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Abstract

Chagas disease is a parasitic vector borne illness which infects mammals, including humans, and

exists predominantly in Latin and South America. This paper will present a mathematical model

consisting of 29 coupled differential equations, some with delays, which attempts to characterize the

key aspects of Chagas disease dynamics in the Gran Chaco region of South America. For an example

village, these equations model the population of vectors in in the domestic and peridomestic regions,

infected vectors in the domestic and peridomestic, as well as susceptible and infected humans,

infected dogs, and infected mammals. As an addition to this model, an equation describing wild

populations of vectors (sylvatic) and transfer to the domicile from these populations is now included.

This model also attempts to create a more accurate portrayal of the vector populations by including

the presence of vector nymph stages into all vector populations (except the sylvatic). The main

interest for this work is to provide a tool in the form of computational simulations to test different

scenarios that will aid researchers in potentially discovering and exploring avenues that will reduce

disease incidence in humans and to eradicate it, if possible.

1



Introduction and Current Research

Chagas disease is a vector borne disease which is caused by the parasite Trypansoma cruzi. The

vector responsible for much of the domestic infection in South America is Triatoma infestans,

better known as the kissing bug. Chagas disease results in fatal complications for approximately

twenty to thirty percent of people infected [3,4]. The Gran Chaco region in South America has a

significantly large percentage of its population infected with the disease, so it is of particular interest

to researchers [12]. It is, as of now, unclear what the best strategy for reducing the population of

vectors infected with the parasite would be. Insecticide spraying has shown large success in many

other areas of South America, but the disease reducution measures become less than effective in the

Chaco for a number of reasons, such as the poor structure of homes in this area and the presence of

disease carrying mammals in the home [2]. In order to test different scenarios of pesticide spraying,

mathematicians at Oakland University in particular, as well as others, developed a mathematical

model of the disease dynamics in the Gran Chaco region using a system of differential equations.

Among many factors, this model took into account the domestic mammals living within homes, as

well as the typical vector lifespan and the way vectors become infected from blood sources described

in Gürtler [16]. Using many parameters based on these real world conditions related to the disease,

a model was formulated to fit the biological data. Numerical algorithms, namely the Runga Kutta

method, were implemented to solve the equations and computer simulations were created. They

ultimately showed that annual pesticide spraying was not effective if discontinued after a certain

length of time [11]. A newer model was then developed to account for the carrying capacity of the

vector population, and interrupted pesticide spraying was simulated. This research indicated that

spraying was only effective if it was consistent [10]. Finally, a more complete model was created that

takes into account the domestic animals living in the peridomestic, as well as human population

growth as a whole. This model considered a number of conditions, such as the use of protective

netting and vector migration, and the final disease incidence was simulated [12].

However, previous models have operated under a simplified treatment of the vectors in which

the vector population is considered as one unit, while in contrast, Triatominae vectors pass through

five instar nymph stages and an adult stage [29]. It has been suggested that vectors in different

stages may transfer or carry Trypanosoma cruzi infection at different rates [15]. Vectors in early
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stages, having taken fewer blood meals, may be less likely to carry the disease; yet, being smaller in

size, younger vectors may also have greater success in obtaining blood meals due to a decreased risk

of the host noticing the vector and brushing it off, an irritability factor [15]. Additionally, the stage

of a vector may be a key factor in the effectiveness of insecticide spraying, particularly in regards to

the time of the year insecticides are sprayed [29]. Previous models have simulated spraying during

the spring, the time during which spraying occurs for current insecticide treatment plans in the

Chaco [12,30]. However, suggestions of spraying annually at a different time of the year have been

proposed in particular due to stage structure of Triatominae populations and their ability to recover

from a spraying event [29]. For these reasons, as well as enhanced biological accuracy, the stage

structure of vector populations is of interest to be incorporated into a mathematical model. The

updated model explored in this paper will not be used here to assess each of these considerations

individually, but rather provide a general framework from which these issues and many others can

be explored in the future.

In addition to the yet unknown impact of vector stages on disease outcomes, the reinfestation

of domestic areas after insecticide spraying is a major concern [5]. There have been studies done

indicating the potential for sylvatic (wild) foci of kissing bugs which may carry disease. If even one

of these vectors is near enough to a village to be able to successfully migrate to a domestic area- even

if that village has been treated with insecticides- the sylvatic vector could reintroduce the disease to

the village; therefore, migration from the sylvatic could contribute to vector population recovery

and thus account for the failure of spraying programs in the Gran Chaco [6]. It was previously

thought that sylvatic vectors did not migrate to villages, but rather remained entirely distinct from

the domestic populations. However, recent studies have found evidence of unrestricted gene flow

between sylvatic vector populations and domestic vector populations in the Gran Chaco region.

This evidence suggests that transfer of sylvatic vectors could be, at least in part, responsible for

population resurgence after insecticide spraying [6].

In this study, analysis of vector life stages and sylvatic vector migration in relationship to disease

outcomes are the two primary concerns under investigation. Here, we expand the model to simulate

the spread of Chagas Disease from sylvatic foci and introduce vector life stages to the model. We

then use this enhanced model to analyze the impact of control strategies where possible, and also
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analyze the role of certain parameters in this model.

Materials and Methods

Introduction

This model has been developed over a period of several years at Oakland University [7] [8] [9] [10]

[11] [12]. Specifically, this work deals with an expansion of the model that was studied in the paper

titled “A Mathematical Model of Chagas Disease Dynamics in the Gran Chaco Region” [12]. Any

data that has been analyzed and incorporated into this model characterizes disease dynamics in

the Gran Chaco region in South America in particular. All research and analysis was done in a

collaborative fashion with a team of students and faculty, so for the sake of simplicity, I will use “we”

to refer to this team for the duration of this paper. This model considers similar populations as in

the previous papers by modeling domestic vectors, infected domestic vectors, peridomestic vectors,

infected peridomestic vectors, infected humans, susceptible humans, infected domestic mammals

(referred to as dogs), and infected peridomestic mammals. However, this model differs from previous

models in that it takes into account the developmental stages of the domestic and peridomestic

vectors and their infected subpopulations. This model includes equations for each of the five instar

nymph vector stages for the domestic, peridomestic, infected domestic, and peridomestic vector

populations, as well as an adult stage for each population. The egg stage is not considered separately,

as eggs are not agents of disease transmission to humans, and their presence is accounted for in the

growth term of the first instar stage. In addition, a new equation has been created to model sylvatic

vector populations and their migration into the domestic. We do not consider sylvatic vectors in

different stages, as the ones pertinent to disease outcomes are only the adult sylvatic vectors, which

can migrate [14,18]. We also do not consider infected sylvatic vectors apart from the total sylvatic

population.

We turn to describe the model. First, we define the variables. Let V` = V`(t) represent the

number of domestic vectors in instar stage `, where here and below ` = 1, . . . , 5, at time t; let

VA = VA(t) be the number of adult domestic vectors; let Vi` = Vi`(t) be the number of infected

domestic vectors in instar stage `; let VAi = VAi(t) be the number of infected adult domestic vectors;
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let W` = W`(t) be the total number of peridomestic vectors in instar stage `; letWA = WA(t)

be the number of adult peridomestic vectors at time t; let Wi` = Wi`(t) be the total number of

infected peridomestic vectors in instar stage `; let WAi = WAi(t) be the number of infected adult

peridomestic vectors; let S = S(t) be the number of sylvatic vectors; let Ns = Ns(t) be the number

of susceptible humans; let Ni = Ni(t) be the number of infected humans; let Di = Di(t) be the

number of infected dogs; let Mi = Mi(t) be the number of infected peridomestic mammals; Let

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + VA(t),

be the total number of domestic vectors; let

Vi(t) = V1i(t) + V2i(t) + V3i(t) + V4i(t) + V5i(t) + VAi(t),

be the total number of infected domestic vectors; let

W (t) = W1(t) +W2(t) +W3(t) +W4(t) +W5(t) +WA(t),

be the total number of peridomestic vectors; let

Wi(t) = W1i(t) +W2i(t) +W3i(t) +W4i(t) +W5i(t) +WAi(t)

be the total number of infected peridomestic vectors; let N(t) = Ns(t) +Ni(t) be the total number

of humans; let D(t) be the total number of dogs; let M(t) be the total number of mammals; and let

C(t) be the number of chickens. Here, the total dog, mammal, and chicken populations do not have

separate equations in the model. Rather, we estimate their values using data in [16] [17].

Domestic Vectors

We will first outline the equations which are used to model the domestic vector populations. We

begin by reviewing instar stage 1.
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Domestic Vectors Instar Stage 1

For the domestic vectors, the growth term from birth is in the first instar stage, as this is the first

vector stage after the egg. As in previous papers, the growth term for domestic vectors is modeled

using a delay logistic equation:

dh(t− τ)VA(t− τ)

(
1− V (t− τ)

KV

)
+

where τ is the gestation time of the vectors, KV is the carrying capacity of the total domestic vector

population, dh(t− τ) is the egg hatching rate, and f+(t) = max{f(t), 0}, i.e., the largest value of

f(t) and 0 (which is also called the positive part of f(t)). The egg hatching rate is dependent on the

biting rate of the vectors when the female lays eggs at time t− τ . This, consequently, means that

the hatching rate is also related to the blood supply for vectors at time t− τ . Vectors lay eggs once

they have had a complete blood-meal. Hence, the larger the blood supply, the more females will be

able to bite, and the more eggs the female vectors will ultimately lay [14]. Using this information

and incorporating the following information: the blood supply dependent biting rate B(t− τ), the

number of eggs a female vector lays after one blood-meal φl, the proportion of the adult vector

population that are females v, and the proportion of eggs which successfully hatch into vectors φh,

we get that the egg hatching rate is given by the equation

dhj (t− τ) = vφlφhB(t− τ).

Let the blood supply of the domestic vectors be bsup(t), which is the combined blood supply of

humans, dogs kept in the home, and chickens kept in the home [13,14]. In nature, vectors tend to

choose one host over another; to accommodate this in the model, we weight the animal populations

in the blood supply function in terms of “human factors,” which are the number of humans that one

animal is equivalent to in regards to the choice of vector hosts for feeding [16,19]. Here, we denote

the human factor of one dog by df and that of a chicken by cf . It is then necessary to consider how
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available each prospective host in the domestic is for feeding. Availability is influenced by a variety

of factors, such as bed nets for humans, or where the dogs sleep [14]. We will define the availability

parameters as the proportion of a given population which is available for biting. We denote the

availability at time t of humans by aN (t), that of domestic dogs by aDh(t), and that of domestic

chickens by aCh(t) . With this in mind, we get that the total blood supply for the domestic vectors

is given by the expression

bsup(t) = aN (t)N(t) + dfaDh(t)D(t) + cfaCh(t)C(t).

A biting function is then created using a Holling Type II response, as was done in previous

papers, in which we need to use the blood supply. This type of function was chosen due to the fact

that the final biting rate B(t) is dependent on ambient temperature, a seasonal biting rate b(t), and

blood meals [23]. So,

B(t) = b(t)

(
β

bmax

)(
bsup(t)

bsup(t) +Ab(t)

)
,

where β is the maximum number of daily feedings per vector, and bmax is the maximum value of

the seasonal biting rate b(t). Ab(t) is chosen so that

(
β

bmax

)(
bfixed(t)

bfixed(t) +Ab(t)

)
= 1

holds. So, if bsup(t) = bfixed(t), where bfixed(t) is the blood supply specifically given in [14], then

we have that B(t) = b(t), i.e. the density dependent biting rate matches the seasonal biting rate

b(t) from data. So, the biting function has been constructed, and the growth term is complete.

Note that if the population is over the carrying capacity, the value of
(

1− V (t−τ)
KV

)
is negative, and

growth would halt, by the definition of f+(t).

Vectors in any stage also have a natural death rate; for this equation, d1 is the natural death

rate for all vectors in the first instar stage that do not live to molt into the second stage. Hence,
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natural death for stage one can be modeled by

d1(t)Vj1(t).

Next, there is a death associated with each stage due to the population going over the carrying

capacity. To account for this, we add the term

dk1V1(t)

(
1− V (t)

KV

)
−

where dk1 is the death rate due to exceeding carrying capacity for the first instar stage and

f−(t) = min{f(t), 0}, denotes the minimum of f(t) and 0. In this way, death due to overpopulation

will only occur when the population is over the carrying capacity.

We then account for death which occurs due to insecticide spraying. In this model, we assume

that there are a certain number of vectors Vmin which survive each incidence of spraying. The

fraction of these surviving vectors from the 1st instar population are Vmin
V1(t)
V (t) . So, we assume that

all but the proportion of Vmin in the V1 population are available for spraying. The death of the V1

population due to insecticide spraying is then

−r(t)
(
V1(t)− Vmin

V1(t)

V (t)

)
+

,

where r(t) is the mortality rate due to spraying available vectors. We define said yearly periodic

active spraying mortality function r(t) with the first year given by

r(t) =


0, 0 ≤ t < t1(

e−λ(t−t1)
2 − e−1/2

)
r̄max, t1 ≤ t ≤ t2

0, t2 < t ≤ 365

with t1 = 212.5, t2 = 303.75, and

λ =
1

2(91.25)2
, r̄max =

1

1− e−1/2
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as defined in [11].

Lastly, vectors can leave this population by molting to the next stage. The rate of transfer of

vectors out of stage 1 and into the next is modeled by

−µ1V1(t),

where µ1 is the proportion of V1 which successfully molts into the next stage, taken directly from [29].

Thus, the complete equation used to model the rate of change of the domestic vectors in the

first instar stage is

dV1
dt

= dh(t− τ)VA(t− τ)

(
1− V (t− τ)

KV

)
+

− d1V1(t)

+dk1V1(t)

(
1− V (t)

KV

)
−
− r(t)

(
V1(t)− Vmin

V1(t)

V (t)

)
+

− µ1V1(t).

Domestic Vectors Instar Stages 2 through 5

The equations modeling stages 2 through 5 have the same general form of growth, death, and

transfer terms associated with them. For this set of equations, each parameter with an ` subscript is

specific to instar stage `. Note that the growth of each stage depends on transfer from the previous

stage.

So, the only growth associated with these populations is the transfer from the previous stage,

here modeled as

µ`−1V`−1(t),

where ` = 2, . . . , 5. The death terms associated with natural death rate d`, overpopulation, and

insecticide spraying are analogous to those in stage 1. Similarly, there is also a proportion of each

instar stage that molts into the next stage, represented by µ`. Thus, the equations modeling instar

stages ` = 2, . . . , 5 are:

dV`
dt

= µ`−1V`−1(t)− d`V`(t) + dk`V`(t)

(
1− V (t)

KV

)
−
− r(t)

(
V`(t)− Vmin

V`(t)

V (t)

)
+

− µ`V`(t).
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Domestic Adult Vectors

Finally, we model the adult domestic vector population. Here, growth due to molting, natural death

rate, death due to overpopulation, and death due to spraying are analogous to previous stages.

In addition to this, we keep the feature of previous models which assumes a density-dependent

transfer of ρ number of vectors per day between the domestic and the peridomestic, modeled by

ρ

(
WA(t)

KW
− VA(t)

KV

)
, (1)

where KW is the carrying capacity of the peridomestic vectors W . This transfer term is included only

in the adult vector stages due to the lower instar stages being unable to migrate any considerable

distance [14].

Lastly, we enhance the model by adding a term for the transfer of vectors to the domestic from

the sylvatic population. Assuming a certain percentage α transfers to the domestic as based on a

proportion of vectors in the domestic to the total combined vectors, we have the added term

αS(t)

(
KV

KV +KW

)
. (2)

So, the adult domestic vector rate of growth equation is

dVA
dt

= µ5V5(t)− dAVA(t) + dkAVA(t)

(
1− V (t)

KV

)
−
− r(t)

(
VA(t)− Vmin

VA(t)

V (t)

)
+

+ρ

(
WA(t)

KW
− VA(t)

KV

)
+ αS(t)

(
KV

KV +KW

)
.

Infected Domestic Vectors

As was done for the total domestic vector population, the infected vector population follows the

same vector stage format.
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Infected Domestic Vectors Instar Stages 1-5

Here, all five infected domestic instar stages have equations for the rate of growth of the same form.

Growth of these populations occurs when a susceptible vector becomes infected through biting an

infected human or dog [19]. Therefore, the growth terms of the infected populations in all stages of

domestic vectors depend on the bites per vector per day in that stage, the number of susceptible

vectors in that stage, and the fraction of bites that result in infection of the vector. The probabilities

of an infected dog and an infected human infecting a vector through one blood meal are PDV and

PNV , respectively. So, for ` = 1, . . . , 5,

B(t) (V`(t)− V`i(t))
(
PNV`aN (t)Ni(t) + PDV`dfaDh

(t)Di(t)

bsup(t)

)

represents the growth of the infected vectors in stage `. Note that V`(t)− V`i(t) is the susceptible

vector population in stage ` and the fraction represents the fraction of bites that result in infection.

Also, the only animals from which vectors can take a blood meal and become infected in the domestic

are humans and dogs; chickens can provide blood-meals but do not carry the disease [11].

The death rates associated with each stage are assumed to be the same between the infected

and total populations. Therefore, the final equations for infected domestic vectors in the instar

stages are for ` = 1, . . . , 5,

dV`i
dt

= B(t) (V`(t)− V`i(t))
(
PNV`aN (t)Ni(t) + PDV`dfaDh

(t)Di(t)

bsup(t)

)
−d`V`i(t) + dk`V`i(t)

(
1− V (t)

KV

)
−
− r(t)

(
V`i − Vmin

V`i
V (t)

)
+

Infected Domestic Adult Vectors

The only difference in the structure of the mathematical equations between infected domestic instars

and infected domestic adults are the added transfer terms, which represent the mobility between

the vectors inside the houses and those outside, from the peridomestic and sylvatic that are present

only in the adult vector populations. The transfer term from peridomestic is analogous to that in

the equation for the total domestic vector population. Let ε be the fraction of the sylvatic vector
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population that is infected. Then, the final equation for infected domestic adult vectors is

dVAi

dt
= B(t) (VA(t)− VAi(t))

(
PNVAaN (t)Ni(t) + PDVAdfaDh

(t)Di(t)

bsup(t)

)
−dAVAi(t) + dkAVAi(t)

(
1− V (t)

KV

)
−
− r(t)

(
VAi − Vmin

VAi

V (t)

)
+

+ρ

(
WAi(t)

KW
− VAi(t)

KV

)
+ αS(t)ε

(
KV

KV +KW

)
.

Peridomestic Vectors

The peridomestic vector equations are very similar to those of the domestic vectors. However, slight

changes arise due to the differences in the animals present in the peridomestic as compared to the

domestic. All changes are outlined below.

Peridomestic Vectors Instar Stage 1

Just as growth of the domestic vectors was dependent upon a hatching rate, so is the growth of the

peridomestic. As before, a hatching rate is dependent upon a biting rate, which is dependent upon

blood supply. Here, the blood supply changes slightly as the animals present in the peridomestic

are outdoor dogs, chickens, and mammals. Humans are not a part of this blood supply [14]. So, let

b∗sup(t) = dfaDp(t)D(t) +mfaM (t)M(t) + cfaCp(t)C(t)

be the peridomestic blood supply, where aDp(t) is the availability of peridomestic dogs, aM (t) is the

availability of mammals, and aCp(t) is the availability of peridomestic chickens at time t. Here, mf

is the human factor of one mammal, similar to chicken and dog factors discussed above. So, a new

biting rate for the peridomestic vectors is

B∗(t) = b(t)

(
β

bmax

)(
bsup∗(t)

bsup∗(t) +Ab(t)

)
,

and the peridomestic hatching rate is

d∗h(t− τ) = vφlφhB
∗(t− τ).
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With this slight difference, all other terms in the peridomestic instar stage 1 equation are similar

to those of the domestic instar stage 1 equation. Therefore, the final rate of growth equation for the

peridomestic instar stage 1 is

dW1

dt
= d∗h(t− τ)WA(t− τ)

(
1− W (t− τ)

KW

)
+

− d1W1(t)

+dk1W1(t)

(
1− V (t)

KW

)
−
− r(t)

(
W1(t)−Wmin

W1(t)

W (t)

)
+

− µ1W1(t).

Peridomestic Vectors Instar Stages 2 through 5

The dynamics of the peridomestic instar stages 2 through 5 are entirely comparable to the dynamics

of the stages in the domestic. Their equations are given below. For ` = 2, . . . , 5,

dW`

dt
= µ`−1W`−1(t)− d`W`(t) + dk`W`(t)

(
1− W (t)

KW

)
−

−r(t)
(
W`(t)−Wmin

W`(t)

W (t)

)
+

− µ`W`(t).

Peridomestic Adult Vectors

Again, the dynamics of the adult peridomestic vectors are comparable to the adult vectors in the

domestic. Note that the transfer term between the domestic and peridomestic here has a negative

sign to account for the change in the direction of movement. Aside from this change, the equation

is similar to that of the adult domestic vectors. Therefore, we have that

dWA

dt
= µ5W5(t)− dAWA(t) + dkAWA(t)

(
1− W (t)

KW

)
−
− r(t)

(
WA(t)−Wmin

WA(t)

W (t)

)
+

−ρ
(
WA(t)

KW
− VA(t)

KV

)
+ αS

(
KW

KV +KW

)
.

Infected Peridomestic Vectors

As before, the equations here are very similar to the equations for domestic infected vectors. The

key change, again, is the blood supply associated with the peridomestic area.

13



Infected Peridomestic Vectors Instar Stages 1 through 5

The structure of the growth term of the infected peridomestic instars is similar to the infected

domestic instars. However, in order to obtain the fraction of bites that result in infection, we

must now consider transmission from mammals and dogs, the only transmitting animals in the

peridomestic. Here, PMV` describes the probability of a vector being infected from a blood meal of

an infected mammal. So we have that for ` = 1, . . . , 5,

dW`i

dt
= B∗(t) (W`(t)−W`i(t))

(
PMV`aM (t)mfMi(t) + PDV`dfaDp(t)Di(t)

b∗sup(t)

)
−d`W`i(t)− dk`W`i(t)

(
1− W (t)

KW

)
−
− r(t)

(
W`i −Wmin

W`i

W (t)

)
+

.

Infected Peridomestic Adult Vectors

For the last infected peridomestic vector equation, all terms are analogous to before, including

transfer from sylvatic and transfer between the domestic and peridomestic. So, we have

dWAi

dt
= B∗(t) (WA(t)−WAi(t))

(
PMVAaM (t)mfMi(t) + PDVAdfaDp(t)Di(t)

b∗sup(t)

)
−dAWAi(t) + dkAWAi(t)

(
1− W (t)

KW

)
−
− r(t)WAi(t)

(
WAi −Wmin

WAi

W (t)

)
+

−ρ
(
WAi(t)

KW
− VAi(t)

KV

)
+ αεS(t)

(
KW

KV +KW

)
.

Sylvatic Vectors

The sylvatic vector population is modeled with a delay logistic equation. Based on information

in [6], it appears as though resources in the environment limit the growth of the sylvatic vector

population, so the presence of a carrying capacity is reasonable. Let δ be the logistic growth (and

decay) rate of S(t). Again, let α be the fraction of the sylvatic population that transfers to the

domestic and peridomestic areas and KS be the sylvatic vector carrying capacity. We then have

dS

dt
= δS (t− τ)

(
1− S(t− τ)

KS

)
− αS(t)
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for our differential equation modeling the sylvatic population.

Susceptible Humans

This next section develops the equation describing susceptible humans. As in previous models, we use

a logistic model. Let GN be the natural growth rate of humans with unlimited resources, and let PNN

be the probability that an infected mother passes on the disease to her child congenitally [20] [21] [22].

The logistic growth term for the susceptible humans becomes

GN (Ns(t) + (1− PNN )Ni(t))

(
1− N(t)

KN

)
+

,

where 1− PNN is the probability that an infected mother does not pass on the disease to her child,

and KN is the human carrying capacity. We assume that susceptible and infected mothers give

birth at the same rate, and thus GN is universal for the human population.

The death rate of humans is described by an exponential model here. So, given that γNs is the

per day death rate of susceptible humans, we have that our death term is

−γNsNs(t).

Finally, a susceptible human can leave the population by becoming infected. The term describing

loss due to infection is

−B(t)

(
PV NaN (t)Ns(t)

bsup(t)

)
Vi(t),

which is the number of bites per day by infected vectors and the fraction of those bites which result

in infection to humans. Due to lack of data, we assume that bites from infected vectors in any stage

have the same probability of infecting a human PV N .
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These terms combine to give our final equation for susceptible humans,

dNs

dt
= GN (Ns(t) + (1− PNN )Ni(t))

(
1− Ns(t) +Ni(t)

KN

)
+

−γNsNs(t)−B(t)

(
PV NaN (t)Ns(t)

bsup(t)

)
Vi(t).

Infected Humans

The structure of the model representing the infected human population is very similar to that of

the susceptible human population. However, the only humans that can be born with the disease

must have passed the disease congenitally from an infected mother [20]. Here, we also assume the

death rate for infected humans, γNi , is different than that of susceptible humans, as humans with

the disease would tend to live shorter lives on average than those without the disease [21]. Finally,

the humans that become infected and “transfer” out of the susceptible human population are now

added to this infected human population. Therefore, the equation for infected humans is

dNi

dt
= GNPNNNi(t)

(
1− Ns(t) +Ni(t)

KN

)
+

−γNiNi(t) +B(t)

(
PV NaN (t)Ns(t)

bsup(t)

)
(Vi(t)).

Infected Dogs

To model the infected dog population, we first consider the given total dog population D(t). Suppose

that susceptible and infected dogs both die exponentially, and let the rate γDs be the death rate

for susceptible dogs and γDi the death rate for infected dogs. Let ω(t) be the growth rate for dogs.

Then we would have that

D′(t) = ω(t)D(t)− γDs(D(t)−Di(t))− γDiDi(t).

Therefore, using the known value of D′(t), we can solve to get

ω(t) =
D′(t)

D(t)
+ γDs + (γDi − γDs)

Di(t)

D(t)
.

16



Similarly to humans, infected dogs can only be born to infected mothers SOURCE NEEDED. Let

PDD be the probability of congenital transmission to dogs. Then the birth term for infected dogs is

given by

PDD

(
D′(t)

D(t)
+ γDs + (γDi − γDs)

Di(t)

D(t)

)
Di(t).

Similarly to infected humans, dogs can enter this population by becoming infected. The growth

term due to infection is similar to the one for infected humans, but since portions aDh(t) and aDP

of the dog population reside in both the domestic and the peridomestic respectively, two terms must

be added to account for the biting rates of the domestic and peridomestic vectors individually. As

such, we will add both

B(t)
PV Db

dfaDh(t) (D(t)−Di(t))

bsup(t)
Vi(t)

and

B∗(t)
PV Db

dfaDp(t) (D(t)−Di(t))

b∗sup(t)
Wi(t).

Finally, with the typical death term γDiDi(t) added, we get that

dDi

dt
= PDD

(
D′(t)

D(t)
+ γDs + (γDi − γDs)

Di(t)

D(t)

)
Di(t)− γDiDi(t)

+

(
B(t)

PV Db
df

bsup(t)

)
aDh

(t) (D(t)−Di(t)) (Vi(t))

+

(
B∗(t)

PV Db
df

b∗sup(t)

)
aDp(t) (D(t)−Di(t)) (Wi(t)).

Infected Mammals

Finally, the last population to consider in our model is the infected mammals. This equation is

comparable to that of infected dogs. However, growth due to infection can occur here only in the

peridomestic, as mammals that are not domestic do not live inside the home. Hence, the mammal
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equation can be expressed by

dMi

dt
= PMM

(
M ′(t)

M(t)
+ γMs + (γMi − γMs)

Mi(t)

M(t)

)
Mi(t)− γMiMi(t)

+

(
B∗(t)

PVMb
mf

b∗sup(t)

)
aM (t) (M(t)−Mi(t)) (Wi(t)).

The Full Model

The full model has now been developed, and it describes the rate of growth of the populations

V1, . . . , V5, VA, V1i , . . . , V5i , VAi , W1, . . . ,W5, WA,

W1i , . . . ,W5i ,WAi , S, Ns, Ni, Di, Mi,

given by the following 29 coupled system of differential equations:

dV1
dt

= dh(t− τ)VA(t− τ)

(
1− V (t− τ)

KV

)
+

−d1V1(t) + dk1V1(t)

(
1− V (t)

KV

)
−
− r(t)

(
V1(t)− Vmin

V1(t)

V (t)

)
+

− µ1V1(t),

for ` = 2, . . . , 5,

dV`
dt

= µ`−1V`−1(t)− d`V`(t) + dkellV`(t)

(
1− V (t)

KV

)
−
− r(t)

(
V`(t)− Vmin

V`(t)

V (t)

)
+

− µ`V`(t),

dVA
dt

= µ5V5(t)− dAVA(t) + dkAVA(t)

(
1− V (t)

KV

)
−
− r(t)

(
VA(t)− Vmin

VA(t)

V (t)

)
+

+ρ

(
WA(t)

KW
− VA(t)

KV

)
+ αS(t)

(
KV

KV +KW

)
,
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for ` = 2, . . . , 5,

dV`i
dt

= B(t) (V`(t)− V`i(t))
(
PNV`aN (t)Ni(t) + PDV`dfaDh

(t)Di(t)

bsup(t)

)
−d`V`i(t) + dk`V`i(t)

(
1− V (t)

KV

)
−
− r(t)

(
V`i − Vmin

V`i
V (t)

)
+

,

dVAi

dt
= B(t) (VA(t)− VAi(t))

(
PNVAaN (t)Ni(t) + PDVAdfaDh

(t)Di(t)

bsup(t)

)
−dAVAi(t) + dkAVAi(t)

(
1− V (t)

KV

)
−
− r(t)

(
VAi − Vmin

VAi

V (t)

)
+

+ρ

(
WAi(t)

KW
− VAi(t)

KV

)
+ αS(t)ε

(
KV

KV +KW

)
,

dW1

dt
= d∗h(t− τ)WA(t− τ)

(
1− W (t− τ)

KW

)
+

−d1W1(t) + dk1W1(t)

(
1− V (t)

KW

)
−
− r(t)

(
W1(t)−Wmin

W1(t)

W (t)

)
+

− µ1W1(t),

for ` = 2, . . . , 5,

dW`

dt
= µ`−1W`−1(t)− d`W`(t) + dk`W`(t)

(
1− W (t)

KW

)
−
− r(t)

(
W`(t)−Wmin

W`(t)

W (t)

)
+

− µ`W`(t),

dWA

dt
= µ5W5(t)− dAWA(t) + dkAWA(t)

(
1− W (t)

KW

)
−
− r(t)

(
WA(t)−Wmin

WA(t)

W (t)

)
+

−ρ
(
WA(t)

KW
− VA(t)

KV

)
+ αS

(
Kw

Kv +Kw

)
,
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for ` = 2, . . . , 5,

dW`i

dt
= B∗(t) (W`(t)−W`i(t))

(
PMV`aM (t)mfMi(t) + PDV`dfaDp(t)Di(t)

b∗sup(t)

)
−d`W`i(t)− dk`W`i(t)

(
1− W (t)

KW

)
−
− r(t)

(
W`i −Wmin

W`i

W (t)

)
+

,

dWAi

dt
= B∗(t) (WA(t)−WAi(t))

(
PMVAaM (t)mfMi(t) + PDVAdfaDp(t)Di(t)

b∗sup(t)

)
−dAWAi(t) + dkAWAi(t)

(
1− W (t)

KW

)
−
− r(t)WAi(t)

(
WAi −Wmin

WAi

W (t)

)
+

−ρ
(
WAi(t)

KW
− VAi(t)

KV

)
+ αSε

(
KW

KV +KW

)
,

dS

dt
= δS (t− τ)

(
1− S(t− τ)

KS

)
− αS(t), (3)

dNs

dt
= GN (Ns(t) + (1− PNN )Ni(t))

(
1− Ns(t) +Ni(t)

KN

)
+

−γNsNs(t)−B(t)

(
PV NaN (t)Ns(t)

bsup(t)

)
(Vi(t)),

dNi

dt
= GNPNNNi(t)

(
1− Ns(t) +Ni(t)

KN

)
+

−γNiNi(t) +B(t)

(
PV NaN (t)Ns(t)

bsup(t)

)
(Vi(t)),
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dDi

dt
= PDD

(
D′(t)

D(t)
+ γDs + (γDi − γDs)

Di(t)

D(t)

)
Di(t)− γDiDi(t)

+

(
B(t)

PV Db
df

bsup(t)

)
aDh

(t) (D(t)−Di(t)) (Vi(t))

+

(
B∗(t)

PV Db
df

b∗sup(t)

)
aDp(t) (D(t)−Di(t)) (Wi(t)),

dMi

dt
= PMM

(
M ′(t)

M(t)
+ γMs + (γMi − γMs)

Mi(t)

M(t)

)
Mi(t)− γMiMi(t)

+

(
B∗(t)

PVMb
mf

b∗sup(t)

)
aM (t) (M(t)−Mi(t)) (Wi(t)).

Mathematically, the problem consists of finding all the values of these 29 variables on a prescribed

time interval 0 ≤ t ≤ T , once the initial conditions (at t = 0) have been specified for each population.

The model is very complex, however, it follows from the general theory of Systems of Ordinary

Differential Equations that for each choice of initial conditions there exists a unique (local) solution.

In this work, we are next interested in the numerical simulations of this model. These indicate

the possible behaviors of the populations and allow for the prediction of future developments. In

particular, they allow researchers to ‘test’ different intervention strategies, such as adding nets,

spraying more often, and so on.

Results and Discussion

Here, we will present and discuss results that were found using this model. All simulations were

done with a program writen in C++ by a team coordinating with Oakland University, and which

uses the Runga Kutta numerical method to solve the system of differential equations. The results

were then plotted using R.

First, we consider a baseline simulation of the model. The baseline for this model will include

insecticide spraying in the manner done in previous papers, but will now incorporate the dynamics
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of the stages as well. As stated above, any parameters for which we have data have been determined

based on research done in the Gran Chaco region of South America. This initial simulation will not

include the sylvatic population, as the effects of the sylvatic population on disease resurgence will

be discussed later as a variation on this model. After the baseline, the results of incorporating the

stages of the vector populations into the model as compared to a simulation without the stages

will be discussed, then we analyze the effects of the sylvatic population on disease resurgence, and

finally, we will consider results obtained from varying the parameters for the availability of humans

and for death due to overpopulation.

Baseline

We will first outline all values which will be used for parameters in this baseline simulation. Table

1 lists all constant parameters used in the baseline simulation. The exception to this is that our

baseline simulation does not include the sylvatic equations, i.e. the initial value for the sylvatic

population is set to 0. However, the table will still include the typical sylvatic values used in

subsequent simulations for convenience. The time-dependent parameters are of identical form as in

the paper “A Mathematical Model of Chagas Disease Dynamics in the Gran Chaco Region” and

will not be explained in detail here [12]. The length of a single simulation is 30 years, during which

time insecticide spraying occurs annually in the spring between years 11 and 20 [12]. More will be

done in the future to consider the effects of insecticide spraying multiple times per year. The results

of the baseline simulation can be found in Fig. 1 through 4.

In the next section, the differences seen from the original model as compared to the model

incorporating the stages will be discussed at length. However, it will be mentioned here that the

graphs obtained from incorporating the stages are, in general, very similar to previous results,

especially the infected mammal, infected dog, and both infected and susceptible human populations,

which are nearly identical in behavior to the previous models. As before, infection declines during

spraying years in all infected populations and then proceeds to increase rapidly to attain initial

infection levels when spraying is stopped in all but the infected human population, where the

increase is more gradudal. As seen in all previous papers dealing with this model, the length of

time it takes for the vector population to return to its pre-spraying level is remarkably short, here
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only about three years.

Table 1. Constant Parameter Values used in Baseline

Parameter Definition 1 Baseline Value 1 Source
v fraction of vectors that are adult females .417 [6]
φl eggs laid per bite per fed adult female vector 20 [14,15]
φh fraction of eggs that successfully hatch 0.831 [14,15]
τ gestation time 20 [1]
β maximum possible bites per vector per day 0.47 [13,15,23]

PNV per bite human to vector infection prob. 0.03 [24]
PDV per bite dog to vector infection prob. 0.49 [24]
PV N per bite vector to human infection prob. 0.00002 Est. [24]
PV Db

per bite vector to dog infection prob. 0.001 Est. [24]
PV Dc

per bug vector to dog infection prob. 0.1 [25]
PVMb

per bite vector to mammal infection prob. 0.001 Est. [24]
PVMc per bug vector to mammal infection prob. 0.1 Est. [25]
PMV per bite mammal to vector infection prob. 0.49 Est. [24]
PNN per birth human to human infection prob. 0.073 Est. [22]
PDD per birth dog to dog infection prob. 0.1 [20,25,26]
PMM per birth mammal to mammal infection prob. 0.1 Est. [20, 25,26]
df human factor of one dog 2.45 [13]
cf human factor of one chicken 0.35 [13,16]
mf human factor of one mammal 2.45 Est. [13]
γNi

per day mortality rate of infected humans 0.3
18250 + 0.7

27783.8 Est. [27,28]
γDi per day mortality rate of infected dogs 1/2920 This study
γMi per day mortality rate of infected mammals 1/2920 This study
γNs

per day mortality rate of susceptible humans 1/27783.8 Est. [27, 28]
γDs

per day mortality rate of susceptible dogs 1/4380 This study
γMs

per day mortality of susceptible mammals 1/4380 This study
KVj

per house domestic vector carrying capacity 500 * H This study
KW per house peridomestic vector capacity 1000 * H This study
KN per village human carrying capacity 10 * H This study
KS sylvatic vector carrying capacity 24 [6]
GN per day human growth rate 0.035/365 This study
ρ per house per day vector migration factor 1 This study

bmax maximum value of b(t) 0.34 Est. [14]
α fraction of sylvatic vectors transfering to the peridomestic per day 1/24 [6]
ε fraction of transferred sylvatic vectors transferring to the domestic 0.00 [6]
δ fraction of sylvatic vectors that are infected 0.00 [6]
H total number of houses 74 [14]
C total number of chickens 15 * H [14]
D total number of dogs 2.9 * H [13]
aDh domestic dog availability parameter 0.59 [16]
aDp peridomestic dog availability parameter 0.13 [16]
aN human availability parameter 1 This study
Vmin minimum number of domestic vectors due to cracks 20 * H This study
Wmin minimum number of peridomestic vectors due to cracks 20 * H This study
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Table 2. Constant Parameter Values used in Baseline Cont.

Parameter Definition 1 Baseline Value 1 Source
µ1 per day molting rate of first instar vectors 1/31 [15]
µ2 per day molting rate of second instar vectors 1/32 [15]
µ3 per day molting rate of third instar vectors 1/17 [15]
µ4 per day molting rate of first instar vectors 1/11 [15]
µ5 per day molting rate of first instar vectors 1/49 [15]
d1 death rate (per day) of vectors in instar stage1 .03164 Est. [15]
d2 death rate (per day) of vectors in instar stage 2 .014 Est. [15]
d3 death rate (per day) of vectors in instar stage 3 .0357 Est. [15]
d4 death rate (per day) of vectors in instar stage4 .027 Est. [15]
d5 death rate (per day) of vectors in instar stage5 .00337 Est. [15]
d6 death rate (per day) of adult vectors .0046 Est. [15]
dk1

logistic death rate (per day) of vectors in instar stage 1 10*d1 This study
dk2 logistic death rate (per day) of vectors in instar stage 2 10*d2 This study
dk3 logistic death rate (per day) of vectors in instar stage 3 10*d3 This study
dk4

logistic death rate (per day) of vectors in instar stage 4 10*d4 This study
dk5

logistic death rate (per day) of vectors in instar stage 5 10*d5 This study
dkA

logistic death rate (per day) of adult vectors 10*dA This study

Table 3. Initial Conditions for Baseline Simulation

Parameter Definition 1 Baseline Value 1 Source
V10(t) for t ∈ [−τ, 0] initial number of stage 1 domestic vectors 12300 This study
V20(t) for t ∈ [−τ, 0] initial number of stage 2 domestic vectors 7300 This study
V30(t) for t ∈ [−τ, 0] initial number of stage 3 domestic vectors 2100 This study
V40(t) for t ∈ [−τ, 0] initial number of stage 4 domestic vectors 900 This study
V50(t) for t ∈ [−τ, 0] initial number of stage 5 domestic vectors 3300 This study
VA0(t) for t ∈ [−τ, 0] initial number of adult domestic vectors 9000 This study
V1i0(t) for t ∈ [−τ, 0] initial number of stage 1 infected domestic vectors 4800 This study
V2i0(t) for t ∈ [−τ, 0] initial number of stage 2 infected domestic vectors 4300 This study
V3i0(t) for t ∈ [−τ, 0] initial number of stage 3 infected domestic vectors 800 This study
V4i0(t) for t ∈ [−τ, 0] initial number of stage 4 infected domestic vectors 400 This study
V5i0(t) for t ∈ [−τ, 0] initial number of stage 5 infected domestic vectors 2800 This study
VAi0(t) for t ∈ [−τ, 0] initial number of adult infected domestic vectors 7000 This study
W10(t) for t ∈ [−τ, 0] initial number of stage 1 peridomestic vectors 25800 This study
W20(t) for t ∈ [−τ, 0] initial number of stage 2 peridomestic vectors 15300 This study
W30(t) for t ∈ [−τ, 0] initial number of stage 3 peridomestic vectors 4300 This study
W40(t) for t ∈ [−τ, 0] initial number of stage 4 peridomestic vectors 1900 This study
W50(t) for t ∈ [−τ, 0] initial number of stage 5 peridomestic vectors 6500 This study
WA0

(t) for t ∈ [−τ, 0] initial number of adult peridomestic vectors 17000 This study
W1i0(t) for t ∈ [−τ, 0] initial number of stage 1 infected peridomestic vectors 16100 This study
W2i0(t) for t ∈ [−τ, 0] initial number of stage 2 infected peridomestic vectors 12500 This study
W3i0(t) for t ∈ [−τ, 0] initial number of stage 3 infected peridomestic vectors 2700 This study
W4i0(t) for t ∈ [−τ, 0] initial number of stage 4 infected peridomestic vectors 1300 This study
W5i0(t) for t ∈ [−τ, 0] initial number of stage 5 infected peridomestic vectors 6100 This study
WAi0(t) for t ∈ [−τ, 0] initial number of adult infected peridomestic vectors 16000 This study
S0(t) for t ∈ [−τ, 0] initial number of sylvatic vectors 24 [6]

Ns0(t) initial number of susceptible humans 110 This study
Ni0(t) initial number of infected humans 290 This study
Di0(t) initial number of infected dogs 35 This study
Mi0(t) initial number of infected peridomestic mammals 400 This study
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(a) Domestic Vectors

(b) Peridomestic Vectors

Fig 1. The baseline simulation part 1
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(a) Infected Domestic Vectors

(b) Infected Peridomestic Vectors

Fig 2. The baseline simulation part 2
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(a) Susceptible Humans

(b) Infected Humans

Fig 3. The baseline simulation part 3
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(a) Infected Dogs

(b) Infected Mammals

Fig 4. The baseline simulation part 4

28



Fig 5. V(t) during the first 5 years of the simulation

However, more oscillations occur in the total vector population per year than in previous models.

It is likely that these annual population fluctuations are a result of the natural cycles that vectors

pass through in different times of the year depending on the stage they are in. See Fig. 5 for a

close-up view of the total vector population V (t), which is the sum of all the instar stages and the

adult population, during the first 5 years of the simulation.

Stages Simulation as Compared to Model Without Stages

Next, we updated the original C++ code which was created before the start of this project to

match our new model in all ways except for the presence of stages. Here, we ran a simulation with

parameter values identical to the baseline values whenever possible, as well as with initial conditions

which are comparable to the baseline. In order to get the initial conditions to match the code with

stages, all of the individual instar stage initial populations were added to get the initial conditions

for the simulation without stages. More precisely, V0 in this simulation is the sum of all V`0 ’s from

the baseline simulation. These plots were then compared on the same axes so as to assess the impact

of vector stages in the model on disease incidence as compared to the original model. As can be seen

below, the results produced with the new model are comparable to the original model simulations,

and the “trends” in the graphs are roughly the same, but the actual values which result from our
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new simulations are indeed different. In this simulation, all infected populations of humans, vectors,

and mammals were smaller in number for the simulation without stages as compared to the one

with stages. The results of these can be seen in Figs. 6 and 7.

One intriguing observation which can be made is that the population of infected humans is able

to recover at a more rapid rate in the simulation which includes stages than the one without. In the

stages model, infected vector populations are also able to have a much more pronounced “spike” in

population during spraying years as compared to the model without stages. The maximum population

size at any time during a non-spraying year in the simulation without stages is approximately

21,000 vectors, while the same measure during spraying years is approximately 17,000. This is a

difference of around 4,000 vectors. In contrast, the maximum population size at any time during a

non-spraying year in the simulation with stages is approximately 26,000 vectors, and during spraying

years it is approximately 23,000 vectors. This is only a difference of around 3,000 vectors, which

means that the annual resurgence of infected vector populations during spraying years is greater for

the model that includes instar stages.

A few factors which may account for these differences is potentially a limitation of our model to

accurately describe the rate at which vectors bite in each stage, or the infection rates at each stage.

In our model, the µ` values are fixed, while in reality, they are dependent on seasonality due to

the biting rate [23]. Similar to how it is the fed females which lay eggs as discussed above, it is

fed instars that molt to the next stage [6]. If this biting rate should be changed at different times

of the year and even halt during others for the instars, then this means that instars in our model

may be molting into the next stage at a rate faster than the one shown in nature. Since the natural

death rate is higher in the lower instar stages as opposed to the adult stages, then the fact that the

instars may be molting too quickly in this model means that they have a greater chance of survival.

In addition, the probability of infection from a vector to a human when an instar bites a human

may be different for different stages. This could be a limitation of this model, and more will be

done to assess this biting rate in future research.

30



(a) Total Infected Domestic Vectors

(b) Total Infected Peridomestic Vectors

Fig 6. Comparing stages simulation to a simulation without stages and baseline conditions.

31



Fig 7. Infected Humans: Comparing stages simulation continued.

Sylvatic Simulations

We diverge from our baseline model with stages for a moment to assess the effects of the sylvatic

population alone. This will allow us to study the dynamics of the sylvatic vectors in villages without

the interference of vector stage dynamics on disease incidence. We use data to generalize a “typical”

sylvatic vector population from a sylvatic foci as described in [6]. In this research cited, a focus of

sylvatic transfer was defined to be a location near enough a village for migration to occur between

the focus and the village, yet far enough away for vector populations to have distinct genetic

make-up. Based on data describing birds nests as a focus, the intial sylvatic population of our

model’s focus is 24, and we assume that this is the natural carrying capacity of this population. In

this simulation, the sylvatic equation and migration terms were added to the “no stages” model

from the simulation just discussed; the baseline values for the sylvatic parameters in this simulation

can be found in Tables 1, 2, and 3. We initially attempted to discern which method was better

to model the sylvatic population: a logistic model or a constant growth model. To this end, we

ran a few preliminary simulations. However, the presence of a carrying capacity seems to best
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characterize the literature relating to sylvatic populations near domestic locations. In the research,

it was found that vectors in sylvatic populations were not typically thriving, possibly due to lack of

blood meals [6]. As such, our model utilizes logistic growth in the equation describing the rate of

change of the sylvatic population.

With this logistic growth model, we then attemped to compare the results of this simulation to

a simulation without the sylvatic transfer. When graphing the models with and without sylvatic

transfer on the same set of axes, they were indistinguishable from one another under the usual

baseline conditions. As such, the graph in Fig. 8 just includes the results from the simulation with

sylvatic transfer for infected domestic vectors without a comparison to the baseline model.

These results were expected due to the fact that it was unlikely for sylvatic transfer to have an

extreme impact on disease outcomes due to the relatively small population size. In our simulation,

only one sylvatic vector is transfered per day to the domestic and peridomestic areas. In the Gran

Chaco, this small amount of migration is unlikely to be noticable among a population where disease

prevalence is already remarkably high and the total population of vectors is already in the thousands.

In contrast, the next simulation considered the impact of the sylvatic population on disease

resurgence when infection and domestic vector populations are initially low. This more acutely

shows the impact of the sylvatic population on disease outcomes. In this simulation, the initial

conditions were changed such that there were only 4 vectors in the village, where 2 vectors were

initially in the domestic and peridomestic each, and one of the vectors in each pair was infected.

The number of infected humans, dogs, and mammals were all set to zero. Note that the infection

rate in the sylvatic is 0%. All other conditions remained the same as the first sylvatic simulation. It

can be seen in Figs. 9 and 10 that the infected vector populations were able to grow exceptionally

fast, attaining the usually steady oscillation values, which are expected with this model, in only 3

to 4 years. The total vector population was able to grow even more rapidly, indicating that transfer

from the sylvatic had indeed had an impact on the total population when initial populations of

vectors are small.

In this simulation, the infected human population never decreases during spraying years as it

does in other simulations. Because Ni0 = 0, the introduction of disease from the vector populations

resulted in rapid disease spread. Since no individuals in the infected population would have had
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(a) Sylvatic Vectors

(b) Infected Domestic Vectors with Sylvatic Transfer

Fig 8. Migration from the sylvatic population was added to the model not-yet including stages.
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(a) Domestic Vectors

(b) Peridomestic Vectors

Fig 9. This simulation demonstrated the effects of the sylvatic population in repopulationg vector
populations and increasing disease incidence. 35



(a) Susceptible Humans

(b) Infected Humans

Fig 10. Sylvatic repopulation simulation cont.

36



the disease for more than even 30 years at this point, a decreased human lifespan was probably

not a factor in this simulation. The spraying of vectors did not decrease the infected population

of humans on the whole, but rather it slowed the growth of the infected population. This is an

important observation, because even though the disease was non-existent in the population at the

outset, a small amount of infection and migration resulted in drastic increases in disease for humans

which were irreversible in the years immediately folllowing.

More needs to be explored in the future in terms of infection rates in sylvatic populations, as

well as their potential role in the introduction of disease to a village in which the infection level is

zero.

Random Availability of Humans Simulations

In this section, we examine the parameter describing human availability and its role in disease

incidence. As noted earlier, the human availability parameter, aN , denotes the fraction of the human

population available for biting at any given time t. In our baseline simulation, this value is taken to

be the constant 1, meaning that all humans are available for biting at any given time. In earlier

papers, this value was modified to simulate the effects of bed net usage in the village, such that if

aN = 0 then the bed netting would be 100% effective because no humans would be available. With

that particular model, it was found that aN must have a value of at least .65 or lower in order to

result in a decline of infected humans over 30 years [12]. We reassess these results with the new

model, and also look at the results of bednetting usage on the domestic vector population.

Here, we use our baseline model with vector stages and also with sylvatic equations incorporated.

Using a modified code written in C++, we generate simulations for random choices of aN . In the

previous work done, the initial number of infected and susceptible humans were chosen to be 200

people each. However, these values have been changed such that now the initial number of infected

humans is 290, while the initial number of susceptible humans is only 110. While in the previous

paper, having a value of aN = 1 resulted in the number of infected humans growing over the course

of the 30 years, the number of infected humans actually decreases to 270 during that time regardless

of the full availability of humans in the stages model. The number of infected humans in year 30

can be seen in part (b) of Fig. 11. Interestingly, even with a 90% effectiveness of bed netting in this
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new simulation so that aN = 0.1, the number of infected humans still only drops to about 205 in

year 30, which is only a 25% decrease.

In addition to plotting the infected humans in year 30, we also graphed the total number of

vectors during the 30 year period. The graphical results in part (a) of Fig. 11 are the minimum

and maximum number of vectors over all possible values of aN on any given day. Thus, the plot

represents the “envelope” within which all other simulation results lie during the 30 years. While

the total number of infected humans didn’t go down drastically during the course of the 30 years,

possibly because of the long life span of humans, the reduction in the availability of humans had a

large impact on the total number of vectors. Since vector growth is limited by blood supply, this

resulted in a significantly diminished vector population with reduced seasonal oscillations in the

case with aN very small. As can be seen in Fig. 11, the total number of vectors at its maximum

was near 53,000, while it stabilizes near 27,000 when aN is small.

Random Simulations on Death Due to Overpopulation

Finally, we examine the parameter dk

As in the aN random parameter study, we use our baseline stages model with the typical sylvatic

equations incorporated. Using a modified code written in C++, we generate simulations for random

choices of dk. As in all past versions of our model, dk is the natural death rate multiplied by a

number between 0 and 10, and 10 is used in baseline. Here, we invoke randomness in the simulations

via the scalar between 0 and 10. This was an ideal parameter to study due to the fact that it can’t

be determined naturally through empirical studies. Since this is a value that would have to be

estimated, we wanted to discover to what extent differences in dk influenced disease outcomes. The

same type of graphing methods as in the aN randomness study were utilized for these simulations,

and the results are shown in Fig. 12.

The most interesting results found from these simulations is the dramatic impact of dk on disease

incidence in humans when the scalar for dk is between 0 and 2. When dk is small, the number of

infected humans is high, giving an inverse relationship between them. When dk is between .3 and

2, the average rate of change in disease incidence in humans related to changes in dk is around
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(a) The minimum and maximum values of total domestic Vectors with random human
availability

(b) Infected humans in year 30 given aN

Fig 11. Simulations with random availability of humans were done. In the first image, the
domestic vector population maximum for all aN at any time t are seen in blue, the minimum in
orange. The second image considers the total infected human population on the last day of year 30
given a certain availability of humans.
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(a) The minimum and maximum values of total domestic Vectors with random dk

(b) Infected humans in year 30 given dK

Fig 12. Simulations with random rate of death due to over population were done. In the first
image, the domestic vector population maximum for all dk values at any time t are seen in blue, the
minimum in orange. The second image considers the total infected human population on the last
day of year 30 given a certain dk scalar value.
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-8.235, and this same rate is only -1.111 when dk is between 8 and 9.8. In fact, the slope appears to

approach minus infinity as the dk scalar approaches 0 positively. This means that the presence of

a carrying capacity, and its relative power in controlling the population size, is crucial to curbing

disease incidence. Based on these results, it would be extremely difficult to eliminate Chagas diease

in humans in the Gran Chaco should the true value of dk be too small.

Conclusion

This research gleaned new insights into the possible role of both the dynamics of vector life stages

and sylvatic migration on disease incidence. It was seen that the addition of vector life stages to the

model, for one reason or another, did have a sizeable impact on simulation results, indicating that

this model was successful in incorporating dynamics not yet explored in research. In addition, it can

be seen that the role of sylvatic transport to the domestic is only significant to disease outcomes

when the level of infection is already low in the village. This means that the presence of a sylvatic

focus may not be relevant in the Gran Chaco, where disease incidence is so high. We note that the

use of other disease control measures, in addition to spraying, such as bed netting must still be

extremely effective in order to have any real impact on decreasing disease in humans. Finally, we

note that the true value of dk may be a crucial factor in eliminating Chagas disease.

However, there are several ways in which this research could be improved upon or expanded.

Many of the limitations explored in previous versions of this model are still limitations, such as

lack of conclusive data on certain parameter values and the true nature of migration terms. In

terms of new results, more needs to be explored in regards to the detailed behaviors of each of

the instar stages and their biting rates, their ability to infect mammals, and their ability to get

infected via blood meals. This data is crucial in understanding whether this stages model is accurate

and provides a more precise view of Chagas disease dynamics, or whether the changes resulting

from incorporating stages into the model have arisen due to the simplicity of this model and an

inability to capture the true naure of the disease. In addition, more data is needed to understand

the true transfer rates from the sylvatic population to a nearby village, and the potential infection

rates within these foci. The current research provides a snapshot image into one or two foci, but
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our model is lacking in that we have built the structure of the sylvatic population into our model

based on one or two real but isolated cases. As mentioned earlier in this paper, some research has

suggested that consideration of vector stages in terms of effectiveness of spraying schedules may be

essential to decreasing disease incidence in humans. Further research could look into this relationship.

Through our studies of aN , it was found that bed netting needs to be extremely effective in order

to significantly curb disease in humans. However, more needs to be explored related to increasing

the number of times per year in which spraying can occur or perhaps combining another vector

control measure with bed netting in order to see improvements. Many of these research studies can

be explored using this model with modified input parameters.
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[5] Cecere MC, Vazquez-Prokopec GM, Gürtler RE, Kitron U. Reinfestation Sources for Chagas

Disease Vector, Triatoma infestans, Argentina. Emerg Infect Dis. 2006;12(7): 1096-1102. doi:

10.3201/eid1207.051445.

42



[6] Ceballos LA, Piccinali RV, Marcet PL, et al. Hidden Sylvatic Foci of the Main Vector of Chagas

Disease Triatoma infestans: Threats to the Vector Elimination Campaign? Huete-Pérez JA, ed.
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[16] Gürtler RE, Ceballos LA, Ordóñez-Krasnowski P, Lanati LA, Stariolo R, Kitron U. Strong

Host-Feeding Preferences of the Vector Triatoma infestans Modified by Vector Density: Im-

plications for the Epidemiology of Chagas Disease. PLoS Negl Trop Dis. 2009;3(5): e447. doi:

10.1371/journal.pntd.0000447

[17] Allen LJS. An Introduction to Mathematical Biology. Pearson Prentice Hall; 2007.
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