, since Maschke’s Theorem implies the condition (1).

Corollary 2. Let G be a finite group, and let F be an algebraically closed field of characteristic
not dividing the order of G. Then FG is isomorphic to the m-fold direct product of matrix rings of
degree ni over division rings ∆i, where

(1) The ∆i are in fact all isomorphic to the field F .

(2)
∑
n2
i = |G|.

(3) m is equal to the number of conjugacy classes of G.

(4) There are m irreducible modules/representations of FG up to isomorphism/equivalence.

Proof. (1) The center of FG in the Wedderburn decomposition is precisely the product of the rings
of scalar matrices in each matrix ring; as such, the field F ⊆ FG is contained in this product. For
each i, by projecting onto the ith coordinate if necessary, the division ring ∆i may be regarded as
an F -algebra. Since this makes ∆i an F -subalgebra of the finite rank F -algebra FG, ∆i is also of
finite rank over F . But if F is algebraically closed, then this is only possible if ∆i

∼= F .

(2) On the one hand, we have
∑
n2
i is the rank of the Wedderburn decomposition of FG over F .

On the other, |G| is the rank of FG over F (with basis {g}g∈G). Clearly, these coincide.

(3) Consider the center of FG. For each i, let zi denote the element of the Wedderburn decom-
position of FG with the identity matrix in Mni(F ) and zero matrices elsewhere. On the one hand,
it has a basis as a vector space over F the m elements zi. On the other hand, an element x of FG
is central if and only if gxg−1 = x for all g inG. It is as such that we see the center has for basis∑

g∈C g, for each conjugacy class C of G. The result follows.

(4) Let M be an irreducible left FG-module with nonzero element m ∈ M . Note that FG is
additively generated by the minimal left ideals from each Wedderburn component. Write them
as FGei for orthogonal idempotents ei ∈ FG summing to the identity. Then eim 6= 0 for some
ei, so since M is irreducible, FGeim = M and M is isomorphic to FGei. Now slightly abusing
notation, let the ei be such that the FGei are the m minimal left ideals that are isomorphically
distinct within each Wedderburn component. Suppose there were an ϕ isomorphism between FGei
and FGej as FG-modules for i 6= j. Then we would have ϕ(ei) = ϕ(eiei) = eiϕ(ei) = 0 since ei
annihilates FGej , a contradiction. Thus, the FGei are up to isomorphism the m unique irreducible
FG-modules.

In what follows, as is most typical in the literature, we shall only concern ourselves with F = C.
In the next section, we explore the basic methods of describing and calculating the invariants of the
irreducible complex representations of a finite group.

10 Character Theory

Given a representation ϕ : G → GLn(V ) over C, we define the (group) character of ϕ to be the
function ψ : G→ C given by the trace of the representation: ψ(g) = tr ϕ(g). Note that the trace of
a matrix/linear transformation is preserved under conjugation/change of basis, so a group character
is invariant under equivalency of representations. As well, for the same reason, a group character is
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an example of a class function, that is, a function C → F where C is the set of conjugacy classes of
G.

Consider the characters ψi afforded by them irreducible representations ϕi of G up to equivalence.
Then if zi is the identity of the ith matrix ring in the Wedderburn decomposition of CG, we see
ψi(zj) = ni if and only if i = j and ψi(zj) = 0 otherwise, so that the characters ψi are linearly
independent as class functions. This is important for the following reason: Suppose we had a
CG-module V that decomposed into irreducibles Wi in two different ways:

V ∼= a1W1 ⊕ a2W2 ⊕ ...⊕ amWm
∼= b1W1 ⊕ b2W2 ⊕ ...⊕ bmWm

where nWi = ⊕nj=1Wi. Then since the character of a direct sum is just the sum of the characters of
the summands, by linear independence of the irreducible characters we would have ai = bi for all i,
and the character ψ afforded by V would equal a unique integral sum of the irreducible characters.
We summarize the derived results in the following proposition.

Proposition 7. The representation of a group is uniquely determined up to equivalency by its
character, and the characters of a group are given by integral linear combinations of the irreducible
characters of the group.

Already we have a modest toolbox for computing so-called character tables, which display the
values of the irreducible characters of a group. For example, let us calculate that of S4:

S4 1 (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2
χ4 3
χ5 3

Here we have filled in two irreducible characters, that of the trivial representation (cf. Example
1), and that of the representation which multiplies a one-dimensional complex vector by the sign
of the permutation. Since χi(1) = ni, by Corollary 2(2) we calculate the degrees of the remaining
representations by solving the essentially unique integral solution to x2+y2+z2 = |S4|−12−12 = 22,
being (x, y, z) = (2, 3, 3).

Besides the trivial and regular representations of S4, we can naturally conjure up a 4-dimensional
representation of S4 given by ϕ(σ)(ei) = eσ(i) for i = 1, 2, 3, 4. If χ is the corresponding character,
then χ(σ) is the number of fixed points of σ and is given below:

S4 1 (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)

χ 4 2 1 0 0

Clearly, the only 1-dimensional complex subspace that is stable under this action is that generated
by e1 + e2 + e3 + e4, on which S4 acts trivially. Thus, χ decomposes as the sum of the trivial
character χ1 and a degree-3 character given by χ− χ1. We call it χ4:

S4 1 (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)

χ4 3 1 0 −1 −1

Suppose ϕ is a representation of degree n, and χ is a representation of degree 1. χ can be regarded
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as a multiplicative embedding into C; thus, the product χ · ϕ is also a representation acting on the
same space as ϕ, and the submodules of the corresponding CG-module are the same as that of ϕ.
In particular, if ϕ is irreducible, then so is χ · ϕ. In terms of characters, we have:

Lemma 2. If ψ is an irreducible character, and χ is a character of degree 1, then their product
χ · ψ is also an irreducible character.

Thus, our other irreducible degree-3 character is given by χ5 = χ2 · χ4. Finally, we note that the
regular character is given by ρ = n1χ1 + n2χ2 + n3χ3 + n4χ4 + n5χ5 = χ1 + χ2 + 2χ3 + 3χ4 + 3χ5;
thus we solve for χ3 and fill in the rest of the table:

S4 1 (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 −1 2 0
χ4 3 1 0 −1 −1
χ5 3 −1 0 −1 1

As we have seen, both constructive and nonconstructive techniques can be used to compute
the character table of a given group—we were able to determine the values of χ3 despite not
constructing any explicit action of S4 on a two-dimensional complex vector space (strictly speaking,
with some effort one could recover it from the Wedderburn decomposition and knowledge of every
other representation, which is what implicitly happened when we used the regular character to
deduce χ3). The scope of the tools that we could further explore—such as the orthogonality relations,
quotient characters, and induced characters—becomes almost unbounded in complexity, but since
the actual calculation of the character table for the Monster group is beyond the means of this
paper, we shall content ourselves with but a taste of the methods and theory.

11 Conclusion and Further Reading

The preceding twenty-odd pages were devoted to a very elementary exploration of two paths of re-
search aimed toward an understanding of the phenomenon of monstrous moonshine. Essentially, our
material can be summarized as follows: "There is a theory of complex-analytic functions satisfying
certain symmetries according to the action of the modular group Γ on H∗, in which context we may
particularize the j-invariant; independent of all this, there is a theory on the linear representation
of finite groups in which context we may particularize the Monster group. Data between these two
particularizations are related in unexpected ways."

We have been a bit more rigorous in our demonstration of the first theory and particularization
than the second—we explicitly constructed the j-invariant and derived its data that were of interest
to us, whereas we chose not to truly construct the Monster group nor derive its data. This decision
was made in the interest of brevity, difficulty, and moonshine-theoretic relevance ("There is still no
expanation of why the Monster exists that does not involve many pages of obscure calculations" [7]);
nonetheless, those interested in a rigorous treatment of the Monster are recommended to turn
to either Griess’s original construction, or Conway’s simplification thereof; those interested in a
rigorous treatment of its data (i.e. representation theory) are recommended to study the details of
the computer program utilized by Fischer, Livingstone, and Thorne [6] to calculate the character
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table of the Monster. Unfortunately (yet all the more intriguingly), nothing in these purely algebraic
treatments gives an obvious link with the j-invariant.

There is yet more to moonhsine, however, than we have let on. In fact, neither the j-invariant
nor the Monster group represent the extent of the deep connection between the theory of modular
forms and the theory of the representation of finite groups.

Complex-analytic generalizations: As we know, the degrees of the irreducible representations ϕi of
the Monster are no more than the corresponding characters applied to the identity: deg ϕi = χi(1).
If we instead examine the character values of nonidentity elements of the Monster, we also get
interesting numbers; this is the motivation behind the McKay Thompson series. It turns out that
when one changes the Monster element to which we apply the group characters, it corresponds to a
change in which congruence subgroup Γ′ we take from Γ (thus far we have simply taken Γ′ = Γ), of
which we then take the function field (that is, the field of meromorphic functions on the Riemann
surface given by the quotient of the action of Γ on H∗, called a modular curve), which has a
unique Hauptmodul (a normalized generating function for the function field; the j-invariant is the
Hauptmodul of the modular curve H∗/Γ, which is our Proposition 3 from Section 5), whose Fourier
coefficients perfectly embody the change. In other words, there is an association from conjugacy
classes of the Monster to certain Hauptmoduln via McKay Thompson series. Though there are 194
conjugacy classes/irreducible characters of the Monster (a surprisingly small number, considering
the group’s massive order), there are only 171 distinct McKay-Thompson series. [8]

Algebraic generalizations: Moonshine isn’t limited to the Monster group, or at least it is no
longer. There are data from the character tables of many of the "happy" simple groups (those 20 of
the 26 sporadic simple groups arising as quotients of subgroups of the Monster; the rest are called
pariahs) which originally suggested similar moonshine should occur for them, and methods inspired
by Borcherds’s landmark proof have confirmed this. [7] There is also evidence of the Rudvalis
group—a pariah—being subject to similar phenomena. [5]

Lie theory: If K is the smaller of the two conjugacy classes of involutions of the Monster, then
the product of any two of these involutions will lie in one of merely nine conjugacy classes, with
orders 1, 2, 2, 3, 3, 4, 4, 5, 6. These correspond with the vertex labels of the E8 Dynkin diagram.
With some slight massaging, we can also obtain similar links between the Baby Monster and the
F4 diagram, and the Fischer-24 group and the G2 diagram. [8]
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The proof of the moonshine conjectures depends on several coincidences. Even the existence of
the monster seems to be a fluke in any of the known constructions: these all depend on long, strange
calculations that just happen to work for no obvious reason, and would not have been done if the
monster had not already been suspected to exist. Then the dimension of the Leech lattice just happens
to be just 2 less than the critical dimension 26 of string theory, which is just what is needed for the
no-ghost theorem to be used to construct the monster Lie algebra. The monster Lie algebra just
happens to have a Weyl vector, which is extremely unusual for algebras constructed like this, and
means that its simple roots can be described explicitly. [7]

27



References

[1] M. Aschbacher, "The status of the classification of the finite simple groups", Notices of the
American Mathematical Society, 2004. 51 (7). pp. 736–740

[2] J. Conway, "A simple construction for the Fischer–Griess monster group", Inventiones Mathe-
maticae, 1985. 79 (3): 513–540.

[3] J. Conway and S. Norton, "Monstrous Moonshine", Bull. London Math, 1979. Soc. 11 (3):
308–339

[4] D. Dummit and R. Foote, Abstract Algebra, New Jersey: Wiley, 2004

[5] J. Duncan, "Moonshine for Rudvalis’s sporadic group I", arXiv:math/0609449

[6] B. Fischer, D. Livingstone, M. P. Thorne, "The characters of the ’Monster’ simple group",
Birmingham, 1978

[7] T. Gannon, "Moonshine beyond the monster: The bridge connecting algebra, modular forms
and physics", Cambridge Monographs on Mathematical Physics, Cambridge University Press,
Cambridge, Massachusetts, 2006

[8] T. Gannon, "Monstrous Moonshine: The first twenty-five years", Bull. London Math, 2006. Soc.
38 (1): 1–33.

[9] R. Griess, "The friendly giant", Inventiones Mathematicae, 1982. 69 (1): 1–102.

[10] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984

[11] S. Lang, Introduction to Algebraic and Abelian Functions, Addison Wesley, 1972

[12] L. Mordell, "On Mr. Ramanujan’s empirical expansions of modular functions", Proceedings of
the Cambridge Philosophical Society, 1917. 19: 117–124.

28


