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REGULARITY RESULT FOR THE PROBLEM OF VIBRATIONS
OF A NONLINEAR BEAM

M’BAGNE F. M’BENGUE, MEIR SHILLOR

Abstract. A model for the dynamics of the Gao nonlinear beam, which allows

for buckling, is studied. Existence and uniqueness of the local weak solution
was established in Andrews et al. (2008). In this work the further regularity in

time of the weak solution is shown using recent results for evolution problems.

Moreover, the weak solution is shown to be global, existing on each finite time
interval.

1. Introduction

A model for the vibrations of a nonlinear beam that takes into account the beam’s
thickness which, however, is one-dimensional, was derived by Gao in [4, 5]. The
existence of the unique local weak solution for the problem was established recently
in [2]. In this work we show that the weak solution has additional regularity in
time, when the problem data is smoother. This allows us to establish that the
weak solution is also a global solution existing on each finite time interval.

The motivation for the introduction of various models for beams was to capture
more fully the nonlinearities that beams exhibit, in particular buckling, which is
associated with a double-well in the energy function of the beam. Among the
models derived in [5], the one-dimensional model studied in [2] and here is the
simplest. However, it is nonlinear, it allows for buckling, and has interest in and of
itself. The literature on the beam includes also [9] and the references therein.

This work is the continuation of [2] where, in addition to the analysis, a fi-
nite difference scheme for the beam was introduced based on the Newmark time
discretization and Hermite cubic finite elements, and the results of numerical sim-
ulations depicted. Here, we prove that if the problem data is more regular, then
the solution has additional time regularity. The proof is based on the problem for
the time derivative of the solution. We first study the truncated problem, and use
results for variational problems for pseudomonotone operators of [6, 7]. Then, we
use a continuity argument to show that there exists a unique weak solution such
that for some time the truncation is inactive. Using the energy balance and a pri-
ori estimates derived from it, we also show that for a sufficiently large truncation
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ceiling, the truncation is not active on each preassigned time interval, and so the
solution is global.

The rest of the paper is organized as follows. In Section 2 we present shortly the
classical formulation of the model, following [4, 5, 2]. In Section 2 the weak formu-
lation and the statement of the existence and uniqueness result in [2] is given, the
weak or abstract formulation of the problem for the time derivative presented and
the statements of the existence and uniqueness results for the truncated problem
and the full problem stated. Our main regularity result is states in Theorem 3.4.
The proof is provided in Section 6, and is based on the results for the truncated
problem in Section 5. In Section 4 we present the energy balance equation for the
original problem, derive a priori estimates on ‖wx‖L∞(0,T ;L∞(0,1)), and based on
this estimate we conclude that the solution of the problem is global in time.

2. The Model

The derivation of the model was done in Gao in [4, 5], and a more detailed
description can be found in [2]. Here, we just present it with very few comments.
The beam’s centerline is, in dimensionless variables, [0, 1] and its thickness 2h, and
we denote by w(x, t) the transverse displacement of its central axis, for 0 ≤ x ≤ 1
and 0 ≤ t ≤ T , for 0 < T .
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Figure 1. The beam; w is the displacement of the central axis.

The beam is subjected to a laterally distributed load f = f(x, t), and a horizontal
traction which acts at the end x = 1. The simplest finite deformations nonlinear
model derived in [4, 5] for the beam consists of the evolution equation

wtt + kwxxxx + (νp− aw2
x)wxx = f, (2.1)

in ΩT = (0, 1)× (0, T ), where all the variables are in dimensionless form, and k, ν,
and a are system parameters, assumed to be positive constants. The term with
p = p(t) describes the effect of the horizontal force (compression/tension) acting
on the right end. When 0 < p the beam is being compressed, and when p < 0 it is
under tension.

We assume that the beam is clamped at both ends and initially the displacement
is w0 and the velocity is v0. Also, for the sake of generality, we add a viscosity term
γwtxxxx, with viscosity coefficient γ > 0, assumed to be small.

The classical formulation of the dynamic model for a beam with finite deforma-
tions with viscosity, is as follows.
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Problem Pcl. Find the displacement field w = w(x, t) for x ∈ (0, 1) and t ∈ (0, T ),
such that

wtt + kwxxxx + γwtxxxx − (aw2
x − νp)wxx = f, (2.2)

w(0, t) = wx(0, t) = 0, (2.3)

w(1, t) = wx(1, t) = 0, (2.4)

w(x, 0) = w0(x), wt(x, 0) = v0(x). (2.5)

The system is nonlinear and the existence and uniqueness of the local weak
solution to the problem has been established in [2]. We first present the weak
formulation of the problem and then show that additional assumptions on the
problem data lead to an improved regularity, in time, of the solution.

3. Weak formulation and results

We first describe the weak formulation of Problem Pcl, the assumptions on the
problem data, and state the existence and uniqueness result for local weak solutions.
We follow [2]. Then, we describe the problem obtained by differentiating Problem
Pcl with respect to time.

We denote by (·, ·) the inner product in H = L2(0, 1), and let

W = H2
0 (0, 1) = {u ∈ H2(0, 1) : u = ux = 0 at x = 0, 1},

be a Hilbert space endowed with the inner product (w, u)W =
∫ 1

0
wxxuxx dx, and

the associated norm ‖w‖2W = (w,w)W which, in view of the boundary conditions
and the Poincare theorem, is equivalent to the usual H2(0, 1) norm on W . The
dual of W is denoted by W ′, and since W ⊆ H ⊆ W ′, by identifying H ′ = H,
it follows that (W,H,W ′) is a Gelfand triple. Next, let H = L2(0, T ;H), and
W = L2(0, T ;W ) with inner product (·, ·)W and duality pairing 〈·, ·〉W between W
and its dual W ′, which we write as 〈·, ·〉. Again, we have

W ⊆ H = H′ ⊆ W ′.

Next, proceeding as usual, we obtain the following variational formulation of the
problem of vibrations of a nonlinear beam.

Problem PV . Find the displacement field w : [0, T ] →W and the velocity v = wt,
such that for a.a. t ∈ [0, T ] and ψ ∈W ,

〈vt(t), ψ〉W + k(wxx(t), ψxx) + γ(vxx(t), ψxx)

+
1
3
a(w3

x(t), ψx)− νp(t)(wx(t), ψx) = (f(t), ψ),
(3.1)

w(0) = w0, wt(0) = v0. (3.2)

We make the following assumptions on the problem data:

w0, v0 ∈W, ‖w0xx‖L2(0,1), ‖w0x‖L∞(0,1) ≤ R∗, (3.3)

p ∈ C1([0, T ]), |p|, |p′| ≤ p∗, (3.4)

f ∈ H. (3.5)

Here, R∗ and p∗ are two positive constants.
The main existence and uniqueness result in [2] is the following.
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Theorem 3.1. Assume that (3.3)–(3.5) hold. Then there exists T ∗ > 0 and a
unique solution w to Problem PV on the time interval [0, T ∗) such that

w, v ∈ L∞(0, T ∗;W ), v′ ∈ L2(0, T ∗;W ′). (3.6)

To establish additional regularity of w, we study the problem for v = w′, where
here and below we denote by a prime the (weak) time derivative. We differentiate
equation (3.1) with respect to t, set z = w′′ = v′, and, for ψ ∈W , we obtain

〈z′(t), ψ〉W + k(vxx(t), ψxx) + γ(zxx(t), ψxx) + a(w2
x(t)vx(t), ψx)

−νp′(t)(wx(t), ψx)− νp(t)(vx(t), ψx) = (f ′(t), ψ).
(3.7)

To obtain the initial condition for z, we formally set t = 0 in (2.2) and obtain
condition (3.9) below.

We have the following problem for the triple {w, v, z}.

Problem PV z. Find the displacement field w : [0, T ] → W , the velocity field
v : [0, T ] →W , and the acceleration z : [0, T ] →W such that for a.a. t ∈ [0, T ] and
every ψ ∈W the variational equation (3.7) holds, together with

w(t) = w0 +
∫ t

0

v(τ) dτ, v(t) = v0 +
∫ t

0

z(τ) dτ, (3.8)

z(0) = −kw0xxxx − γv0xxxx + aw2
0xw0xx − νp(0)w0xx + f(0). (3.9)

Problem (3.7)–(3.9) makes sense only if we assume, in addition to (3.3)–(3.5), that

f, f ′ ∈ W ′, f(0) ∈ H, (3.10)
and to ensure that z(0) ∈ L2(0, 1) we assume that

w0, v0 ∈ H4(0, 1), w0 ∈ H2
0 (0, 1), ‖w0x‖L∞(0,1) ≤ R∗. (3.11)

We note that the term aw2
0xw0xx is well defined.

To deal with the term with w2
xvx we introduce the truncation

ΨR(r) =


R for R ≤ r,

r for |r| ≤ R,

−R for r ≤ −R,
(3.12)

where R is a large positive number, and we replace w2
x with Ψ2

R(wx). Eventually,
we show that when R is sufficiently large, the truncation is inactive.

To proceed with the abstract formulation of the truncated problem, we define
the operators B,K : W →W ′, and KRN : W ×W →W ′ by

〈B(w), ψ〉 =
∫ T

0

∫ 1

0

wxψx dx dt, (3.13)

〈K(w), ψ〉 =
∫ T

0

∫ 1

0

wxxψxx dx dt, (3.14)

〈KNR(w, v), ψ〉 =
∫ T

0

∫ 1

0

Ψ2
R(wx)vxψx dx dt. (3.15)

We introduce the function space

Y = W ×W ×W,

and denote its dual by Y ′.
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The abstract formulation of the truncated version of Problem PV z is:

Problem PV zR. Find (w, v, z) ∈ Y, with z′ ∈ W ′ such that:

v = w′, z = v′, (3.16)

z′ + kK(v) + γK(z) + aKNR(w, v)− νp′B(w)− νpB(v) = f ′, (3.17)

in W ′, together with (3.8) and (3.11).
The abstract formulation of Problem PV z is obtained by reinstating w2

x in place
of Ψ2

R(wx) in KNR.
Next, we rewrite (3.16) in an equivalent form,

K(v) = K(w′), K(z) = K(v′).

The equivalence follows from the boundary conditions. This allows us to show the
coercivity of the operator Areg.

The operator A : Y → Y ′, for y = (w, v, ϕ) ∈ Y, is defined by

A(w, v, ϕ) = kK(v) + γK(ϕ) + aKNR(w, v)− νp′B(w)− νpB(v).

The operator Areg : Y → Y ′ is defined, for y = (w, v, ϕ) ∈ Y, by

Areg(y) = (−K(v),−K(ϕ), A(w, v, ϕ)) .

We let G = W ×W ×H with dual G′, we define G = W ×W ×H, the operator
D : G → G′ is defined, for y = (w, v, ϕ) ∈ G, by

D(y) = (K(w),K(v), ϕ) ,

and the functional F : Y → R3 as

〈F, y〉 = (0, 0,
∫ T

0

∫ 1

0

f ′ϕdx dt).

Problem PV zR can now be written in the following abstract form.

Problem PAR. Find y = (w, v, z) ∈ Y such that

(Dy)′ +Areg(y) = F, in Y ′,
Dy(0) = Dy0, in G′,

where w and v are given in (3.11), y0 = (w0, v0, z(0)), and z(0) in (3.9).

Theorem 3.2. Assume that (3.3)–(3.5), (3.10) and (3.11) hold. Then Problem
PAR = PV zR has a unique weak solution.

The proof of the theorem is given in the next section. The main step to the main
result of this paper is the following.

Theorem 3.3. Assume that (3.3)–(3.5), (3.10) and (3.11) hold. Then there exists
0 < T ∗ such that Problem PV z has a unique weak solution on the time interval
[0, T ∗).

The proof is provided in Section 6, and is based on the observation that if R is
sufficiently large and w0x is bounded in L∞, then, by the continuity of the solution,
the L∞ norm of wx is bounded by R on a time interval [0, T ∗), hence the truncation
ΨR(wx) is inactive, and on this time interval the problem with or without truncation
has the same solution.
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Then, the argument presented in the next section, which provides an a priori es-
timate based on an energy balance, shows that the unique weak solution is actually
global in time, and exists on each time interval [0, T ].

The main result of this paper shows that the solution of Problem PV has addi-
tional regularity in time.

Theorem 3.4. Assume that (3.3)–(3.5), (3.10)–(3.11) hold. Then, for each 0 < T ,
Problem PV , (3.1) and (3.2), has a unique weak solution on the time interval [0, T ],
and the solution satisfies

w, v, v′ ∈ L∞(0, T ;W ), v′′ ∈ L2(0, T,W ′). (3.18)

We conclude that the acceleration v′ is a function and only its time derivative
may be a distribution, and moreover,

w ∈ C1([0, T ]);W ), v ∈ C([0, T ];W ), v′ ∈ C([0, T ];H). (3.19)

In the next section we show that the solution is global and exists on each finite
time interval [0, T ].

4. Energy estimate and global solution

In this section we use an energy balance to obtain an a priori estimate that allows
us to conclude that the solution of Problem PV is global.

Proceeding formally, the following energy balance was obtained in [2] for Problem
PV on [0, T ∗):

E(t) ≡ 1
2
‖v(t)‖2H +

k

2
‖wxx(t)‖2H +

a

12
‖w2

x(t)‖2H − 1
2
νp(t)‖wx(t)‖2H

= E(0)− γ

∫ t

0

‖vxx(τ)‖2H dτ − 1
2
ν

∫ t

0

p′(τ)‖wx(τ)‖2H dτ

+
∫ t

0

(f(τ), v(τ)) dτ.

(4.1)

The initial energy is

E(0) =
1
2
‖v0‖2H +

k

2
‖w0xx‖2H +

a

12
‖w2

0x‖2H − 1
2
νp(0)‖w0x‖2H .

The first integral on the right-hand side in (4.1) is the viscous dissipation, the
second one is related to the work done by p, while the third one is the work of the
applied force f .

It follows from the assumptions (3.3)–(3.5) on the problem data that |E(0)| =
E0 <∞, and also that the energy balance is actual, as the regularity of the solution,
(3.18) and (3.19), justifies the manipulations that lead to (4.1).

Rearranging the terms, using the fact that ‖wx(t)‖2H ≤ ‖wxx(t)‖2H , and manip-
ulations that include the Cauchy inequality, we obtain for 0 ≤ t < T ∗,

1
2
‖v(t)‖2H +

k

2
‖wxx(t)‖2H + γ

∫ t

0

‖vxx(τ)‖2H dτ

≤ E0 +
1
2

∫ t

0

‖f(τ)‖2H dτ +
1
2
νp∗‖wx(t)‖2H − a

12
‖w2

x(t)‖2H

+ C

∫ t

0

(
‖v(τ)‖2H + ‖wxx(τ)‖2H

)
dτ.
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Here, C = C(k, ν, p∗) is a positive constant. Next, we study J = J(t) which is
given by

J(t) ≡ 1
2
νp∗‖wx(t)‖2H − a

12
‖w2

x(t)‖2H =
a

12

∫ 1

0

(
6νp∗

a
− w2

x(x, t)
)
w2

x(x, t) dx.

Let χ+(x, t) be the subset of [0, 1] where w2
x(x, t) ≤ 6νp∗/a and let χ−(x, t) be the

complement where w2
x(x, t) > 6νp∗/a. Then

J(t) ≤ a

12

∫
χ+(x,t)

(
6νp∗

a
− w2

x(x, t)
)
w2

x(x, t) dx ≤ 3ν2(p∗)2 ≡ c∗ν .

Using now the Gronwall inequality yields

‖v(t)‖2H + ‖wxx(t)‖2H ≤ exp(CT ∗)
(
(E0 + c∗ν)T ∗ + ‖f‖2L2(0,T∗,H)

)
, (4.2)

for all 0 ≤ t < T ∗. Thus, ‖wxx(t)‖H ≤ C∗, where C∗ depends only on the data and
on T ∗. Finally, we note that the Hölder inequality yields

|wx(x, t)| ≤ ‖wx(t)‖L∞(0,1) ≤
∫ 1

0

|wxx(r, t)| dr ≤ ‖wxx(t)‖L2(0,1) ≤ C∗,

for 0 ≤ t ≤ T ∗. But this means that if we choose the truncation ceiling R such
that C∗ << R, then by a continuity argument the truncation ΨR (used in [2]) is
inactive on 0 ≤ t ≤ T ∗+ε, where ε depends only on C∗, and therefore, the solution
exists on any finite time interval [0, T ].

5. Proof of Theorem 3.2

The proof is based on the existence results for evolution problems established in
Kuttler [6] and [7]. To use these results we need to show that the operator Areg :
Y → Y ′ is bounded, coercive, and pseudomonotone, that is, for y = (w, v, ϕ) ∈ Y,
it satisfies the following conditions:

(1) ‖Areg(y)‖Y′ ≤ C(1 + ‖y‖Y).

(2) lim
‖y‖Y→∞

〈λDy +Areg(y), y〉
‖y‖Y

= ∞, for λ sufficiently large.

(3) y → Areg(y) is a pseudomonotone map from Y to Y ′.
These conditions guarantee the existence of a weak solution to the truncated prob-
lem.

Actually, to obtain the coercivity (2) one has to use an exponential shift in which
the new dependent variable ỹ is given by ỹ = ye−λt. Then in all the linear terms
we find that λD+Areg replaces Areg and the nonlinear term KNR changes with an
exponential eλt. Since the problem is only considered on a finite interval, to save
on notation and simplify the presentation, we ignore this minor technical detail and
note that it suffices to show that (1)–(3) hold for y = (w, v, ϕ) ∈ Y.

These steps are summarized in the following lemmas. The proofs parallel the
ones presented in [2], so we only present the modifications which deal with the
different nonlinear term. Indeed, the operators B and K are linear, so we need
only to study KNR.

Below, we let C denote a positive constant which depends on the problem data
and whose value may change from place to place.

Lemma 5.1. The operator KNR is bounded.
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Proof. Since |Ψ2
R(wϕ x)| ≤ R2, by using the Hölder inequality we obtain

|〈KNR(w, v), ψ〉| ≤
∫ T

0

∫ 1

0

|Ψ2
R(wx)||vx||ψx| dx dt

≤ R2

∫ T

0

∫ 1

0

|vx||ψx| dx dt

≤ R2‖v‖L2(0,T ;H1)‖ψ‖L2(0,T ;H1)

≤ CR2‖v‖W‖ψ‖W .
Therefore,

‖KNR(w, v)‖W′ ≤ CR2‖v‖W ≤ CR2‖y‖Y .
The rest of the estimates leading to the boundedness of A are straightforward (see
[2, Lemma 3.3]) and from these we obtain the boundedness of Areg. �

Lemma 5.2. The operator λD +Areg is coercive for all λ sufficiently large.

Proof. We have

〈λDy +Areg(y), y〉 = 〈λDy, y〉+ 〈Areg(y), y〉.
Then,

〈λDy, y〉 = (λDy, y) = λ(‖wxx‖2H + ‖vxx‖2H + ‖ϕ‖2H)

= λ(‖w‖2W + ‖v‖2W + ‖ϕ‖2H).

Here, we used ‖wxx‖H as the norm on W. Next,

〈Areg(y), y〉 ≥ −|〈Kv,w〉| − |〈Kϕ, v〉|+ 〈A(w, v, ϕ), ϕ〉|
≥ −‖v‖W‖w‖W − ‖ϕ‖W‖v‖W + 〈A(w, v, ϕ), ϕ〉.

Using the Cauchy inequality with ε leads to

‖v‖W‖w‖W + ‖ϕ‖W‖v‖W ≥ −C(‖v‖2W + ‖w‖2W)− 1
4
γ‖ϕ‖2W .

Also,

〈A(w, v, ϕ), ϕ〉 = k(vxx, ϕxx)H + γ‖ϕ‖2W − ν(p′wx, ϕx)H

− ν(pvx, ϕx)H + a(Ψ2
R(wx)vx, ϕx)H.

Therefore, using the Cauchy inequality with ε, again, yields

〈A(w, v, ϕ), ϕ〉 ≥ γ‖ϕ‖2W − k‖vxx‖H‖ϕxx‖H − νp∗‖wx‖H‖ϕx‖H
− νp∗‖vx‖H‖ϕx‖H − aR2‖vx‖H‖ϕx‖H

≥ 1
2
γ‖ϕ‖2W − C

(
‖w‖2W + ‖v‖2W

)
.

Collecting these estimates and rearranging the constants we obtain

〈Areg(y), y〉 ≥
1
4
γ‖ϕ‖2W − C

(
‖w‖2W + ‖v‖2W

)
.

Thus,

〈λDy +Areg(y), y〉

≥ λ(‖w‖2W + ‖v‖2W) + (λ‖ϕ‖2H +
1
4
γ‖ϕ‖2W)− C

(
‖w‖2W + ‖v‖2W

)
.
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It follows that when λ is sufficiently large,

lim
‖y‖Y→∞

〈(λDy +Areg)(y), y〉
‖y‖Y

= ∞.

Hence, the operator λD +Areg is coercive. �

We prove, next, that the operator Areg is pseudomonotone on a smaller space,
which is sufficient for our purposes. Let

Z = {y ∈ Y; y′ ∈ Y ′}

be a Banach space with the product norm ‖y‖Z = ‖y‖Y+‖y′‖Y′ . Then, we consider
the operator as Areg : Z → Z ′. We have the following result.

Lemma 5.3. The operator Areg : Z → Z ′ is pseudomonotone.

Proof. We have

A(w, v, ϕ) = kK(v) + γK(ϕ) + aKNR(w, v)− νp′B(w)− νpB(v).

Since Z is a reflexive Banach space, it suffices to show that

KNR : Z → Z ′

is a weak to norm continuous, where KNR is trivially restricted to to Z. We observe
that the sum of the other operators in Areg is linear, bounded and monotone, thus
pseudomonotone.

Let {ym} be a sequence which converges weakly in Z to y. Then, the sequence
{ym = (wm, vm, ϕm)} converges weakly in Y to y = (w, v, ϕ).

Since {ym} is bounded in Z, it follows from the theorems of Simon [10] or Aubin
[1], that each one of the sequences {ϕm}, {vm} and {wm} is relatively compact in
L2(0, T ;H1(0, 1)). Thus, there exist subsequences {ϕmj

}, {vmj
} and {wmj

} which
converge strongly in L2(0, T ;H1(0, 1)) and almost everywhere in [0, 1] × [0, T ] to
ϕ, v and w, respectively. Then,

Ψ2
R(wmjx)vmjx → Ψ2

R(wx)vx,

strongly in H = L2(0, T ;L2(0, 1) and a.e. in [0, 1] × [0, T ]. Thus, for each ψ ∈ Y,
we have

|〈KNR(wmj
, vmj

)−KNR(w, v), ψ〉|
≤ C‖Ψ2

R(wmjx)vmjx −Ψ2
R(wx)vx‖H‖ψ‖Y ,

and, as mj →∞,

‖KNR(wmj
, vmj

)−KNR(w, v)‖Y′ ≤ C‖Ψ2
R(wmjx)vmjx −Ψ2

R(wx)vx‖H → 0.

Thus, KNR is weak to norm continuous and, since the sum of the other terms is
linear, bounded and monotone, we conclude that Areg is pseudomonotone. �

Since the conditions (1), (2) and (3) are satisfied, the abstract existence theorems
in [6, 7] provide a solution to Problem PV zR for each sufficiently large R. This
completes the proof of the existence part of Theorem 3.2. The uniqueness is shown
by using the Gronwall inequality. However, we skip it here since it will be used
below in a similar manner.
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6. Proof of Theorem 3.3

We prove the theorem by showing the following result, and then prove the unique-
ness of the solution.

Proposition 6.1. Let R be sufficiently large. Then, there exists T ∗ > 0 such
that the solution (wR, vR, zR) of Problem PV zR satisfies ΨR(wx) = wx a.e. on
[0, 1]× [0, T ∗).

Proof. It follows from Theorem 3.2 that w = wR, v = w′R ∈ L2(0, T : W ),
then [8, Lemma 1.2] asserts that w ∈ C([0, T ];W ). Thus, the mappings wx :
[0, T ] → H1

0 (0, 1), and wxx : [0, T ] → L2(0, 1) are continuous. Now, wx(x, t) =∫ x

0
wxx(r, t) dr, and since wx(t) ∈ H1

0 (0, 1), the Hölder inequality yields

|wx(x, t)| ≤ ‖wx(t)‖L∞(0,1) ≤
∫ 1

0

|wxx(r, t)| dr ≤ ‖wxx(t)‖L2(0,1),

for 0 ≤ t ≤ T . Let h(t) = ‖wxx(t)‖L2(0,1) then h : [0, T ] → R is continuous on a
compact set, so it is bounded. Since h(0) = ‖w0xx‖L2(0,1) ≤ R∗ < R, there exists
T ∗ ≤ T such that h(t) ≤ R for all t ∈ [0, T ∗). It follows that

‖wx(t)‖L∞(0,1) ≤ R, (6.1)

and, therefore, the truncation is inactive on the time interval [0, T ∗), i.e., Ψ2
R(wx) =

w2
x, and so the solution (wR, vR, zR) = (w, v, z) is a solution of the Problem PV z

on [0, T ∗). �

This completes the proof of the existence of a local solution of Problem PV z.
We note in passing that it follows from the proof that if R1 < R2 then the

associated times satisfy T ∗1 < T ∗2 .
We next prove the uniqueness of the solution.

Proposition 6.2. The solution (w, v, z) ∈ Y of Problem PV z on [0, T ∗) is unique.

Proof. Let yi = (wi, vi, zi), for i = 1, 2, be two solutions of the problem. We
subtract (3.7) for y1 from (3.7) for y2, use ψ = z2(t)− z1(t) as a test function, and
for a.a. t ∈ (0, T ), obtain

〈z′2(t)− z′1(t), z2(t)− z1(t)〉W + k(v2xx(t)− v1xx(t), z2xx(t)− z1xx(t))

+ γ‖z2xx(t)− z1xx(t)‖2H + νp′(t)(w2xx(t)− w1xx(t), z2(t)− z1(t))

+ νp(t)(v2xx(t)− v1xx(t), z2(t)− z1(t))

= −a(w2
2x(t)v2x(t)− w2

1x(t)v1x(t), z2x(t)− z1x(t)),

where we used the facts that in view of the boundary conditions

(v2x(t)− v1x(t), z2x(t)− z1x(t)) = −(v2xx(t)− v1xx(t), z2(t)− z1(t)),

and similarly for the expression with w. We may write it as

d

dt
‖z(t)‖2H + k

d

dt
‖vxx(t)‖2H + 2γ‖zxx(t)‖2H + 2νp(t)(vxx(t), z(t))

− 2νp′(t)(wxx(t), z(t))

= −2a(w2
2x(t)(v2x(t)− v1x(t)), zx(t))− 2a((w2

2x(t)− w2
1x(t))v1x(t), zx(t)),

where z(t) = z2(t)− z1(t), v = v2(t)− v1(t) and w = w2(t)− w1(t).
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Integrating over 0 ≤ τ ≤ t and using the Hölder inequality, (3.4) and the bound-
edness of wx and vx, yields

‖z(t)‖2H + k‖vxx(t)‖2H + 2γ
∫ t

0

‖zxx(τ)‖2H dτ

≤ 2νp∗
∫ t

0

‖wxx(τ)‖H‖z(τ)‖H dτ + 2νp∗
∫ t

0

‖vxx(τ)‖H‖z(τ)‖H dτ

+ C

∫ t

0

‖vx(τ)‖H‖zx(τ)‖H dτ + C

∫ t

0

‖wx(τ)‖H ‖zx(τ)‖H dτ,

(6.2)

where C is a positive number which is independent of z, v or w, and we used the
fact that w(0) = v(0) = 0, and also (6.1). Using the Cauchy’s inequality with ε on
the right-hand side leads to

≤ C

∫ t

0

(
‖wxx(τ)‖2H + ‖vxx(τ)‖2H + ‖z(τ)‖2H

)
dτ

+
C

4ε

∫ t

0

(
‖wx(τ)‖2H + ‖vx(τ)‖2H

)
dτ + εC

∫ t

0

(
‖zx(τ)‖2H

)
dτ,

then, using the estimates on wx, wxx, vx, and zx in terms of vxx and zxx, we find
that the above expression is less than or equal to

Cε

∫ t

0

(
‖z(τ)‖2H + ‖vxx(τ)‖2H

)
dτ + εC

∫ t

0

‖zxx(τ)‖2H dτ.

Now, we choose ε sufficiently small, say ε = γ/C, and obtain

‖z(t)‖2H + k‖vxx(t)‖2H ≤ C

∫ t

0

(‖z(τ)‖2H + ‖vxx(τ)‖2H) dτ. (6.3)

It follows from the Gronwall inequality that ‖z(t)‖2H = 0 and ‖vxx(t)‖2H = 0.
Since ‖v(t)‖W ≤ C‖vxx(t)‖H and ‖wxx(t)‖H ≤ C‖vxx(t)‖H , we conclude that the
solution is unique. �

This concludes the proof of Theorem 3.3, and then Theorem 3.4 follows from it
and the estimate in Section 4.
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