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Abstract. A closed Riemann surface X , of genus g ≥ 2, is called a gen-

eralized superelliptic curve of level n ≥ 2 if it admits an order n conformal

automorphism τ so that X/〈τ〉 has genus zero and τ is central in Aut(X ); the
cyclic group H = 〈τ〉 is called a generalized superelliptic group of level n for X .

These Riemann surfaces are natural generalizations of hyperelliptic Riemann

surfaces. We provide an algebraic curve description of these Riemann surfaces
in terms of their groups of automorphisms. Also, we observe that the gener-

alized superelliptic group H of level n is unique, with the exception of a very

particular family of exceptional generalized superelliptic Riemann surfaces for
n even. In particular, the uniqueness holds if either: (i) n is odd or (ii) the

quotient X/H has all its cone points of order n. In the non-exceptional case,
we use this uniqueness property to observe that the corresponding curves are

definable over their fields of moduli if Aut(X )/H is neither trivial or cyclic.

1. Introduction

Let X denote a closed Riemann surface of genus g ≥ 2. A natural question is to
determine the group Aut(X ) of conformal automorphism of X , which is known to be
a finite group of order ≤ 84(g − 1), and to determine algebraic curves representing
it over which one may realize a given subgroup of its automorphisms. Another
related question is to determine if such Riemann surface can be defined over its field
of moduli and to describe an algebraic curve description defined over a ”minimal”
field of definition of it. These questions have been studied for a long time and
complete answers to them are not known, except for certain particular cases.

For an integer n ≥ 2 we say that X is a cyclic n-gonal Riemann surface if it
admits an order n conformal automorphism τ so that the quotient orbifold O =
X/〈τ〉 has genus zero (so it can be identified with the Riemann sphere); τ is called
a n-gonal automorphism and H = 〈τ〉 ∼= Cn a n-gonal group of X . It is well known
that X can be represented by an affine irreducible (which might have singularities)
algebraic curve of the form (called a cyclic n-gonal curve)

(1) yn =

r∏
j=1

(x− aj)lj ,

where

(i) a1, . . . , ar ∈ C are distinct,
(ii) lj ∈ {1, . . . , n− 1},

(iii) gcd(n, l1, . . . , lr) = 1.

Key words and phrases. generalized superelliptic curves, minimal field of definition.
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In this algebraic model, τ(x, y) = (x, ωny), where ωn = e2πi/n, and π(x, y) = x is a
regular branched cover with deck group H.

There exists an extensive literature about cyclic p-gonal Riemann surfaces when
p is a prime integer (see, for instance, [2, 6–9, 25, 26, 28, 29, 34, 35]). Castelnuovo-
Severi’s inequality [1, 11] asserts that a cyclic p-gonal Riemann surface of genus
g > (p− 1)2 has a unique p-gonal group (similar uniqueness results holds for n not
necessarily a prime when all cone points of S/H have branch order n [25]). In [18] it
is proved that a cyclic p-gonal Riemann surface of genus 2 ≤ g < (p− 1)(p− 5)/10
also has a unique p-gonal group (for instance, for p ≥ 11 and g = (p − 1)/2).
The uniqueness property of the p-gonal group, in those cases, has permitted to
determine the groups of automorphisms of such cyclic p-gonal Riemann surfaces
and their equations [34,35].

A particular class of cyclic n-gonal Riemann surfaces, called superelliptic curves
of level n [5, 20, 27], are those for which, in the above algebraic description (1), all
the exponents lj are equal to 1 (and if r 6≡ 0 mod (n), then gcd(n, r) = 1) and
τ is assumed to be central in Aut(X ) (this is a generic condition and generalizes
the hyperelliptic situation); τ is called a superelliptic automorphism of level n and
H = 〈τ〉 a superelliptic group of level n. In this case, all cone points of X/H have
order n. A classification of those superelliptic curves of genus g ≤ 48 according to
their group of automorphisms was provided in [27, 28]. In [20] it has been shown
that in most cases a superelliptic curve can be defined over its field of moduli and,
for g ≤ 10, it is described those which might not be definable over their field of
moduli. In that paper is also noted that every superelliptic curve of level n admits
a unique superelliptic group of level n (see also Corollary 3).

A natural generalization of superelliptic curves is by not requiring the cone points
of X/H to be all of order n. A generalized superelliptic curve of level n is a closed
Riemann surfaces X admitting an order n automorphism τ which is central in
G = Aut(X ) and X/〈τ〉 has genus zero; we call τ a generalized superelliptic au-
tomorphism of level n and the cyclic group H = 〈τ〉 is a generalized superelliptic
group of level n. The condition for τ to be central imposes some conditions of the
exponents lj in the algebraic curve (1) in terms of the reduced group of conformal

automorphisms G = G/H relative to H (see Lemma 1). By Singerman’s list of
finitely maximal signatures [31], generically, cyclic n-gonal Riemann surface are
generalized superelliptic curve of level n.

Following similar arguments as done by Horiuchi for the hyperelliptic situation
in [21] (because of Lemma 1), in Theorem 2 we provide a description of general-
ized superelliptic Riemann surfaces X in terms of G. In Theorem 3 we study the
uniqueness of the generalized superelliptic group of level n. It says that except for
a very particular family of exceptional generalized superelliptic Riemann surfaces
of level n even, there is only one generalized superelliptic group of level n. As a
consequence we have uniqueness of the generalized superelliptic group H of level n
in the following cases: (i) n is odd, (ii) the quotient X/H has all its cone points of
order n (for instance, when X is a superelliptic curve of level n). For the exceptional
cases, the groups of conformal automorphisms can be described and it can be see
that they are defined over their fields of moduli.

Let us assume now that X is a non-exceptional generalized superelliptic curve
of level n; so its has a unique generalized superelliptic group H of level n. The
uniqueness of the generalized superelliptic group H in G permits to observe (see
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Theorem 8) that in the case that G is different from trivial or cyclic group the
generalized superelliptic curve X is definable over its field of moduli (the field of
definition of the point in moduli space defining the conformal class of X ). In the
case that G is cyclic a similar answer is provided under a mild condition on the
signature of X/G (see Theorem 9). At this point we should mention the paper
[26] where the authors study the Galois descent obstruction for hyperelliptic curves
of arbitrary genus whose reduced automorphism groups are cyclic (in their paper
it is also considered the case of fields of positive characteristic); they an explicit
and effectively computable description of this obstruction and obtain an arithmetic
criterion for the existence of a hyperelliptic descent.

Notation 1. Throughout this paper we denote by Cn the cyclic group of order n,
by Dm the dihedral group of order 2m, by A4 and A5 the alternating groups of
orders 12 and 60, respectively, and by S4 the alternating group in four letters. Also,
when writing an algebraic curve yn =

∏s
j=1(x− bj)lj , if li = 0, then we delete the

corresponding factor (x− bi) from it and the corresponding n
ni

from the signature.

2. Preliminaries

2.1. Co-compact Fuchsian groups. A co-compact Fuchsian group is a discrete
subgroup K of orientation-preserving isometries of the hyperbolic plane H, so a
discrete subgroup of PSL(2,R), so that the quotient orbifold H/K is compact. The
algebraic structure of a co-compact Fuchsian group K is determined by its signature

(2) (γ;n1, . . . , nr),

where the quotient orbifold H/K has genus γ and r cone points having branch
orders n1, . . . , nr. The algebraic structure of K is given as
(3)
K = 〈a1, b1, . . . , aγ , bγ , c1, . . . , cr : cn1

1 = · · · = cnr
r = 1, c1 · · · cr[a1, b1] · · · [aγ , bγ ] = 1〉

where [a, b] = aba−1b−1.
The hyperbolic area of the orbifold H/K is equal to

(4) µ(K) = 2π

2γ − 2 +

r∑
j=1

(
1− 1

nj

) .

If the co-compact Fuchsian group K has no torsion, the quotient orbifold H/K
is a closed Riemann surface of genus g ≥ 2 and its signature is (γ;−). Conversely,
by the uniformization theorem, every closed Riemann surface of genus g ≥ 2 can
be represented as a quotient H/K, where K is a torsion free Fuchsian group.

Let R(K) be the set of all isomorphisms ρ : K → PSL(2,R) so that ρ(K) is a
co-compact Fuchsian group. We have a natural one-to-one map
(5)

R(K)→ (PSL(2,R))
2γ+r

: ρ 7→ (ρ(a1), ρ(b1), . . . , ρ(aγ), ρ(bγ), ρ(c1), . . . , ρ(cr)),

which permits to see R(K) as a subset of (PSL(2,R))
2γ+r

and, in particular, to
give it a topological structure.

The Teichmüller space of K is defined as the quotient space T (K) obtained by
the following equivalence relation: ρ1 ∼ ρ2 if and only there is some A ∈ PSL(2,R)
so that ρ2(x) = Aρ1(x)A−1, for every x ∈ K. One provides to T (K) with the
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quotient topology. It is known [13] that T (K) is in fact a simply-connected manifold
of complex dimension 3γ − 3 + r.

Now, if K̂ is another co-compact Fuchsian group that contains K as a finite in-

dex d subgroup, then there is a natural embedding T (K̂) ⊂ T (K); so dim(T (K̂)) ≤
dim(T (K)) [15]. For most of the situations, it happens that dim(T (K̂)) < dim(T (K)).

The exceptional cases occur when dim(T (K̂)) = dim(T (K)) and the list of these

pairs (K, K̂) is provided in [31]. Below we recall these lists from [31].

Table 1. normal inclusions

K K̂ [K̂ : K]
(2;−) (0; 2, 2, 2, 2, 2, 2) 2
(1; t, t) (0; 2, 2, 2, 2, t) 2
(1; t) (0; 2, 2, 2, 2t) 2

(0; t, t, t, t) (0; 2, 2, 2, t) 4
(0; t1, t1, t2, t2) (0; 2, 2, t1, t2) 2

(0; t, t, t) (0; 3, 3, t) 3
(0; t, t, t) (0; 2, 3, 2t) 6

(0; t1, t1, t2) (0; 2, t1, 2t2) 2

Table 2. non-normal inclusions

K K̂ [K̂ : K]
(0; 7, 7, 7) (0; 2, 3, 7) 24
(0; 2, 7, 7) (0; 2, 3, 7) 9
(0; 3, 3, 7) (0; 2, 3, 7) 8
(0; 4, 8, 8) (0; 2, 3, 8) 12
(0; 3, 8, 8) (0; 2, 3, 8) 10
(0; 9, 9, 9) (0; 2, 3, 9) 12
(0; 4, 4, 5) (0; 2, 4, 5) 6

(0;n, 4n, 4n) (0; 2, 3, 4n) 6
(0;n, 2n, 2n) (0; 2, 4, 2n) 4
(0; 3, n, 3n) (0; 2, 3, 3n) 4
(0; 2, n, 2n) (0; 2, 3, 2n) 3

2.2. Automorphisms in terms of Fuchsian groups. Let Γ be a torsion free co-
compact Fuchsian group and X = H/Γ be its uniformized closed Riemann surface.
A finite group G acts faithfully as a group of conformal automorphisms of X if
there is some co-compact Fuchsian group K and an epimorphism θ : K → G whose
kernel is Γ.

3. Cyclic n-gonal Riemann surfaces

Let us consider a cyclic n-gonal Riemann surface X . By the definition there
is an order n conformal automorphism τ ∈ Aut(X ) and a regular branched cover

π : X → Ĉ whose deck group is H = 〈τ〉 ∼= Cn. Let us assume the branch values of

π are given by the points a1, . . . , as ∈ Ĉ. Let us denote the branch order of π at aj
by nj ≥ 2 (which is a divisor of n).
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3.1. Fuchsian description of X . Let Γ be a torsion free co-compact Fuchsian
group so that X = H/Γ. In this case, there is co-compact Fuchsian group K
with signature (0;n1, . . . , ns), so it has a presentation as in (3) with γ = 0 and
r = s ≥ 3, and there is some epimorphism ρ : K → Cn = 〈τ〉 with torsion free
kernel Γ. The following fact, due to Harvey, asserts that the divisors nj must satisfy
some constrains.

Theorem 1 (Harvey’s criterion [16]). Let K be a Fuchsian group with signature
(0;n1, . . . , ns), where each nj ≥ 2 is a divisor of n and s ≥ 3. Then there exists a
epimorphism ρ : K → Cn with torsion free kernel if and only if

(a) n = lcm(n1, . . . , nj−1, nj+1, . . . , ns) for all j;
(b) if n is even, then #{j ∈ {1, . . . , s} : n/nj is odd} is even.

Let ρ(cj) = τ lj , where cj as in (3), for l1, . . . , ls ∈ {1, . . . , n− 1}. The condition
c1 · · · cs = 1 is equivalent to have l1 + · · · + ls ≡ 0 mod (n). The condition for
Γ = ker(ρ) to be torsion free is then equivalent to have that gcd(n, lj) = n/nj , for
j = 1, . . . , s. The surjectivity of ρ is equivalent to have gcd(n, l1, . . . , ls) = 1, which
in our case is equivalent to condition (a). Condition (b) is then equivalent to say
that for n even the number of lj being odd is even, which trivially hold.

As a consequence of the above, the following holds.

Corollary 1. The cyclic n-gonal Riemann surface X of genus g ≥ 2 can be de-
scribed as X = H/Γ, where Γ is a co-compact Fuchsian group being the kernel of
an homomorphism

ρ : K = 〈c1, . . . , cs : cn1
1 = · · · = cns

s = c1 · · · cs = 1〉 → Cn = 〈τ〉,

such that ρ(cj) = τ lj , s ≥ 3, and

(1) l1, . . . , ls ∈ {1, . . . , n− 1},
(2) l1 + · · ·+ ls ≡ 0 mod (n),
(3) nj = n/ gcd(n, lj), for all j,
(4) gcd(n, l1, . . . , ls) = 1.

Remark 1. Now, if G is a group of conformal automorphisms of the cyclic n-gonal
Riemann surface X = H/Γ, containing the cyclic group H = 〈τ〉, then there is a co-
compact Fuchsian group N containing the group K so that Γ is a normal subgroup
of N . If the signature of K does not belong to the list given in [31] (see above), then
N = K for the generic situation; so G = H and τ will be central. This means that,
generically, a cyclic n-gonal Riemann surface is a generalized superelliptic curve.

3.2. Algebraic description of X and τ . As a consequence of Corollary 1, the
following must hold.

(1) If a1, . . . , as ∈ C, s ≥ 3, then X can be described by an equation of the
form

X : yn =

s∏
j=1

(x− aj)lj ,

where
(a) l1, . . . , ls ∈ {1, . . . , n− 1}, gcd(n, lj) = n/nj ,
(b) l1 + · · ·+ ls ≡ 0 mod (n),
(c) gcd(n, l1, . . . , ls) = 1.
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(2) If one of the branched values, say as =∞, then

X : yn =

s−1∏
j=1

(x− aj)lj ,

where
(a) l1, . . . , ls−1 ∈ {1, . . . , n − 1}, gcd(n, lj) = n/nj and gcd(n, l1 + · · · +

ls−1) = n/ns,
(b) l1 + · · ·+ ls−1 6≡ 0 mod (n),
(c) gcd(n, l1, . . . , ls−1) = 1.

In any of the above situations, τ(x, y) = (x, ωny), where ωn = e2πi/n, and
π(x, y) = x. The branch order of π at aj is nj = n/ gcd(n, lj) and, by the Riemann-
Hurwitz formula, the genus g of X is given by

g = 1 +
1

2

(s− 2)n−
s∑
j=1

gcd(n, lj)

 ,

where in the case (2) ls ∈ {1, . . . , n− 1} is so that l1 + · · ·+ ls−1 + ls ≡ 0 mod (n).

3.3. Conditions for τ to be central. As seen in Section 3.2, we may consider a
curve representation of X of the form (where r = s if∞ 6∈ {a1, . . . , as} and r = s−1
otherwise) yn =

∏r
j=1(x− aj)lj , (with the corresponding constrains (a)-(c) on the

exponents lj and n, depending on the case if ∞ is or not a branch value of π). In
this model, τ(x, y) = (x, ωny) and π(x, y) = x.

Let N be the normalizer of H = 〈τ〉 in Aut(X ). As H is normal subgroup of N ,
the reduced group N = N/H is a finite group of Möbius transformations keeping
invariant the set of branch values of π. Let us denote by θ : N → N the canonical
projection map. If η ∈ N , then θ(η) is a Möbius transformation keeping invariant
the set {a1, . . . , ar} if ∞ is not a branch value of π; otherwise, it keeps invariant
the set {∞, a1, . . . , ar}.

The following fact provides condition for τ to be central in N by asking some
extra constrains on the exponents l1, . . . , lr.

Lemma 1. The automorphism τ is central in N if and only if for every η ∈ G and
aj and ai in the same θ(η)-orbits one has that lj = li.

Proof. Let η ∈ N and assume θ(η) has order m ≥ 2. As there is suitable Möbius
transformation M so that Mθ(η)M−1 is just the rotation x 7→ ωmx, by post-
composing π with M , we may assume that θ(η)(x) = ωmx. So the cyclic n-gonal
curve can be written as

(∗) yn = xs
r∏
j=1

(x− aj)lj,1(x− ajωm)lj,2 · · · (x− ajωm−1
m )lj,m ,

in which case τ(x, y) = (x, ωny) and η(x, y) = (ωmx, F (x, y)), where F (x, y) is a
suitable rational map.

As η(τ(x, y)) = (ωmx, F (x, ωny)), τ(η(x, y)) = (ωmx, ωnF (x, y)), the automor-
phism τ commutes with η when F (x, y) = R(x)y, for a suitable rational map
R(x) ∈ C(x). As θ(η)m = 1, it follows that ηm ∈ 〈τ〉, from which we must have

that
(∏m−1

j=0 R(ωjmx)
)n

= 1.
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Now, by applying θ(η) to the right part of (∗), we obtain

ωqmx
s

r∏
j=1

(x− aj)lj,1(x− ajωm)lj,2 · · · (x− ajωm−1
m )lj,m

(x− aj)lj,1−lj,2(x− ajωm)lj,2−lj,3 · · · (x− ajωm−1
m )lj,m−lj,1

.

As η(x, y) = (ωmx,R(x)y), it must be that

lj,1 − lj,2 = lj,2 − lj,3 = · · · = lj,m−1 − lj,m = lj,m − lj,1 = α.

But this asserts that lj = α + lj+1, for j = 1, . . . ,m − 1 and lm = α + l1, in
particular, l1 = mα+ l1, that is, mα = 0. Since m ≥ 2, α = 0. �

Remark 2. In the case that N = Aut(X ) (for instance, if n = p is a prime integer
so that either g > (p−1)2 or g < (p−1)(p−5)/10), Lemma 1 states the conditions
for X to be a generalized superelliptic Riemann surface.

4. Generalized superelliptic Riemann surfaces and their
automorphisms

Let X be a generalized superelliptic Riemann surface of level n, let τ ∈ Aut(X )
be a generalized superelliptic automorphism of level n and H = 〈τ〉. Let us consider

a regular branched cover π : X → Ĉ with H as its deck group. Let a1, . . . , ar ∈ C
be its finite branch values (it might be that ∞ is also a branch value of π).

We know from Section 3.2, that there is curve representation of the form yn =∏r
j=1(x−aj)lj , with the corresponding constrains (a)-(c) on the exponents lj and n,

depending on the case if∞ is or not a branch value of π, and in that representation
we have that τ(x, y) = (x, ωny) and π(x, y) = x.

4.1. Description of generalized superelliptic Riemann in terms of their
automorphism group. The group G = Aut(X ) descends by π to obtain the re-
duced group G = G/H, which is a finite group of Möbius transformations keeping
invariant the set of branch values of π. It is well known thatG ∈ {Cm, Dm, A4, S4, A5}.

As a consequence of Lemma 1, all branch values of π belonging to the same
G-orbit must have the same exponent. This fact permits to imitate the arguments
in Horiuchi in [21], done for the hyperelliptic situation, to write down the above
equation in terms of G. In the following theorem nj = gcd(n, lj), for i = 0, . . . , r+1
and symbols n

ni
or 2n

ni
not appearing in the signature if li = 0.

Theorem 2. Let X be a generalized superelliptic Riemann surface of level n,
τ ∈ G = Aut(X ) its generalized superelliptic automorphisms, and H = 〈τ〉. Then,
up to isomorphisms, X and G are described as indicated below in terms of the re-
duced group G = G/H.

(1) G =
〈
a(x) = ωmx

〉 ∼= Cm:

X : yn = xl0(xm − 1)l1
r∏
j=2

(xm − amj )lj ,

such that a1, . . . , ar ∈ C− {0, 1}, ami 6= amj , where gcd(n, l0, l1, . . . , lr) = 1 and
if l0 = 0, then m(l1 + · · ·+ lr) ≡ 0 mod (n). The group of automorphisms is

G = 〈τ,A : τn = 1, Am = τ l0 , τA = Aτ〉,
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where

A(x, y) = (ωmx, ω
l0/n
m y).

Moreover, if we set nj = gcd(n, lj), then the signature of X → X/H is
(

0; n
n1
, m. . ., nn1

, . . . , nnr
, m. . ., nnr

)
, if l0 = 0,(

0; n
n0
, nn1

, m. . ., nn1
, . . . , nnr

, m. . ., nnr

)
, if l0 6= 0, l0 +m

∑r
j=1 lj ≡ 0 mod (n),(

0; n
n0
, n
nr+1

, nn1
, m. . ., nn1

, . . . , nnr
, m. . ., nnr

)
, if l0 6= 0, l0 +m

∑r
j=1 lj 6≡ 0 mod (n),

the signature of X → X/G is
(

0;m,m, nn1
, nn2

, . . . , nnr

)
, if l0 = 0,(

0;m, mnn0
, nn1

, nn2
, . . . , nnr

)
, if l0 6= 0, l0 +m

∑r
j=1 lj ≡ 0 mod (n),(

0; mnn0
, mn
nr+1

, nn1
, nn2

, . . . , nnr

)
, if l0 6= 0, l0 +m

∑r
j=1 lj 6≡ 0 mod (n),

and the genus of X is
1 + 1

2

(
(rm− 2)n−m

∑r
j=1 nj

)
, if l0 = 0,

1 + 1
2

(
(rm− 1)n−m

∑r
j=1 nj

)
, if l0 6= 0, l0 +m

∑r
j=1 lj ≡ 0 mod (n),

1 + 1
2

(
rmn−m

∑r
j=1 nj

)
, if l0 6= 0, l0 +m

∑r
j=1 lj 6≡ 0 mod (n).

(2) G =
〈
a(x) = ωmx, b(x) = 1

x

〉
∼= Dm:

X : yn = xl0(xm − 1)lr+1(xm + 1)lr+2

r∏
j=1

(xm − amj )lj (xm − a−mj )lj ,

such that a±mi 6= a±mj 6= 0,±1, where the following hold:

a) 2l0 +m(lr+1 + lr+2) + 2m(l1 + · · ·+ lr) ≡ 0 mod (n),
b) gcd(n, l0, l1, . . . , lr+2) = 1.

The group of automorphisms is

G = 〈τ,A,B : τn = 1, Am = τ l0 , B2 = τ lr+1 , τA = Aτ, τB = Bτ〉,

where

A(x, y) = (ωmx, ω
l0/n
m y), B(x, y) =

(
1

x
,

(−1)lr+1/ny

x(2l0+m(lr+1+lr+2+2(l1+···+lr)))/n

)
.

Let nj = gcd(n, lj), then the signature of X → X/H is(
0;
n

n0
,
n

n0
,
n

nr+1
, m. . .,

n

nr+1
,
n

nr+2
, m. . .,

n

nr+2
,
n

n1
, 2m. . .,

n

n1
, . . . ,

n

nr
, 2m. . .,

n

nr

)
,

the signature of X → X/G is(
0;
mn

n0
,

2n

nr+1
,

2n

nr+2
,
n

n1
,
n

n2
, . . . ,

n

nr

)
,

and the genus of X is

g = 1 +
1

2

2m(r + 1)n− 2n0 −m

nr+1 + nr+2 + 2

r∑
j=1

nj

 .
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(3) G =
〈
a(x) = −x, b(x) = i−x

i+x

〉
∼= A4:

X : yn = R1(x)lr+1R2(x)lr+1R3(x)lr+2

r∏
j=1

(R1(x)3 + 12f(aj)
√

3iR3(x)2)lj ,

where
(a) R1(x) = x4 − 2

√
3ix2 + 1, R2(x) = x4 + 2

√
3ix2 + 1, R3(x) = x(x4 − 1),

(b) f(aj) 6= f(ai) 6= 0, 1,∞,

f(x) =
R1(x)3

−12
√

3iR3(x)2
,

(c) 8lr+1 + 6lr+2 + 12(l1 + · · ·+ lr) ≡ 0 mod (n),
(d) gcd(n, l1, . . . , lr+2) = 1.

The group of automorphisms is

G = 〈τ,A,B : τn = 1, A2 = τ lr+2 , B3 = τ−(5lr+1+3lr+2+6(l1+···+lr)),

(AB)3 = τ−3(lr+1+(l1+···+l4), τA = Aτ, τB = Bτ〉,

where

A(x, y) = (−x, (−1)lr+2/ny), B(x, y) = (b(x), F (x)y),

and

F (x) =
2(4lr+1+3lr+2+6(l1+···+lr))/ni(lr+2+2(l1+···+lr))/n

(x+ i)(8lr+1+6lr+2+12(l1+···+lr))/n
.

Let nj = gcd(n, lj), then the signature of X → X/H is(
0;

n

nr+1
, 8. . .,

n

nr+1
,
n

nr+2
, 6. . .,

n

nr+2
,
n

n1
, 12. . .,

n

n1
, . . . ,

n

nr
, 12. . .,

n

nr

)
,

the signature of X → X/G is(
0;

3n

nr+1
,

3n

nr+1
,

2n

nr+2
,
n

n1
,
n

n2
, . . . ,

n

nr

)
,

and the genus of X is

g = 1 + 6(r + 1)n− 4nr+1 − 3nr+2 − 6

r∑
j=1

nj .

(4) G =
〈
a(x) = ix, b(x) = i−x

i+x

〉
∼= S4:

X : yn = R1(x)lr+1R2(x)lr+2R3(x)lr+3

r∏
j=1

(R1(x)3 − 108f(aj)R3(x)4)lj ,

where
(a) R1(x) = x8 +14x4 +1, R2(x) = x12−33x8−33x4 +1, R3(x) = x(x4−1),
(b) f(aj) 6= f(ai) 6= 0, 1,∞,

f(x) =
R1(x)3

108R3(x)4
,

(c) 8lr+1 + 12lr+2 + 6lr+3 + 24(l1 + · · ·+ lr) ≡ 0 mod (n),
(d) gcd(n, l1, . . . , lr+3) = 1.
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The group of automorphisms is

G = 〈τ,A,B;τn = 1, A4 = τ lr+3 , B3 = τ−(5lr+1+6lr+2+3lr+3+15(l1+···+lr)),

(AB)2 = τ−(4lr+1+5lr+2+2lr+3+12(l1+···+lr)), τA = Aτ, τB = Bτ〉,

where A(x, y) = (ix, ilr+3/ny), B(x, y) = (b(x), F (x)y), and

F (x) =
(−1)lr+2/nilr+3/n2(4lr+1+6lr+2+3lr+3+12(l1+···+lr))/n

(x+ i)(8lr+1+12lr+2+6lr+3+24(l1+···+lr))/n
.

Let nj = gcd(n, lj), then the signature of X → X/H is(
0;

n

nr+1
, 8. . .,

n

nr+1
,
n

nr+2
, 12. . .,

n

nr+2
,
n

nr+3
, 6. . .,

n

nr+3
,
n

n1
, 24. . .,

n

n1
, . . . ,

n

nr
, 24. . .,

n

nr

)
,

the signature of X → X/G is(
0;

3n

nr+1
,

2n

nr+2
,

4n

nr+3
,
n

n1
,
n

n2
, . . . ,

n

nr

)
,

and the genus of X is

g = 1 + 12(r + 1)n− 4nr+1 − 6nr+2 − 3nr+3 − 12

r∑
j=1

nj .

(5) G =
〈
a(x) = ω5x, b(x) =

(1−ω4
5)x+(ω4

5−ω5)

(ω5−ω3
5)x+(ω2

5−ω3
5)

〉
∼= A5:

X : yn = R1(x)lr+1R2(x)lr+2R3(x)lr+3

r∏
j=1

(R1(x)3 − 1728f(aj)R3(x)5)lj ,

where
(a) R1(x) = −x20−1+228x5(x10−1)−494x10, R2(x) = x30 +1+522x5(x20−

1)− 10005x10(x10 + 1), R3(x) = x(x10 + 11x5 − 1),
(b) f(aj) 6= f(ai) 6= 0, 1,∞,

f(x) =
R1(x)3

1728R3(x)5
,

(c) 20lr+1 + 30lr+2 + 12lr+3 + 60(l1 + · · ·+ lr) ≡ 0 mod (n),
(d) gcd(n, l1, . . . , lr+3) = 1.

The elements a(x) and b(x) induce the automorphisms

A(x, y) = (a(x), ω
s3/n
5 y), B(x, y) = (b(x), L(x)y),

where L(x) is a rational map satisfying

L(b2(x))L(b(x))L(x) = ωl5,

for a suitable l ∈ {0, 1, 2, 3, 4}, and

L(x)n = T
lr+1+3(l1+···+lr)
1 (x)T

lr+2

2 (x)T
lr+3

3 (x),

where Tj(x) = Rj(b(x))/Rj(x), for j = 1, 2, 3.
The group of automorphisms is

G = 〈τ,A,B : A5 = τ lr+3 , B3 = τ l〉
Let nj = gcd(n, lj),and the signature of X → X/H is

(0;
n

nr+1
, 20. . .,

n

nr+1
,
n

nr+2
, 30. . .,

n

nr+2
,
n

nr+3
, 12. . .,

n

nr+3
,
n

n1
, 60. . .,

n

n1
, . . . ,

n

nr
, 60. . .,

n

nr
),
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the signature of X → X/G is

(0;
3n

nr+1
,

2n

nr+2
,

5n

nr+3
,
n

n1
,
n

n2
, . . . ,

n

nr
),

and the genus of X is

g = 1 + 30(r + 1)n− 10nr+1 − 15nr+2 − 6nr+3 − 30

r∑
j=1

nj .

Proof. Let X be a generalized superelliptic curve of level n and let H = 〈τ〉 ∼= Cn
be a generalized superelliptic group of level n for X . We set G = Aut(X ) and G =
G/H. Let us assume that G is not the trivial group, so G ∈ {Cm, Dm, A4, S4, A5},
where m ≥ 2. Let f : Ĉ→ Ĉ be a regular branched cover with G as its deck group;
we have that f is a degree |G|-rational map. Let us write f(x) = P (x)/Q(x), for
suitable relatively prime polynomials P (x), Q(x).

We already know that X is represented by a cyclic n-gonal curve of the form
yn =

∏r
j=1(x− bj)dj , where d1, . . . , dr ∈ {1, . . . , n− 1} satisfy Harvey’s conditions

in Corollary 1, and either the collection {b1, . . . , br} is G-invariant if d1+· · ·+dr ≡ 0
mod (n) or the collection {∞, b1, . . . , br} is G-invariant if d1+· · ·+dr 6≡ 0 mod (n).
Lemma 1 asserts that for bi, bj so that there is some T ∈ G with T (bi) = bj , then

di = dj . If the disjoint G-orbits (eliminating∞ from its orbit if it is a branch value
of π) are given by

{a1,1, . . . , a1,r1}, . . . , {aq,1, . . . , aq,rq},
then our curve can be written as follows

yn =

q∏
j=1

(
rj∏
i=1

(x− aj,i)

)lj
.

The G-invariance of these sets (if l1 + · · · + lr 6≡ 0 mod (n), then one of these
orbits must be enlarged by adding ∞) asserts that we might write, for the case
rj = |G|,

rj∏
i=1

(x− aj,i) = P (x)− f(aj,1)Q(x),

and for the case that the rj is a proper divisor of |G| a similar equality holds but
we will need to take care of multiplicities.

(1) In the case that G = Cm, up to a Möbius transformation, we may assume
that G =

〈
a(x) = ωmx

〉 ∼= Cm, m ≥ 2, and f(x) = xm. In this case

the possible G-orbits are given by (up to conjugation by T (x) = λx, for a
suitable λ 6= 0, orbits of length one {∞} and/or {0}, the m-roots of unity,
and m-roots of other complex numbers, that is,

X : yn = xl0(xm − 1)l1
r∏
j=2

(xm − amj )lj ,

a2, . . . , ar ∈ C− {0, 1}, ami 6= amj ,

where the following Harvey’s constrains are as indicated in the theorem. In
this case, a induces the automorphism

A(x, y) = (ωmx, ω
l0/n
m y),
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and it can be seen that

G = 〈τ,A : τn = 1, Am = τ l0 , τA = Aτ〉.

The signatures of X/H and X/G are easily obtained from the curve
above (and Harvey’s constrains) and, the formula of the genus of X is
obtained from the signature of X/H.

(2) In the case that G = Dm, up to a Möbius transformation, we may assume

that G =
〈
a(x) = ωmx, b(x) = 1

x

〉
∼= Dm and f(x) = xm + x−m. In this

case, the G-orbits are {0,∞}, the m-roots or unity, the m-roots of −1 and
some other orbits of length 2m, that is,

X : yn = xl0(xm − 1)lr+1(xm + 1)lr+2

r∏
j=1

(xm − amj )lj (xm − a−mj )lj ,

a±mi 6= a±mj 6= 0,±1,

where Harvey’s conditions now read as
(a) 2l0 +m(lr+1 + lr+2) + 2m(l1 + · · ·+ lr) ≡ 0 mod (n),
(b) gcd(n, l0, l1, . . . , lr+2) = 1.

In this case, the elements a(x) and b(x) induce the automorphisms

A(x, y) = (ωmx, ω
l0/n
m y),

B(x, y) =

(
1

x
,

(−1)lr+1/ny

x(2l0+m(lr+1+lr+2+2(l1+···+lr)))/n

)
,

and

G = 〈τ,A,B : τn = 1, Am = τ l0 , B2 = τ lr+1 , τA = Aτ, τB = Bτ〉,

The signatures of X/H and X/G are easily obtained from the curve
above (and Harvey’s constrains) and, the formula of the genus of X is
obtained from the signature of X/H.

(3) In the case that G = A4, up to a Möbius transformation, we may assume

that G =
〈
a(x) = −x, b(x) = i−x

i+x

〉
∼= A4. In this case,

f(x) =
R1(x)3

−12
√

3iR3(x)2
,

where

R1(x) = x4 − 2
√

3ix2 + 1, R2(x) = x4 + 2
√

3ix2 + 1, R3(x) = x(x4 − 1),

and the curve we obtain is of the form

X : yn = R1(x)lr+1R2(x)lr+1R3(x)lr+2

r∏
j=1

(R1(x)3 + 12f(aj)
√

3iR3(x)2)lj ,

f(aj) 6= f(ai) 6= 0, 1,∞,
where Harvey’s condition now read as
(a) 8lr+1 + 6lr+2 + 12(l1 + · · ·+ lr) ≡ 0 mod (n),
(b) gcd(n, l1, . . . , lr+2) = 1.
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Since,

R1(b(x)) =
2(1−

√
3i)

(x+ i)4
R1(x), R1(a(x)) = R1(x),

R2(b(x)) =
2(1 +

√
3i)

(x+ i)4
R2(x), R2(a(x)) = R2(x),

R3(b(x)) =
8i

(x+ i)6
R3(x), R3(a(x)) = −R3(x),

we see that a(x) and b(x) induce the automorphisms

A(x, y) = (−x, (−1)lr+2/ny), B(x, y) = (b(x), F (x)y),

where

F (x) =
2(4lr+1+3lr+2+6(l1+···+lr))/ni(lr+2+2(l1+···+lr))/n

(x+ i)(8lr+1+6lr+2+12(l1+···+lr))/n
.

and we obtain that

G = 〈τ,A,B : τn = 1, A2 = τ lr+2 , B3 = τ−(5lr+1+3lr+2+6(l1+···+lr)),

(AB)3 = τ−3(lr+1+(l1+···+l4), τA = Aτ, τB = Bτ〉.
The signatures of X/H and X/G are easily obtained from the curve

above (and Harvey’s constrains) and, the formula of the genus of X is
obtained from the signature of X/H.

(4) In the case that G = S4, up to a Möbius transformation, we may assume

that G =
〈
a(x) = ix, b(x) = i−x

i+x

〉
∼= S4. In this case,

f(x) =
R1(x)3

108R3(x)4
,

where

R1(x) = x8 + 14x4 + 1, R2(x) = x12 − 33x8 − 33x4 + 1, R3(x) = x(x4 − 1),

and the curve has the form

X : yn = R1(x)lr+1R2(x)lr+2R3(x)lr+3

r∏
j=1

(R1(x)3 − 108f(aj)R3(x)4)lj ,

f(aj) 6= f(ai) 6= 0, 1,∞,
where Harvey’s condition now read as
(a) 8lr+1 + 12lr+2 + 6lr+3 + 24(l1 + · · ·+ lr) ≡ 0 mod (n),
(b) gcd(n, l1, . . . , lr+3) = 1.

Since,

R1(a(x)) = R1(x), R1(b(x)) =
16

(x+ i)8
R1(x),

R2(a(x)) = R2(x), R2(b(x)) =
−64

(x+ i)12
R2(x),

R3(a(x)) = iR3(x), R3(b(x)) =
8i

(x+ i)6
R3(x),

the elements a(x) and b(x) induce the automorphisms

A(x, y) = (ix, ilr+3/ny), B(x, y) = (b(x), F (x)y)
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F (x) =
(−1)lr+2/nilr+3/n2(4lr+1+6lr+2+3lr+3+12(l1+···+lr))/n

(x+ i)(8lr+1+12lr+2+6lr+3+24(l1+···+lr))/n
,

and one obtains that

G = 〈τ,A,B; τn = 1, A4 = τ lr+3 , B3 = τ−(5lr+1+6lr+2+3lr+3+15(l1+···+lr)),

(AB)2 = τ−(4lr+1+5lr+2+2lr+3+12(l1+···+lr)), τA = Aτ, τB = Bτ〉.
The signatures of X/H and X/G are easily obtained from the curve

above (and Harvey’s constrains) and, the formula of the genus of X is
obtained from the signature of X/H.

(5) In the case that G = A5, up to a Möbius transformation, we may assume

that G =
〈
a(x) = ω5x, b(x) =

(1−ω4
5)x+(ω4

5−ω5)

(ω5−ω3
5)x+(ω2

5−ω3
5)

〉
∼= A5. In this case,

f(x) =
R1(x)3

1728R3(x)5
,

where

R1(x) = −x20−1+228x5(x10−1)−494x10, R2(x) = x30+1+522x5(x20−1)−10005x10(x10+1),

R3(x) = x(x10 + 11x5 − 1),

and the curve we obtain has the form

X : yn = R1(x)lr+1R2(x)lr+2R3(x)lr+3

r∏
j=1

(R1(x)3 − 1728f(aj)R3(x)5)lj ,

f(aj) 6= f(ai) 6= 0, 1,∞,
and Harvey’s conditions read in this case as
(a) 20lr+1 + 30lr+2 + 12lr+3 + 60(l1 + · · ·+ lr) ≡ 0 mod (n),
(b) gcd(n, l1, . . . , lr+3) = 1.

In this case,

R1(a(x)) = R1(x), R2(a(x)) = R2(x), R3(a(x)) = ω5R3(x),

and let us consider the rational maps

Tj(x) = Rj(b(x))/Rj(x), j = 1, 2, 3.

It can be checked that T 3
1 = T 5

3 and that there is rational map L(x) so
that

L(b2(x))L(b(x))L(x) = ωl5,

for a suitable l ∈ {0, 1, 2, 3, 4} and

Ln = T
lr+1+3(l1+···lr)
1 T

lr+2

2 T
lr+3

3 .

In this case,
G = 〈τ,A,B〉,

where

A(x, y) = (a(x), ω
s3/n
5 y), B(x, y) = (b(x), L(x)y),

(A5 = τ lr+3 , B3 = τ l).

The signatures of X/H and X/G are easily obtained from the curve
above (and Harvey’s constrains) and, the formula of the genus of X is
obtained from the signature of X/H.

�
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4.2. On the uniqueness of the generalized superelliptic group. In this sec-
tion we study the uniqueness of the generalized superelliptic group H = 〈τ〉 of level
n. Let G = Aut(X )/H the reduced group with respect to H, which we know to
be either trivial, cyclic, dihedral or one of the Platonic groups A4, S4 or A5. As
the Platonic groups and the dihedral groups of order not divisible by 4 there is no
non-trivial central element, we may observe the following fact.

Proposition 1. Let X be a generalized superelliptic Riemann surface of level n
and let H be a generalized superelliptic group of level n. If the reduced group G of
automorphism with respect to H is either a dihedral group of order not divisible by
4 or A4 or S4 or A5, then H is the unique generalized superelliptic group of level n
for X .

Proof. Assume, by the contrary, that there is a generalized superelliptic automor-
phism η of level n with η 6∈ H. Then η induces a non-trivial central element of the
reduced group G, a contradiction. �

As a consequence of the above, the only possibility for X to admit another
generalized superelliptic group of level n is when G is either a non-trivial cyclic
group or a dihedral group of order 4m. In the following, we observe that if X has
at least two different generalized superelliptic groups of level n, then it belong to a
certain family of “exceptional” generalized superelliptic Riemann surfaces.

Theorem 3. If X is a generalized superelliptic Riemann surface of level n admitting
at least two different generalized superelliptic groups of level n, then n = 2d, d ≥ 2,
and it can be represented by a cyclic n-gonal curve of the form

X : y2d = x2
(
x2 − 1

)l1 (
x2 − a2

1

)l2 L∏
j=3

(
x2 − a2

j

)2l̂j
,

where

l1, l2, 2l̂3, . . . , 2l̂L ∈ {1, . . . , 2d− 1}, l1 is odd,

and

(1) for l2 = 2l̂2, gcd
(
d, l1, l̂2, . . . , l̂L

)
= 1.

(2) for l2 odd, then l1 + l2 = 2d and gcd
(
d, l1, l2, l̂3, . . . , l̂L

)
= 1.

In these cases, τ(x, y) = (x, ω2dy) and η(x, y) = (−x, ω2dy) are generalized superel-
liptic automorphisms of level n so that K = 〈τ, η〉 ∼= C2d×C2. The quotient orbifold
X/K has signature0; 2, 2d,

2d

gcd(2d, l1)
,

2d

gcd(2d, l2)
,

d

gcd
(
d, l̂3

) , . . . , d

gcd
(
d, l̂L

)
 ,

in the case that 1 + l1 + l2 + 2
(
l̂3 + · · ·+ l̂L

)
≡ 0 mod (d), or0; 2, 2d,

2d

gcd(2d, l1)
,

2d

gcd(2d, l2)
,

d

gcd
(
d, l̂3

) , . . . , d

gcd
(
d, l̂L

) , d

gcd
(
d, 1 + l1 + l2 + l̂3 + · · ·+ l̂L

)
 ,

in the case that 1 + l1 + l2 + 2
(
l̂3 + · · ·+ l̂L

)
6≡ 0 mod (d).
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The genus of X is, in the first case, equal to

2d(1 + L)− gcd(2d, l1)− gcd(2d, l2)− 2

L∑
j=3

gcd
(
d, l̂j

)
,

and, in the second case, equal to

d(3 + 2L)− gcd(2d, l1)− gcd(2d, l2)− 2

L∑
j=3

gcd
(
d, l̂j

)
− gcd

(
d, 1 + l1 + l2 + 2

L∑
j=3

l̂j

)
.

Remark 3. Let us observe that the Riemann surfaces described by the cyclic 2d-
gonal curves in Theorem 3 are not all of them necessary generalized superelliptic;
the theorem only asserts that the exceptional ones are some of them (for L ≥ 3
they are generically generalized superelliptic of level 2d). For example, the cyclic
2d-gonal curve y2d = x2(x2−1)l1 , with l1 = d−1 and d ≥ 2 even, admits the extra
automorphism

α(x, y) =

(
x(x2 − 1)d/2

yd
,

yl1

(x2 − 1)(l21−1)/2d

)
,

which does not commutes with τ .

Proof of Theorem 3. As n = 2 corresponds to the hyperelliptic situation, which
we already know to be unique, we must have n ≥ 3. Let us assume X has two
different generalized superelliptic groups of level n, say H = 〈τ〉 and 〈η〉, where
η /∈ H = 〈τ〉. Let us consider, as before, the canonical quotient homomorphism

θ : G → G = G/H, where G = Aut(X ), and let π : X → Ĉ be a regular branched
cover with deck group H.

As τ is central, K = 〈τ, η〉 < G is an abelian group and K = K/H = 〈θ(η)〉 ∼=
Cm, where n = md and m ≥ 2. Since θ(η) has order m, ηm ∈ H and it has order d.
So, replacing τ by a suitable power (still being a generator of H) we may assume
that ηm = τm.

Theorem 2 asserts that we may assume X to be represented by an cyclic n-gonal
curve of the form

X : yn = xl0(xm − 1)l1
L∏
j=2

(xm − amj )lj ,

where the following Harvey’s conditions are satisfied:

(1) l0 = 0, m(l1 + · · ·+ lL) ≡ 0 mod (n) and gcd(n, l1, . . . , lL) = 1; or
(2) l0 6= 0 and gcd(n, l0, l1, . . . , lL) = 1.

In this algebraic model, τ(x, y) = (x, ωny), π(x, y) = x and θ(η)(x) = ωmx,

where ωr = e2πi/r. In this way, η(x, y) = (ωmx, ω
l0/n
m y).

As we are assuming ηm = τm and η has order n, we may assume the following{
if l0 6= 0 : η(x, y) = (ωmx, ωny) and l0 = m,
if l0 = 0 : η(x, y) = (ωmx, y) and n = m.

(I) Case l0 = m; so η(x, y) = (ωmx, ωny) and we are in case (2) above.
The η-invariant algebra C[x, y]〈η〉 is generated by the monomials u = xm, v = yn

and those of the form xayb, where a ∈ {0, 1, . . . ,m−1} and b ∈ {0, 1, . . . , n−1} (the
case a = b = 0 not considered) satisfy that a + b/d ≡ 0 mod (m). In particular,
b = dr for r ∈ {0, 1, . . . , [(n − 1)/d]} so that a + r ≡ 0 mod (m). As 0 ≤ a + r ≤
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(m− 1) + [(n− 1)/d] ≤ (m− 1) + [(md− 1)/d] < 2m, it follows that a+ r ∈ {0,m}.
As the case a+ r = 0 asserts that a = b = 0, which is not considered, we must have
a + r = m, from which we see that the other generators are given by t1, . . . , tm,
where tj = xm−jydj (observe that tm = v). As consequence of invariant theory, the
quotient curve X/〈η〉 corresponds to the algebraic curve

Y :



tm1 = um−1v,
tm2 = um−2v2,

...
tmm−1 = uvm−1,

v = u(u− 1)l1
∏L
j=2(u− amj )lj .

The curve Y admits the automorphisms T1, . . . , Tm−1, where Tj is just amplifica-
tion of the tj-coordinate by ωm and acts as the identity on all the other coordinates.
The group generated by all of these automorphisms is

(∗) U = 〈T1, . . . , Tm−1〉 ∼= Cm−1
m .

The regular branched cover map πU : Y → Ĉ : (u, v, t1, . . . , tm−1) 7→ u has U as
its deck group. Let us observe that the values 0, am1 , . . . , a

m
L belongs to the branch

set of πU .
Since Y = X/〈η〉 has genus zero and the finite Abelian groups of automorphisms

of the Riemann sphere are either the trivial group, a cyclic group or V4 = C2
2 , the

group U is either one of these three types. As m ≥ 2, the group U cannot be the
trivial group nor it can be isomorphic to V4. It follows that U is a cyclic group; so
m = 2 and, in particular, n = 2d, where d ≥ 2, and

X : y2d = x2(x2 − 1)l1
L∏
j=2

(x2 − a2
j )
lj .

Harvey’s condition (a) is equivalent to have gcd(2d, 2, l1, . . . , lL) = 1, which is
satisfied if some of the exponents lj is odd. Without loss of generality, we may
assume that l1 is odd. In this case the curve Y is given by

Y :

{
t21 = uv,

v = u(u− 1)l1
∏L
j=2(u− a2

j )
lj ,

which is isomorphic to the curve

w2 = (u− 1)l1
L∏
j=2

(u− a2
j )
lj .

As this curve must have genus zero, and l1 is odd, the number of indices j ∈
{2, . . . , L} for which lj is odd, must be at most one.

(i) If l1 is the only odd exponent, then if we write lj = 2l̂j , for j = 2, . . . , L,

the we must have gcd(2d, 2, l1, 2l̂2, . . . , 2l̂L) = 1, which is equivalent to

gcd(d, l1, l̂2, . . . , l̂L) = 1.
(ii) If there are exactly two of the exponents being odd, then we may as-

sume, without loss of generality, that l1 and l2 are the only odd expo-
nents. In this case, we must then have that l1 + l2 ≡ 0 mod (2d), that

is, l1 + l2 = 2d. If we write lj = 2l̂j , for j = 3, . . . , L, then we must have
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gcd(2d, 2, l1, l2, 2l̂3, . . . , 2l̂L) = 1, which is equivalent to gcd(d, l1, l2, l̂3, . . . , l̂L) =
1.

(II) Let us now consider the case l0 = 0; so m = n and η(x, y) = (ωnx, y) and we
are in case (1) above.

The η-invariants algebra C[x, y]〈η〉 is generated by the monomials u = xn, v = y.
As consequence of invariant theory, the quotient curve X/〈η〉 corresponds to the
algebraic curve

Y :
{
vn = (u− 1)l1

∏L
j=2(u− anj )lj .

As Y must have genus zero and n ≥ 3, we should have L = 1, 2 (and for L = 2 we
must also have l1 + l2 ≡ 0 mod (n)). So either

X : yn = (xn − 1)l1 , L = 1,

or

X : yn = (xn − 1)l1(xn − an2 )l2 , l1 + l2 ≡ 0 mod (n), L = 2.

Note that, for L = 1 we may assume l1 = 1 (this is the classical Fermat curve of
degree n). As the group of automorphisms of classical Fermat curve of degree n is
C2
noS3, we may see that τ is not central; that is, it is not a generalized superelliptic

Riemann surface of level n.
In the case L = 2, Harvey’s conditions holds exactly when gcd(n, l1, l2) = 1. As

l1 + l2 ≡ 0 mod (n) and l1, l2 ∈ {1, . . . , n − 1}, we have that l1 + l2 = n. If we
write l2 = n− l1, then (

xn − 1

xn − an2

)l1
=

yn

(xn − an2 )n
,

and by writing l1 = n− l2 we also have that(
xn − an2
xn − 1

)l2
=

yn

(xn − 1)n
.

Then the Möbius transformation M(x) = a/x induces the automorphism

α(x, y) =

(
ωn
a2

x
,
−al22 (xn − 1)(xn − an2 )

xny

)
,

which does not commute with η(x, y) = (ωnx, y) since n ≥ 3, a contradiction. �

Since for an exceptional generalized superelliptic Riemann surface of level n we
must have n even, we may observe the following fact.

Corollary 2. Let n be either equal to two or an odd integer. Then every generalized
superelliptic curve of level n has a unique generalized superelliptic group of level n.

If X is an exceptional generalized superelliptic Riemann surface of level n and
H one of its generalized superelliptic groups of level n, then the quotient orbifold
X/H has a cone point of order n/2. In particular, we observe the following.

Corollary 3. Let n ≥ 4 be even, let X be a generalized superelliptic Riemann
surface of level n and let H be a generalized superelliptic group of level n. If X/H
has no cone point of order n/2, then H is the unique generalized superelliptic group
of X of level n. In particular, every superelliptic Riemann surface of level n admits
a unique superelliptic group of level n.
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4.3. A remark about a result due to Sanjeewa. In [28] it was determined
the groups G of conformal automorphisms of a cyclic n-gonal Riemann surface X
for which the n-gonal group H = 〈τ〉 is assumed to be normal subgroup and all
cone points of S/H of order n (in particular, this contains the case of superelliptic
Riemann surfaces). For the case G = Cm it was stated (see Theorems 3.2 and 4.1
in [28]) that either G = Cnm or G = 〈r, s : rn = 1, sm = 1, srs−1 = rl〉, where
(l, n) = 1 and lm ≡ 1 mod (n) (if (m,n) = 1, then l = n − 1). In the case that τ
is central (in the superelliptic situation), the last situation only happens if l = 1,
that is, either G = Cnm or G = Cn × Cm.

In the generalized superelliptic situation things changes as can be seen in the
next example which considers a generalized superelliptic curve of genus seventeen for
which the quotient has 16 cone points, two of them of order 2 and all others of order
4, whose reduced group is a cyclic group of order four. In this case G ∼= C2 × C8,
which is neither C16 or C2

4 as will be in the previous consideration for superelliptic
curves of level four.

Example 1. Let us consider two values λ, µ ∈ C so that λ4 6= µ4, λ4, µ4 ∈
C− {0, 1}, and the curve

X : y4 = x2(x4 − 1)(x4 − λ4)(x4 − µ4),

which has genus g = 17 and admits the automorphisms

τ(x, y) = (x, iy), η(x, y) = (ix,
√
i y).

For generic values of λ and µ, we have that G = 〈τ, η〉 is the full group of
automorphisms of X and that G ∼= C2×C8 (the factor C2 is generated by τη2 and
the factor C8 is generated by η). In this case, the automorphisms τ is a generalized
superelliptic automorphism of level n = 4 and G/〈τ〉 = C4.

Let us observe that another automorphism of order 4 is given by ρ = η2, that is,
ρ(x, y) = (−x, iy). As C[x, y]〈ρ〉 is generated by u = x2, v = xy2 and w = y4, we
may see that X/〈ρ〉 is isomorphic to

v̂2 = (u− 1)(u− λ2)(u− µ4),

(v̂u = v) which has genus one.

5. Minimal fields of definition of generalized superelliptic curves

Let us consider a closed Riemann surface X of genus g, describe as a projective,
irreducible, algebraic curve defined over C, say given as the common zeroes of the
polynomials P1, . . . , Pr, and let us denote by G = Aut (X ) the full automorphism
group of X .

If σ ∈ Gal(C), then Xσ will denote the curve defined as the common zeroes of
the polynomials Pσ1 , . . . , P

σ
r , where Pσj is obtained from Pj by applying σ to its

coefficients. The new algebraic curve X σ is again a closed Riemann surface of the
same genus g.

Let us observe that, if σ, τ ∈ Gal(C), then Xτσ = (Xσ)τ .

5.1. Field of definition. A subfield k0 of C is called a field of definition of X if
there is a curve Y, defined over k0, which is isomorphic to X over C. It is clear
that every subfield of C containing k0 is also a field of definition of it. In the other
direction, a subfield of k0 might not be a field of definition of X .
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Weil’s descent theorem [32] provides sufficient conditions for a subfield k0 of C to
be a field of definition. Let us denote by Gal(C/k0) the group of field automorphisms
of C acting as the identity on k0.

Theorem 4 (Weil’s descent theorem [32]). Assume that X has genus g ≥ 2. If for
every σ ∈ Gal(C/k0) there is an isomorphism fσ : X → X σ satisfying the Weil’s
co-cycle condition

fτσ = fτσ ◦ fτ , ∀σ, τ ∈ Gal(C/k0,

then there is a curve Y, defined over k0, and there is an isomorphism R : X → Y,
defined over a finite extension of k0, so that R = Rσ ◦ fσ, for every σ ∈ Gal(C/k0).

Clearly, the sufficient conditions in Weil’s descent theorem are trivially satisfied
if X has no non-trivial automorphisms (a generic situation for X of genus at least
three).

Corollary 4. If X has trivial group of automorphisms and for every σ ∈ Gal(C/k0)
there is an isomorphism fσ : X → X σ, then X can be defined over k0.

5.2. Field of moduli. The notion of field of moduli was originally introduced
by Shimura for the case of abelian varieties and later extended to more general
algebraic varieties by Koizumi. If GX is the subgroup of Gal(C) consisting of those
σ so that X σ is isomorphic to X , then the fixed field MX of GX is called the field
of moduli of X .

A result due to Koizumi [23] asserts that the field of moduli of X coincides with
the intersection of all its fields of definition and there is always a field of definition
that is a finite extension of the field of moduli. This is the field of definition of the
representing point p = [X ] in the moduli space Mg.

It is known that every curve of genus g ≤ 1 can be defined over its field of
moduli. If g ≥ 2, to determine the field of moduli and to decide if it is a field of
definition is difficult task and it is an active research topic. Examples of algebraic
curves which cannot be defined over their field of moduli have been provided by
Earle [12], Huggins [22] and Shimura [30] for the hyperelliptic situation and by the
first author [17] and Kontogeorgis [24] in the non-hyperelliptic situation. In other
words, Mg is not a fine moduli space.

Investigating the obstruction for the field of moduli to be a field of definition
is part of descent theory for fields of definition and has many consequences in
arithmetic geometry. Many works have been devoted to this problem, most notably
by Weil [32], Shimura [30] and Grothendieck, among many others. Weil’s criterion
[32] assures that if a curve has no non-trivial automorphisms then its field of moduli
is a field of definition. On the other extreme, if the curve X is quasiplatonic (that is,
when the quotient orbifold X/Aut(X ) has genus zero and exactly three cone points),
then Wolfart [33] proved that the field of moduli is also a field of definition. Hence,
the real problem occurs when the curve has non-trivial automorphism group but
the quotient orbifold X/Aut(X ) has non-trivial moduli.

It is known that a cyclic n-gonal Riemann surface is either definable over its field
of moduli or over an degree two extension of it. In the particular case of superelliptic
curves, with extra automorphisms, an equation over an at most quadratic extension
of its field of moduli has been provided in [10] using the Shaska invariants. A direct
consequence of Weil’s descent theorem is the following.

Corollary 5. Every curve with trivial group of automorphisms can be defined over
its field of moduli.
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As a consequence of Belyi’s theorem [4], every quasiplatonic curve X can be
defined over Q (so over a finite extension of Q).

Theorem 5 (Wolfart [33]). Every quasiplatonic curve can be defined over its field
of moduli (which is a number field).

5.3. Two practical sufficient conditions. When the curve X has a non-trivial
group of automorphisms, then Weil’s conditions (in Weil’s descent theorem) are in
general not easy to check. Next we consider certain cases for which it is possible to
check for X to be definable over its field of moduli.

5.3.1. Sufficient condition 1: unique subgroups. Let H be a subgroup of Aut (X ).
In general it might be another different subgroup K which is isomorphic to H and
with X/K and X/H having the same signature. For instance, the genus two curve
X defined by y2 = x(x−1/2)(x−2)(x−1/3)(x−3) has two conformal involutions,
τ1 and τ2, whose product is the hyperelliptic involution. The quotient X/〈τj〉 has
genus one and exactly two cone points (of order two).

We say that H is unique in Aut (X ) if it is the unique subgroup of Aut (X )
isomorphic to H and with quotient orbifold of same signature as X/H. Typical
examples are (i) H = Aut (X ) and (ii) H being the cyclic group generated by the
hyperelliptic involution for the case of hyperelliptic curves.

If H is unique in Aut (X ), then it is a normal subgroup; so we may consider
the reduced group Aut (X ) = Aut (X )/H, which is a group of automorphisms of
the quotient orbifold X/H. In [19] the following sufficient condition for a curve to
definable over its field of moduli was obtained.

Theorem 6 (Hidalgo and Quispe [19]). Let X be a curve of genus g ≥ 2 admitting
a subgroup H, which is unique in Aut (X ), and so that X/H has genus zero. If the
reduced group of automorphisms Aut (X ) = Aut (X )/H is different from trivial or
cyclic, then X is definable over its field of moduli.

If X is a hyperelliptic curve, then a consequence of the above is the following
result (originally due to Huggins [22]).

Corollary 6. Let X be a hyperelliptic curve with extra automorphisms and reduced
automorphism group Aut (X ) not isomorphic to a cyclic group. Then, the field of
moduli of X is a field of definition.

5.3.2. Sufficient condition 2: Odd signature. Another sufficient condition of a curve
X to be definable over its field of moduli, which in particular contains the case of
quasiplatonic curves, was provided in [3]. We say that X has odd signature if
X/Aut(X ) has genus zero and in its signature one of the cone orders appears an
odd number of times.

Theorem 7 (Artebani and Quispe [3]). Let X be a curve of genus g ≥ 2. If X has
odd signature, then it can be defined over its field of moduli.

5.4. Most of generalized superelliptic curves are definable over their field
of moduli. The exceptional generalized superelliptic Riemann surfaces of level n
are definable over their fields of moduli. As a consequence of Corollary 2 and
Theorem 6, we obtain the following fact concerning the field of moduli of the non-
exceptional generalized superelliptic curves.
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Theorem 8. Let X be a non-exceptional generalized superelliptic curve of genus
g ≥ 2 with generalized superelliptic group H ∼= Cn. If the reduced group of automor-
phisms Aut (X ) = Aut (X )/H is different from trivial or cyclic, then X is definable
over its field of moduli.

As a consequence of the above, we only need to take care of the case when the
reduced group G = G/H is either trivial or cyclic. As a consequence of Theorem 7
we have the following fact.

Theorem 9. Let X be a generalized superelliptic curve of genus g ≥ 2 with gener-
alized superelliptic group H ∼= Cn so that G = G/H is either trivial or cyclic. If X
has odd signature, then it can be defined over its field of moduli.

As a consequence, the only cases were the generalized superelliptic Riemann
surfaces cannot be defined over their field of moduli are those non-exceptional
generalized superelliptic curves with reduced group G = G/H being either trivial
or cyclic and with X/G having not an odd signature.

6. Appendix

In order to compute all the cyclic n-gonal curves of genus g ≥ 2 one proceeds as
follows. We consider the collection Fg of all tuples (n, r;n1, . . . , nr) satisfying the
following properties (Harvey’s conditions):

(1) n ≥ 2, r ≥ 3;
(2) 2 ≤ n1 ≤ n2 ≤ · · · ≤ nr ≤ n;
(3) nj is a divisor of n, for each j = 1, . . . , r;
(4) lcm (n1, . . . , nj−1, nj+1, . . . , nr) = n, for every j = 1, . . . , r;
(5) if n is even, then #{j ∈ {1, . . . , r} : n/nj is odd} is even;

(6) 2(g − 1) = n
(
r − 2−

∑r
j=1 n

−1
j

)
.

For each tuple (n, r;n1, . . . , nr) ∈ Fg we consider the collection Fg(n, r;n1, . . . , nr)
of tuples (l1, . . . , lr) so that

(1) l1, . . . , lr ∈ {1, . . . , n− 1};
(2) gcd(n, lj) = n/nj , for each j = 1, . . . , r.

Now, for each such tuple (l1, . . . , lr) ∈ Fg(n, r;n1, . . . , nr) we may consider the
epimorphism

θ : ∆ = 〈c1, . . . , cr : cn1
1 = · · · = cnr

r = c1 · · · cr = 1〉 → Cn = 〈τ〉 : cj 7→ τ lj .

Our assumptions above ensure that the kernel Γ = ker(θ) is a torsion free normal
co-compact Fuchsian subgroup of ∆ with X = H/Γ a closed Riemann surface of
genus g admitting a cyclic group H ∼= Cn as a group of conformal automorphisms
with quotient orbifold X/H = H/∆; a genus zero orbifold with exactly r cone points
of respective orders n1, . . . , nr. The surface X corresponds to a cyclic n-gonal curve

C(n, r; l1, . . . , lr; a1, . . . , ar) : yn =

r∏
j=1

(x− aj)lj ,

for suitable pairwise different values a1, . . . , ar ∈ C, and H being generated by
τ(x, y) = (x, ωny).

We should note that there might be different tuples (l1, . . . , lr) and (l′1, . . . , l
′
r),

necessarily belonging to the same Fg(n, r;n1, . . . , nr), for which the pairs (X , H)
and (X ′, H ′) are isomorphic (i.e., an isomorphism between the Riemann surfaces
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conjugating the cyclic groups). In general this is a difficult problem to deter-
mine such pairs defining same isomorphic pairs. But, in the (non-exceptional)
generalized superelliptic situation, the uniqueness of the superelliptic cyclic group
of level n (see Theorem 2) permits to see that (X , H) and (X ′, H ′) are isomor-
phic pairs if and only if the corresponding curves C(n, r; l1, . . . , lr; a1, . . . , ar) and
C(n, r; l′1, . . . , l

′
r; a
′
1, . . . , a

′
r) are isomorphic, and this last being equivalent to the

existence of

(i) Möbius transformation A ∈ PSL(2,C),
(ii) a permutation η ∈ Sr,

(iii) an element u ∈ {1, . . . , n− 1} with gcd(u, n) = 1,

so that

(iv) l′j ≡ ulη(j) mod (n), for j = 1, . . . , r,
(v) a′j = M(aj), for j = 1, . . . , r.

All the above (together Lemma 1) permits to construct all the possible gen-
eralized superelliptic curves of lower genus in a similar fashion as done for the
superelliptic case [27].
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