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INTRODUCTION

his article focuses on the application of nonpara-

metric (or distribution-free) and parametric sub-
set selection procedures to analyze motor vehicle
traffic fatality rate (MVTFR) data for the years 1994
through 2012. As such, much of the data analysis
done in this study builds upon the work of Green
and McDonald' analyzing MVTFR for the years
1982 through 2002 as well as several earlier studies.
In that study, the states selected to contain the worst
state consist primarily of the Southeastern states and
several states in the Northwest and Southwest. The
states selected to contain the best state mostly include
states along the East Coast, selected North Central
States, and the state of Washington.
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In addition to applying the selection procedures
to an updated dataset, this article also presents and
applies a new Bayesian approach to the ranking of
states. With this approach, a probability distribution
is derived over all possible permutations of the popu-
lation means. Thus, the probability that any particu-
lar state is characterized by the largest (or smallest)
mean can be easily obtained by appropriate summing
of the permutation probabilities.

FORMULATION OF NONPARAMETRIC
SUBSET SELECTION RULES

The description of this selection rule will follow that
given by Green and McDonald.! Let I1;,IL,,...,II; be k
(=2) independent populations. The associated random
variables, X;;, j = 1,...,n; i = 1,...,k, are assumed inde-
pendent and to have a continuous distribution Fj(x;6;)
where 0; belong to some interval ® on the real line.
The basic model assumption is that Fj(x;0) is a stochas-
tically increasing family of distributions for each j. The
additive model of the following form is used:
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Xij=p+0i+ B+ & (1)

where f; indicates the particular block effect, ; indi-
cates the population effect, and ¢; is the random
error. The distribution of ¢; is any continuous distri-
bution function F(x) with mean 0. The distribution
of X;; will be stochastically ordered in € as it is a
location parameter in Eq. (1). So, for example,
Fj(x) could be a normal distribution with mean 0 and
standard deviation o;. The assumption of negligible
interaction between population and block must be
satisfied. Let 60);; denote the ith smallest unknown
parameter, then for all x

F/(X;e[ll) > F/(X;e[z]) > ... 2 F,' (X;H[k]) (2)

where 6|1 () characterizes the best (worst)
population.

Let R;; denote the rank of the observation X
among Xy;,X2j,...,Xg; The variables R; take values
from 1 to k. The selection procedures considered here
are based on the rank sums, T; = > ;R;;, associated
with TI;, i = 1,...,k. The structure for this process is
outlined in Table 1.

Any subset selection procedure based on the
rank sums should have the property that the proba-
bility that a correct selection (CS) occurs, i.e., the
worst population (or best population) is included in
the selected subset, is bounded below by P* (k™' <
P* < 1). That is, for a given selection rule R, the
probability of a CS should satisfy the inequality,

inf P(CS|R) > P*,
b (3)

where Q = {0 = (04,...,0): 0, O, i = 1,....k}. In some
cases, as noted later, this inequality may only hold
on a subspace Q' of Q.

The two selection rules for choosing a subset
containing the worst population, as described in
McDonald,?* are given by:

TABLE 1 | Structure for Determining Ranks and Rank Sums
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R1: Select Hi iff T,' 2 max(T,—) - b1

R,: Select IT; iff T; > b,.

Similarly, the two selection rules for choosing a
subset containing the best population are given by:

Rj;: Select IT; iff T; < min(T;) + bs

Ry: Select IT; iff T; < ba.

Note that the rules Ry and R, could be written
in the form that select I, iff T; > b, where b is a sto-
chastic quantity for Ry and a deterministic quantity
for R,. A similar statement can be made for the rules
R3 and R4_

As developed by McDonald,>™ Ry and Rj are
justified over a slippage space, ', where all para-
meters 0; are equal with the possible exception of 6y,
in case of rule Ry or 6y in case of rule R3; and R,
and Ry are applicable over the entire parameter
space. The constants by, bs, and b, are chosen as
small as possible and b, is chosen as large as possible
preserving the probability goal. For large values of n,
the selection rules are determined by the asymptotic
formulae as described in McDonald* and are com-
puted as:

by = bs = hjnk(k +1)/6]"/2, (4)

by = [n(kz-l)/lz]m

b4: n(k+1) —bz, (6)

@1 (1-P%) + n(k+1)/2, (5)

where the h-solution to be used in Eq. (4) is given by:
J ¢k’1(x+h21/2)¢(x)dx = P*. (7)

Here, @ and ¢ represent the standard normal cumu-
lative distribution function (CDF) and probability
density function (PDF), respectively.

Taking P* to be a particular confidence level,
the h-solution is given in Table 1 of Gupta et al.® and
can be used to determine the constants b; and bs.
The above integral can also be calculated to

Block/T1 H1 Hz Hk SUM

Block 1 X11 ~ R11 Xk1 ~ Rk] k(k + 1)/2
Block 2 X12 ~ R12 sz ~ sz k(k + 1)/2
Block n Xin = Rin Xin = Rin kk + 1)/2
RANK SUMS (T;) T Tk nk(k + 1)/2
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determine P* for a given value of h, using a TI-83+
(or similar) calculator with numerical integration
capability as shown in Green and McDonald.! The
integral can be shown to be the probability that the
maximum of U, i = 1,...,k, is less than h where the
U, are normally distributed random variables with
zero means, unit variances, and covariance of 0.5.
With confidence level P*, it can be asserted (using
these selection rules) that the chosen subset of the
populations contains the one characterized by

O (O17)-

AN APPLICATION TO STATE MOTOR
VEHICLE TRAFFIC FATALITY RATES

The analysis of MVTFRs described in this
section follows the approach taken by Green and
McDonald." The database herein used has been
updated by 8 years from that used in 2009. This
analysis is included in this article to illustrate the use
of the nonparametric selection procedures, to update
a statistical analysis, and to set the framework for
the application of parametric rules and a new Bayes-
ian approach to this class of problems. The methods
herein applied to MVTFRs provide statistical ana-
lyses of the data yielding probabilistic guarantees of
inference for a specific class of ranking questions
complementing other descriptive techniques, e.g., see
Sivak.”

The scope of this study includes highway
MVTER data for the 51 U.S. states (treating the Dis-
trict of Columbia as a state) from year 1994 through
2012. The National Highway Traffic Safety Admin-
istration (NHTSA) publishes the MVTFRs for all

All states:boxplots of MVTFRs for 1994,2003,2012
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U.S. states each year in the Fatality Analysis Report-
ing System (FARS). The data can be accessed through
the government website: www-fars.nhtsa.dot.gov.
The data are included here as Appendix A. The FARS
Encyclopedia provides extensive, detailed statistics
on injuries and deaths from vehicle accidents that
occurred within the 50 states and the District of
Columbia. The fatality rate per year for each state
is expressed as the number of fatalities per 100 mil-
lion vehicle miles of travel (VMT). It should be
noted that when new exposure data are released,
the previous vyears’ exposure data is updated.
Appendix A lists data posted in March, 2015. Cur-
rent listing (March, 2016) includes rates for 2013
and, hence, some changes in the 2012 rates shown
in Appendix A.

The model used is that of the additive form (1),
where 6; is the state effect, f; is the year effect, and ¢;
is the random error term. This two-way model is
used in earlier studies of MVTFRs by McDonald,?
by Lorenzen and McDonald,® by Green et al.,” and
by Green and McDonald." It is discussed extensively
by Neter et al.,'® Kuehl,"" Winer,'* Christensen,"
and many others. The ¢; may have any (not necessar-
ily normal) continuous distribution. The observations
are taken in n blocks (time periods). The subscript
j indicates the particular block (year) to which the
observation X;; corresponds and 7 indicates the popu-
lation (state).

Figure 1 provides boxplots for the MVTFR
data indicating visually a substantial effect of the
variables year and state. The boxplots on the left side
of Figure 1 shows the distributions of the MVTFRs
of all states decreasing for the years 1994, 2003, and
2012. The median rates for 1994 and 2012 are

MVTFRs for U.S. and selected states
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FIGURE 1 | Boxplots of MVTFRs. MVTFRs, motor vehicle traffic fatality rates.
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approximately 1.7 and 1.2, respectively, an almost
30% decrease. The scatter plot on the right side of
Figure 1 shows the MVTFRs of the states North
Dakota (ND), Michigan (MI), and Utah (UT) along
with the overall U.S. rates for the years 1994-2012.
While the overall trend is strongly decreasing, not all
states depict the same behavior as demonstrated by
that of ND.

Since there is only one observation for each
state for each year, there is no general test for addi-
tivity, i.e., lack of interaction between states and
years. Tukey'* developed a one degree-of-freedom
test for nonadditivity when there is a single observa-
tion per cell, as given here. Green et al.” and Green
and McDonald" use this test to establish the plausi-
bility of model (1) for a power transformation of the
MVTEFRs. Table 2 shows the Tukey one degree-of-
freedom test for nonadditivity for the MVTFRs and
for these rates raised to the 0.3 power. The test indi-
cates significant evidence of interaction with the
untransformed rates, and no significant evidence of
interaction with the power transformation of the
rates. For the purpose of the nonparametric analyses
to follow, the original MVTFR data will be used
because ranks are invariant to monotone increasing
transformations.

NONPARAMETRIC SUBSET
SELECTION OF STATES

The goal is now to choose a subset of the 51 states
that can be asserted, with a specified confidence, to
contain the state with the highest MVTFR (worst
population), and similarly a state with the lowest
MVTFR (best population) using the nonparametric

TABLE 2 | Tukey's One Degree-Of-Freedom Test

o Tukey's 1 DF Test of e Tukey's 1 DF Test of
Nonadditivity—MVTFR Nonadditivity—MVTFR®3

¢ SS(Nonadditivity): 1.661 e SS(Nonadditivity): 0.004

e SS(Error): 17.482 e SS(Error): 0.931

e MS(Error): 0.019 e MS(Error): 0.001

e Significance level: 0.050 e Significance level: 0.050

e Test statistic: 85.419 o Test statistic: 3.384

e (ritical value: 3.852 e (ritical value: 3.852

o The test statistic is greater e The test statistic is not

than the critical value, so
there is significant evidence
of interaction.

greater than the critical
value, so there is no
significant evidence of
interaction.

MVTER, motor vehicle traffic fatality rates; SS, sum of squares; MS, mean
square.
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ranking and selection procedures. Ranks k =1, ...,
51 are assigned to states for each of n = 19 years,
with a rank of ‘1’ being the state with the lowest
MVTFR. Based on these ranks, the selection proce-
dure for choosing a subset of the 51 states asserts
that the best state (or worst state) is contained with a
specified confidence level P*.

Similar to the structure as outlined in the second
section, let R;; denote the rank of the observation Xj;
within the jth block. The variables R;; take values from
1 to k and the selection procedure is based on the rank
sums, T; = X,R;;, associated with IT;, 7 = 1, ... , k. For
the first year, 1994, Rhode Island has a rank of ‘1’
and the state of Mississippi has a rank of ‘51.” In the
case of ties, each tied state receives an average of their
rank for that year. This is done for all 19 years. Ranks
are then summed for each state and the rank sums,
T;’s, are ordered. Since the values of k and n are large
for our application (k = 51, n = 19), the selection rule
constants are determined by the asymptotic formulae
as described in the second section.

Taking P* = 0.90, the h-solution as given in
Table 1 of Gupta et al.® is h = 2.5920. This can be
used to determine the constants b; and bsz. Using
n =19,k =51, and h = 2.5920, we obtain b; = b; =
237.532. The other two constants are calculated to
be b, = 411.774 and by = 576.226. The data yields
max(T;) = 930.5 and min(T;) = 23.

With confidence level P* =0.90, it can be
asserted that the following subsets of states contain
that one characterized by 0 :

Rule Ry: Select the ith state iff T; > max(T))
-237.532 = 692.968. Sixteen are chosen for ‘worst.’

Rule R,: Select the ith state iff T; > 411.774.
Thirty are chosen for ‘worst.”

With the same 0.90 confidence level, it can be
asserted that the following subset of states contain
that one characterized by 6jy;:

Rule Rj: Select the ith state iff T; < min(T)) +
237.532 = 260.532. Twelve are chosen for ‘best.’

Rule Ry: Select the ith state iff T; < 576.226.
Twenty nine are chosen for ‘best.’

The identification of the specific states chosen
with these four selection rules is given in Appendix
B. The states chosen by rules Ry and Rj are graphi-
cally displayed in Figure 2. The 16 states chosen by
R; to contain the ‘worst’ state consist primarily of
the Southeastern states and some states in the
Northwest and Southwest. The 12 states chosen by
R; to contain the ‘best’ state mostly include states
from the Northeast along with Minnesota (MN),
Washington (WA), Virginia (VA), and California
(CA). The inference conditions have been discussed
earlier.

© 2016 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 225
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Selected subsets using distribution free rules, p* = 0.90
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@ - Subset for worst
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FIGURE 2 | States selected using rules Ry and Rs.

These results suggest that the particular separa-
tion of states is attributable to the differences among
states in the urban, rural, and interstate mileage mix.
This hypothesis is examined for earlier traffic fatality
data by Lorenzen and McDonald.® The authors
apply these nonparametric selection rules to state
traffic fatality rates adjusted for the state urban/rural
mileages. Two adjustment methods commonly used
on census data and on mortality data, the direct
method and the indirect method, are discussed in
detail in this reference. With the direct method, the
actual rural and urban rates of each state are
weighted by the same urban/rural mix, typically the
national average mix.

The indirect method is slightly more complex.
With it the national fatality rate is multiplied by the
ratio of the state’s actual fatality rate divided by the
state’s expected fatality rate calculated with the
state’s actual urban/rural mix and some specified
(usually national) urban and rural fatality rates.
Detailed references on the direct and the indirect
method are Woolsey,"> Duffy and Carroll,'® and
Bishop et al."” While the two adjustments, in prac-
tice, may give similar results, each method has spe-
cific properties. The Lorenzen and McDonald® article
discusses extensively the data sources available for
adjusting rates for these two methods, applies the
nonparametric selection rules to the adjusted rates,
and summarizes extensive Monte Carlo simulations
quantifying the inference properties for the

226 © 2016 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc.

nonparametric statistical procedures. Other plausible
causes for the observed separation of states are also
noted.

The choice of a fatality rate index can be
impactful. While not investigated in this article, a
somewhat related article by Gibbons and McDo-
nald'® examined the sensitivity of an air pollution
and health study to the choice of a mortality index.
In that study, the authors examined the sensitivity of
conclusions based on regression models to the mor-
tality index incorporated as the dependent variable.
Four indices were examined, including direct and
indirect adjusted rates.

The validity of the nonparametric analysis
herein used depends on the legitimacy of the additive
model (1). An argument, based on the Tukey test for
nonadditivity, has been given to justify the plausibil-
ity of it. However, other forms of interaction could
be present in such a manner that time impact differs
among states in a nonadditive fashion. To partially
address this issue, an additional analysis was con-
ducted on two time segments of the data. The first
segment included years from 1995 to 2003, and the
second segment from 2004 to 2012. The year 1994
was not included here so as to have equal sample
sizes (n = 9) for the two periods. Selection rules R¢
and R3 were applied to these two datasets with P* =
0.90 and the selection rule constants b; and b; com-
puted from Eq. (4). The Pearson correlation coeffi-
cient for the state rank sums for these two time
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periods is 0.922 indicating a rather close linear
relationship.

Applying Ry to the two datasets, 16 states are
included in the ‘worst’ subset for each of the two
time periods. These 16 states include 15 of the
16 states, noted in Appendix B, chosen when R; was
applied to the complete dataset. Applying R3 to the
two datasets, 17 states are included in the ‘best’ sub-
set for each of the two time periods. These 17 states
include the 12 states, noted in Appendix B, chosen
when R3 was applied to the complete dataset. Nota-
bly, the analysis of the first time period fatality rates
placed ND in the ‘best’ subset. However, the analysis
of the second time period fatality rates placed ND in
the ‘worst’ subset. In the analysis of the combined
data, ND was not chosen by either rule Ry or Rj.
A comprehensive detailed analysis of the ND crash
data is published by the North Dakota Department
of Transportation.'”

As observed in the application of selection rules
R; and R,, the rule R, always selects more popula-
tions than Ry This appears natural as the inference
properties for R, are more expansive than those
established for R;. However, Green and McDonald’
provide a counterexample showing that Ry can result
in a larger subset than R,. To further address this
property, note that R, always selects at least as many
populations as R; if by < max(T))-by. With the
MVTFR  data, b, =411.77 and max(T)
-by = 692.97, so that condition is met. Can by +
b, > max(T;)? In this analysis, by + b, = 649.31.
Now max(T;) must always be at least as large as the
average rank sum which is given by T,,, = n(k + 1)/
2 =19(52)/2 = 494. So, if 494 < max(T);) < 649.31,
then b, > max(T})-by, and R, would not select more
populations (states) than R;. The same argument
holds for the selection rules R3 and Ry.

In the earlier study by Green and McDonald,
using MVTFRs from 1982 through 2004, rule R,
chose 13 states for the ‘worst’ subset. In this study,
rule Ry chose the same 13 states in addition to South
Dakota (SD), Wyoming (WY), and Kentucky (KY).
In the earlier study, rule R3 chose 10 states for the
‘best’ subset. In this study, 9 of those 10 states were
chosen (the exception being ND) and New York
(NY), Vermont (VT), and California (CA) were
added to this ‘best’ subset.

A PARAMETRIC SUBSET SELECTION
OF STATES

In this section, a normal means parametric selection
procedure will be used to contrast the inference with
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that of the nonparametric approach. This approach
to subset selection was developed by Gupta.” With
the additive model (1)

E(X,‘/) =u+ 9,‘+ ﬂi' (8)

Letting X; = (>_;X;;)/n, then E(X;) = p + 6; + (>-p).
Since the quantity u + (3;#;)/n is constant for all 7,
inference on the ordered 6; can be efficiently based
on the ordering of the means, X;.

The additive model (1) will be used with Xj;
replaced with f(X;;) = X,—,-O'3 based on the results given
in Table 2. (The optimal Box-Cox 1 is 0.37). Here,
the ¢; are assumed independent identically distribu-
ted normal variates with mean 0 and standard devia-
tion o. Residual displays from a two-way additive
analysis of variance (ANOVA) are given in Figure 3.
The residuals are symmetrically distributed with
some outliers on the lower and upper ends. The ‘raw’
data now will be the fatality rates raised to the 0.3
power. Since our interest is selection of ‘best’ and
‘worst’ subsets, we will retain the ‘outliers’ and con-
tinue with a normal means selection process using
the selection rule R for the ‘worst’ population subset
and Rg for the ‘best’ population defined as follows:

Rs: Select the ith state iff X,;> Xpq-d,d >0

Re. Select the ith state iff X; < X[1) + ¢, ¢ > 0.

The X,’s are the respective sample means of the
‘raw’ data and the X|j’s are the ordered sample
means. The positive constants d and ¢ are chosen so
that the P(CS) > P* for any configuration of the pop-
ulation (state) parameters, 6;’s. It can be shown that
for a fixed P*, d = ¢, and

d = ho(2/n)"?, (9)

where h is defined by the integral equation (7).

For k =51, n=19, and P* = 0.90, the con-
stants d = ¢ = 0.84366. The value of ¢ is chosen to
be 0.033 based on the two-way additive ANOVA of
the transformed MVTFRs (i.e., the square root of the
Mean Square for Error) as shown in Table 3. Then
d =c=0.8436 - (0.033) = 0.027839. The means of
the transformed rates are given in Appendix C. The
maximum sample mean is 1.27436 (MS) and the
minimum sample mean is 0.93089 (MA).

For selecting the ‘worst’ subset,

Rs: Select the ith state iff X; > Xpq-d = 1.27436
-0.027839 = 1.24652.

The three states South Carolina (SC), Montana
(MT), and Mississippi (MS) are chosen

For selecting the ‘best’ subset,

© 2016 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 227



Focus Article

Histogram of residuals

160 -

140
120

100 r

Frequency

b
b

0.05 0.10

-

-0.10 -0.05
Residuals

0l— —

-0.20 -0.15 0.00

Percent

wires.wiley.com/compstats

Normal probability plot for residuals
normal - 95% cl

99.99
Mean -3.80730E-16

) StDev 0.03107
. N 969
AD 4.335
P-value <0.005

99 -’

95

80
50

20

0.01
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Residuals

FIGURE 3 | Residual plots for (MVTFRs)>* from a two-way additive ANOVA. ANOVA, analysis of variance; MVTFRs, motor vehicle traffic

fatality rates.

Rg. Select the ith state iff X, <
¢ =0.93089 + 0.027839 = 0.958729.

Only the state of MA is chosen for the selected
subset.

An advantage of the parametric approach over
the nonparametric approach is that the parametric
analysis explicitly utilizes the magnitudes of the data
rather than simply their rank values. Thus, in this
analysis, the normal means parametric approach
results in a dramatic reduction in the number of
states chosen for the selected subsets. If value of P* is
increased to 0.99, the chosen ‘worst’ subset would
increase to five states, adding Louisiana (LA) and
Arkansas (AR); and the chosen ‘best’ subset would
remain at one state, MA.

A closer examination of the residual plots in
Figure 3 (and listing of residuals not given here)
shows that the smallest two residuals belong to Dis-
trict of Columbia (DC) and ND for the years 2012
and 1995, respectively. Furthermore, four of the
smallest six residuals belong to DC and ND. At the
other extreme, the largest three residuals belong to
ND (2012, 2009, and 2011) and the next three lar-
gest belong to DC (2003, 2001, and 1994). Deleting
DC and ND and following the same parametric anal-
ysis as in this section, with k = 49, n = 19, h = 2.582

Y[l] +

TABLE 3 | Two-Way ANOVA Table for the Transformed MVTFRs

(for P*=0.90), ¢=0.033, d=c=0.02764, the
exact same selection of states is made as with the
inclusion of DC and ND. The residual plots of the
residuals appear more normal-like with the two
states deleted as shown in Appendix D. This exami-
nation of residuals and subsequent reanalysis of the
data is simply one form of sensitivity analysis. In this
case, the parametric selection of states is not affected
by the deletion of those two states (DC and ND)
which might be deemed outliers.

A BAYESIAN APPROACH TO THE
SELECTION PROBLEM

In this section, a Bayesian approach is adopted and
the population means are assumed to be stochastic.
The idea is quite straightforward. A posterior dis-
tribution on the population means is used to simu-
late a large number of random draws, or
realizations, of those means. With those draws,
ordering probabilities of the population means can
be estimated. And from these estimates, simple cal-
culations can provide estimates of, e.g., the proba-
bility that a specific population mean is greater
than all the other population means. There are

Source Degrees-of-Freedom Sums of Squares Mean Squares F Ratios P Values
State 50 6.41456 0.12829 123.55 0.000
Year 18 2.28450 0.12692 122.22 0.000
Error 900 0.93455 0.00104

Total 968 9.63361

ANOVA, analysis of variance; MVTFRs, motor vehicle traffic fatality rates.

228
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many choices that can be made for the posterior
distributions. One such approach, utilizing flat
(or noninformative) prior distributions on the pop-
ulation means is illustrated here.

As shown in Gill*! and many other Bayesian
texts, the posterior distribution of the mean of the ith
population (state), u;, is normal with mean X; and
standard deviation ¢//n, i = 1,...,k. In this situation,
the Bayesian and frequentist results (via Central
Limit Theorem) are very similar in form.

The relevant calculations become

P(/’lml S/’lmZS"'S”mk)? (10)

where (m1,m2,...,mk) is any of the k factorial
permutations of the integers (1,2,...,k). For exam-
ple, for k = 4, there would be 4! = 24 such prob-
abilities to calculate. This can be easily handled
with WinBugs (an MCMC simulator) or R. For
frequentists, these calculations are meaningless.
This approach is used in both of the following
subsections. In section Example with k = 4, all of
the permutation probabilities (10) can be esti-
mated with simulated draws of the posterior mean
as k is small. In section Bayesian Analysis of
MVTFR?? Using R, with large k, applicable to
the analysis of MVTFRs, a convenient function in
R is used to identify which population (state) rea-
lizes the largest and smallest posterior mean on
each simulation pass.

Example with k = 4

Suppose we have k = 4 populations with three obser-
vations from each of the populations yielding sample
means of 2, 3, 4, and 5. Assume a common known
standard deviation equal to 1 and a flat (noninforma-
tive) prior distribution on the population means.
Using, for example, WinBugs, all 24 values of the
probabilities given in Eq. (10) can be computed. By
appropriate summing, the estimated values of Ply; =
max(y;)], i =1, 2, 3, 4, are obtained. Table 4 gives
the results of such computations for 6 of the

TABLE 4 | A Sampling of WinBugs Estimates for Selection from
Four Populations

P1.2.3.4 = 0.6844
P1.3.2.4 = 0.1031
P2.1.3.4 = 0.09304
P2.3.1.4 = 0.00274
P3.1.2.4 = 0.00278
P3.2.1.4 = 0.0012
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24 parameter permutations. The tabled values were
generated with WinBugs using the model code given
in Appendix E and specifying a large number (10°)
draws on the posterior means. The probabilities of
the permutations, P(imi € Pm2 < Hm3 < Hma4), are
denoted by Pm1.m2.m3.m4 in Table 4.

Given the probabilities in Table 4, it now fol-
lows that P(u4 is max) = 0.6844 + 0.1031 + ... +
0.0012 = 0.8873, i.e., the sum of the six probabil-
ities in the Table. In a similar manner, the calcula-
tions vyielded P(u; is max) = 0.00006, P(u, is
max) = 0.00364, and P(uz is max) = 0.10900.
A complete probability distribution over all possible
orderings of the population means is realized. This
approach of calculating all the permutation probabil-
ities is, from a practical vantage, limited to small
values of k (say k £ 5 or 6). In our application to
traffic fatality rates where k = 51, another Bayesian
approach is more useful as described in the next
subsection.

Bayesian Analysis of MVTFR®? Using R

The power transformation makes plausible the negli-
gible interaction assumption for the additive model.
The ‘state effects,” assuming flat normal priors, have
a normal distribution centered at X; and standard
deviation ¢/y/n, i = 1,...,k. We now simulate in R a
draw from each state, rank the results (using ‘which.
max’ and ‘which.min’), and repeat a large number of
times (e.g., 10°) to obtain P(MA is best) = 1.000;
and P(MS is worst) = 0.698, P(MT is worst) =
0.300, and P(the worst is any other than MS or
MT) = 0.002. The R code for these calculations is
given in Appendix F.

The results of the Bayesian analysis herein pre-
sented are in close agreement with the results given
in the fifth section with the parametric selection pro-
cedure. This is as expected since the choice of a non-
informative prior distribution results in an analysis
based on the likelihood function as is the parametric
selection procedure.

CONCLUDING REMARKS

The subset selection procedures, parametric or non-
parametric, select a random number of populations
to include in the subsets on which a confidence
statement can be attached. Subset size is a random
variable dependent on the observed data. Determin-
ing the constants required to implement the selection
rules does require determination of the Least Favor-
able Configuration (LFC), i.e., the configuration of
population  parameters which minimize the

© 2016 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 229
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probability of a CS. With two of the procedures
used in this article, Ry and Rj, that determination
has been made only in the situation where the
underlying parameter space is a ‘slippage’ space,
i.e., all population parameters equal with the possi-
ble exception of one. However, there have been lim-
ited simulation studies, e.g., see Lorenzen and
McDonald,® suggesting that the inference is valid in
much more general settings. For all selection rules
herein used, the LFC is that for which all popula-
tion parameters are equal. The results for MVTFRs
for the years 1994-2012 were compared to those of
a similar analysis for the years 1982-2004.

The nonparametric selection rules choose a
much larger subset than do the parametric proce-
dures. And the conclusions from the Bayesian ana-
lyses are qualitatively closely aligned with those from
the parametric selection procedures. This is not sur-
prising as the nonparametric approach uses the ranks
of the data, not the magnitudes. And as seen in
Figure 3, there are outliers on the lower and upper
end of the residual probability plot.

Bayesian procedures can yield a complete prob-
ability distribution over all orderings of the popula-
tion parameters (e.g., means). There is a curse of
dimensionality--k! gets large very quickly. However,
using simulation capability in WinBugs and R, it is
straightforward to generate a probability distribution

FURTHER READING

wires.wiley.com/compstats

over the populations as to which has the maximum
(minimum) parameter. This was illustrated with
MVTFRs from k = 51 states.

With respect to analyses of MVTFRs, there is
an important research and application literature deal-
ing with the identification of ‘black spots,” or hazard-
ous locations, to which safety measures can be
applied to improve traffic safety. Hauer** and Mon-
tella?® review statistical procedures for identification
of such road sections or intersections. A Bayesian
approach to investigate and evaluate ranking criteria
for black spot identification is given by Lan and Per-
saud.?* Bayesian multiple testing procedures for hot-
spot identification are given by Miranda-Moreno
et al.?® They use a dataset of highway-railway grade
crossings to illustrate procedures incorporating both
the posterior distribution of accident frequency and
the posterior distribution of ranks. Cheng and
Washington®® utilize five tests for conducting perfor-
mance assessments of hot spot identification methods
and conclude that, among the methods investigated,
an empirical Bayes method is superior. While these
important hot spot identification problems have not
been addressed in this article, the application of these
ranking and selection methods, or those more
broadly described by Gibbons et al.?” and Gupta and
Panchapakesan,”® might well be pursued for such
applications.

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The BUGS Book: A Practical Introduction to Bayesian Analysis.
Boca Raton: CRC Press; 2013. Albert J. Bayesian Computation with R. 2nd ed. New York: Springer; 2009.
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APPENDIX B. State Rank Sums and Tennessee 7455 X X
Subsets of States Chosen by Nonparametric Alabama 760 X X
Rules Kentucky 769 X X
Wyoming 773.5 X X
Worst Best New Mexico 7755 X X
090 Seéiclte'f" Se;iclte'f" South Dakota 787 X X
Arizona 8225 X X
STATE RANK SUM  R1 R2 R3 R4 West Virginia 8235 X X
Massachusetts 23 X X Arkansas 888 X X
Connecticut 90.5 X X Louisiana 899 X X
Rhode Island 93.5 X X South Carolina 91 X X
New Jersey 105.5 X X Montana 929 X X
Minnesota 124.5 X X Mississippi 9305 X X
New Hampshire 135.5 X X
Washington 170 X X
New York 180.5 X X
Maryland 218 X X APPENDIX C. Ordered Means of State
Vermont 227.5 X X MVTFRO'3
Virginia 2315 X X
California 258.5 X X State Mean State Mean
Ohio 261 X Massachusetts 0.93089 Pennsylvania 1.11572
Michigan 303.5 X Rhode Island 0.98628 Georgia 1.11814
lllinois 305.5 X Connecticut 0.99251 lowa 1.11848
Indiana 311 X New Jersey 1.00680 Kansas 1.14954
District of Columbia 3235 X Minnesota 1.00698 Missouri 1.15028
Wisconsin 325.5 X New Hampshire 1.01171 Texas 1.15057
Maine 3335 X Washington 1.02839  North Carolina  1.15157
Utah 350 X New York 1.03323 Oklahoma 1.16115
Oregon 398 X Vermont 1.03750 Alaska 1.16758
Colorado 433 X X Maryland 1.04387 Florida 1.17696
Hawaii 445.5 X X Virginia 1.04642 Idaho 1.18068
North Dakota 452.5 X X Ohio 1.05361 Nevada 1.18609
Delaware 457 X X California 1.05533 Tennessee 1.18959
Nebraska 462 X X District of Columbia ~ 1.06438 Alabama 1.19343
Pennsylvania 489.5 X X Indiana 1.06527 New Mexico 1.19984
lowa 489.5 X X Michigan 1.06677 Kentucky 1.20055
Georgia 500 X X lllinois 1.06683 Wyoming 1.20078
Missouri 606.5 X Wisconsin 1.06903 South Dakota 1.20568
Kansas 606.5 X Maine 1.07259 Arizona 1.21516
Texas 609.5 X Utah 1.07988 West Virginia 1.22244
North Carolina 615.5 X Oregon 1.09229 Arkansas 1.23954
Oklahoma 649.5 X Colorado 1.10110 Louisiana 1.24497
Alaska 654.5 X Hawaii 1.10266  South Carolina  1.24829
Florida 701 X X Delaware 1.10750 Montana 1.26889
Idaho 715.5 X X North Dakota 1.10844 Mississippi 1.27436
Nevada 722.5 X X Nebraska 1.10871
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APPENDIX D. Analysis of MVTFR? with DC and ND Deleted

Table D1. Two-Way ANOVA Table for the Transformed MVTFRs with DC and ND Deleted

Source Degrees-of-Freedom Sums of Squares Mean Squares F Ratios P Values
State 48 6.35409 0.13238 162.51 0.000
Year 18 2.21012 0.12278 150.73 0.000
Error 864 0.70380 0.00081
Total 930 9.26801
ANOVA, analysis of variance; DC, District of Columbia; MVTFR, motor vehicle traffic fatality rates; ND, North Dakota.
Histogram of Residuals without DC and ND Normal Probability P’ll%tr:]"ar{_egi;zag without DC and ND
0 99.99 1 (Mean -6.21296E-16
140 StDev 0.02751
N 931
= JE-
2100
g _ 801
g 80 8 50!
s 60 & 20 4
40° 54
1
20
0+ B 0.01
-0.09 -0.06 -0.03 0.00 0.03 0.06 0.09 -0.10 -0.05 0.00 0.05 0.10
Residuals Residuals
APPENDIX E. WinBugs Code for Calculations Related to Table 4
# Ranking & Selection for k = 4 Populations
model {
for (iin 1:3) {
x1[i] ~ dnorm(m1,taul)
x2[i] ~ dnorm(m2,tau2)
x3][i] ~ dnorm(m3,tau3)
x4[i] ~ dnorm(m4,tau4)
}
ml ~ dnorm(a,b)
m2 ~ dnorm(a,b)
m3 ~ dnorm(a,b)
m4 ~ dnorm(a,b)
taul < - pow(sigmal,-2)
tau2 < - pow(sigma2,-2)
tau3 < - pow(sigma3,-2)
tau4 < - pow(sigma4,-2)
pl.2.3.4 < - step(m2-m1)*step(m3-m2)*step(m4-m3)
pl.2.4.3 < - step(m2-m1)*step(m4-m2)*step(m3-m4)
pl1.3.2.4 < - step(m3-m1)*step(m2-m3)*step(m4-m2)
pl1.3.4.2 < - step(m3-m1)*step(m4-m3)*step(m2-m4)
pl.4.2.3 < - step(m4-m1)*step(m2-m4)*step(m3-m2)
pl1.4.3.2 < - step(m4-m1)*step(m3-m4)*step(m2-m3)
p2.1.3.4 < - step(m1-m2)*step(m3-m1)*step(m4-m3)
Volume 8, November/December 2016 © 2016 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. 235
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}

List(a = 0,b = 0.001,x1 = ¢(1,2,3),x2 = ¢(2,3,4),x3 = ¢(3,4,5),x4 = c(4,5,6),
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p2.1.4.3 < - step(m1-m2)*step(m4-m1)*step(m3-m4)
p2.3.1.4 < — step(m3-m2)*step(m1-m3)*step(m4-m1)
p2.3.4.1 < - step(m3-m2)*step(m4-m3)*step(m1-m4)
p2.4.1.3 < - step(m4-m2)*step(m1-m4)*step(m3-m1)
p2.4.3.1 < - step(m4-m2)*step(m3-m4)*step(m1-m3)
p3.1.2.4 < - step(m1-m3)*step(m2-m1)*step(m4-m2)
p3.1.4.2 < - step(ml—m3)*step(m4-ml)*step(mZ m4)
p3.2.1.4 < — step(m2-m3)*step(m1-m2)*step( )
p3.2.4.1 < - step(m2-m3)*step(m4-m2)*step(m1 m4)
p3.4.1.2 < - step(m4-m3)*step(m1-m4)*step(m2-m1)
p3.4.2.1 < - step(m4-m3)*step(m2-m4)*step(m1-m2)
p4.1.2.3 < - step(m1-m4)*step(m2-m1)*step(m3-m2)
p4.1.3.2 < - step(m1-m4)*step(m3-m1)*step(m2-m3)
p4.2.1.3 < - step(m2-m4)*step(m1-m2)*step(m3-m1)
p4.2.3.1 < - step(m2-m4)*step(m3-m2)*step(m1-m3)
p4.3.1.2 < - step(m3—m4)*step(m1-m3)*step(mZ m1)
p4.3.2.1 < - step(m3-m4)*step(m2-m3)*step( )
P[1] < -pl.2.34

2]

p(3]

pl4] < - pl.3.4.2
plS] < -pl.4.2.3
pl6] < - pl.4.3.2
pl7] < - p2.1.3.4
pl8] < - p2.1.4.3
pl9] < -p2.3.1.4
p[10] < - p2.3.4.1
pl11] < - p2.4.1.3
pl12] < - p2.4.3.1
p[13] < - p3.1.2.4
pl14] < - p3.1.4.2
p[15] < - p3.2.1.4
pl16] < - p3.2.4.1
pl17] < - p3.4.1.2
p[18] < - p3.4.2.1
p[19] < - p4.1.2.3
p[20] < - p4.1.3.2
p[21] < - p4.2.1.3
p[22] < - p4.2.3.1
pl23] < - p4.3.1.2
p[24] < - p4.3.2.1

p.sum < - sum(p[])

sigmal = 1,sigma2 = 1,sigma3 = 1,sigma4 = 1)
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APPENDIX F. R Code for Bayesian Simulations Described in the Bayesian Analysis of

MVTFR? Section

#R-code for Bayesian simulations of MVTFRs ~ 0.3
# k = number of populations; n = number of simulations
#sigma = model sd; m = number of years
k = 51; n = 1000000;sigma = 0.0322241; m = 19
#sigma value is estimate from two-way ANOVA of rate " 0.3
#mu values are means of (rate " 0.3)
x < —c(rep(0,k))
y < —c(rep(0,n))
z < —c(rep(0,n))
err < —sigma/sqrt(m)
mu < —c(1.19343,1.16758,1.21516,1.23954,1.05533,1.10110,0.99251,1.10750,
1.06438,1.17696,1.11814,1.10266,1.18068,1.06683,1.06527,1.11848,
1.14954,1.20055,1.24497,1.07259,1.04387,0.93089,1.06677,1.00698,
1.27436,1.15028,1.26889,1.10871,1.18609,1.01171,1.00680,1.19984,
1.03323,1.15157,1.10844,1.05361,1.16115,1.09229,1.11572,0.98628,
1.24829,1.20568,1.18959,1.15057,1.07988,1.03750,1.04642,1.02839,
1.22244,1.06903,1.20078)
for (i in 1:n) {
for (j in 1:k) {x[j] <—rnorm(1,mean = muljl,sd = err)}
yli] <—which.min(x)
z[i] <—which.max(x)
}
table(y)
table(z)
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