CURVES OF GENUS 2 WITH (n, n)-DECOMPOSABLE JACOBIANS

T. SHASKA
Department of Mathematics, University of Florida, Gainesville, FL 32611.

Abstract

Let C be a curve of genus 2 and $\psi_{1}: C \longrightarrow E_{1}$ a map of degree n, from C to an elliptic curve E_{1}, both curves defined over \mathbb{C}. This map induces a degree $n \operatorname{map} \phi_{1}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ which we call a Frey-Kani covering. We determine all possible ramifications for ϕ_{1}. If $\psi_{1}: C \longrightarrow E_{1}$ is maximal then there exists a maximal map $\psi_{2}: C \longrightarrow E_{2}$, of degree n, to some elliptic curve E_{2} such that there is an isogeny of degree n^{2} from the Jacobian J_{C} to $E_{1} \times E_{2}$. We say that J_{C} is (n, n)-decomposable. If the degree n is odd the pair $\left(\psi_{2}, E_{2}\right)$ is canonically determined. For $n=3,5$, and 7 , we give arithmetic examples of curves whose Jacobians are (n, n)-decomposable.

1. Introduction

Curves of genus 2 with non-simple Jacobians are of much interest. Their Jacobians have large torsion subgroups, e.g. Howe, Leprévost, and Poonen have found a family of genus 2 curve with 128 rational points in its Jacobian, see [5]. For other applications of genus 2 curves with (n, n)-decomposable Jacobians see Frey [2]. In this paper, we discuss genus 2 curves C whose function fields have maximal elliptic subfields. These elliptic subfields occur in pairs $\left(E_{1}, E_{2}\right)$ and we call each the complement of the other in J_{C}. The Jacobian of C is isogenous to $E_{1} \times E_{2}$. Let $\psi: C \rightarrow E$ be a maximal cover (cf. section 4) of odd degree n. The moduli space parameterizing these covers is a surface, more precisely the product of modular curves $X(n) \times X(n) / \Delta$, see Kani [6]. When $\psi: C \rightarrow E$ is degenerate (cf. section 2), this moduli space is a curve. Getting algebraic descriptions for these spaces is extremely difficult for large n (e.g. $n \geq 7$). Also, one would like to know how the elements of the pair $\left(E_{1}, E_{2}\right)$ relate to each other.

In sections 2 and 3 we define a Frey-Kani covering and determine all their possible ramifications. In section 4 we consider maximal covers. These covers allow us to determine the complement of E_{1} uniquely. The last section deals with some applications when $n=3,5$, or 7 .

2. Frey - Kani covers

Let C and E be curves of genus 2 and 1 , respectively. Both are smooth, projective curves defined over \mathbb{C}. Let $\psi: C \longrightarrow E$ be a covering of degree n. We say

[^0]that E is an degree n elliptic subcover of C. From the Riemann-Hurwitz formula, $\sum_{P \in C}\left(e_{\psi}(P)-1\right)=2$ where $e_{\psi}(P)$ is the ramification index of points $P \in C$, under ψ. Thus, we have two points of ramification index 2 or one point of ramification index 3 . The two points of ramification index 2 can be in the same fiber or in different fibers. Therefore, we have the following cases of the covering ψ :

Case I. There are $P_{1}, P_{2} \in C$, such that $e_{\psi}\left(P_{1}\right)=e_{\psi}\left(P_{2}\right)=2, \psi\left(P_{1}\right) \neq \psi\left(P_{2}\right)$, and $\forall P \in C \backslash\left\{P_{1}, P_{2}\right\}, e_{\psi}(P)=1$.

Case II. There are $P_{1}, P_{2} \in C$, such that $e_{\psi}\left(P_{1}\right)=e_{\psi}\left(P_{2}\right)=2, \psi\left(P_{1}\right)=\psi\left(P_{2}\right)$, and $\forall P \in C \backslash\left\{P_{1}, P_{2}\right\}, e_{\psi}(P)=1$.

Case III. There is $P_{1} \in C$ such that $e_{\psi}\left(P_{1}\right)=3$, and $\forall P \in C \backslash\left\{P_{1}\right\}, e_{\psi}(P)=1$
In case I (resp. II, III) the cover ψ has 2 (resp. 1) branch points in E.
Denote the hyperelliptic involution of C by w. We choose \mathcal{O} in E such that w restricted to E is the hyperelliptic involution on E , see [3] or [7]. We denote the restriction of w on E by $v, v(P)=-P$. Thus, $\psi \circ w=v \circ \psi$. E[2] denotes the group of 2 -torsion points of the elliptic curve E , which are the points fixed by v. The proof of the following two lemmas is straightforward and will be omitted.

Lemma 1. a) If $Q \in E$, then $\forall P \in \psi^{-1}(Q), w(P) \in \psi^{-1}(-Q)$.
b) For all $P \in C, e_{\psi}(P)=e_{\psi}(w(P))$.

Let W be the set of points in C fixed by w. Every curve of genus 2 is given, up to isomorphism, by a binary sextic, so there are 6 points fixed by the hyperelliptic involution w, namely the Weierstrass points of C. The following lemma determines the distribution of the Weierstrass points in fibers of 2-torsion points.

Lemma 2. The following hold:
(1) $\psi(W) \subset E[2]$
(2) If n is an odd number then
i) $\psi(W)=E[2]$
ii) If $Q \in E[2]$ then $\#\left(\psi^{-1}(Q) \cap W\right)=1 \bmod (2)$
(3) If n is an even number then for all $Q \in E[2]$,

$$
\#\left(\psi^{-1}(Q) \cap W\right)=0 \quad \bmod (2)
$$

Let $\pi_{C}: C \longrightarrow \mathbb{P}^{1}$ and $\pi_{E}: E \longrightarrow \mathbb{P}^{1}$ be the natural degree 2 projections. The hyperelliptic involution permutes the points in the fibers of π_{C} and π_{E}. The ramified points of π_{C}, π_{E} are respectively points in W and $E[2]$ and their ramification index is 2. There is $\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ such that the diagram commutes, see Frey [3] or Kuhn [7].

The covering $\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ will be called the corresponding Frey-Kani covering of $\psi: C \longrightarrow E$. It has first appeared in [3] and [2]. The term, Frey-Kani covering, has first been used by Fried in [4].

3. The ramification of Frey-Kani coverings

In this section we will determine the ramification of Frey-Kani coverings ϕ : $\mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$. First we fix some notation. For a given branch point we will denote the ramification of points in its fiber as follows. Any point P of ramification index m is denoted by (m). If there are k such points then we write $(m)^{k}$. We omit writing symbols for unramified points, in other words $(1)^{k}$ will not be written. Ramification data between two branch points will be separated by commas. We denote by $\pi_{E}(E[2])=\left\{q_{1}, \ldots, q_{4}\right\}$ and $\pi_{C}(W)=\left\{w_{1}, \ldots, w_{6}\right\}$.
3.1. The case when n is odd. The following theorem classifies the ramification types for the Frey-Kani coverings $\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ when the degree n is odd.

Theorem 1. If $\psi: C \longrightarrow E$ is a covering of odd degree n then the three cases of ramification for ψ induce the following cases for $\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$.

Case I:: (the generic case)

$$
\left((2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(2)^{\frac{n-3}{2}},(2)^{1}\right)
$$

or the following degenerate cases:
Case II:: (the 4-cycle case and the dihedral case)

$$
\begin{aligned}
& \text { i) }\left((2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(4)^{1}(2)^{\frac{n-7}{2}}\right) \\
& \text { ii) }\left((2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}}\right) \\
& \text { iii) }\left((2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(4)^{1}(2)^{\frac{n-5}{2}},(2)^{\frac{n-3}{2}}\right)
\end{aligned}
$$

Case III:: (the 3-cycle case)

$$
\begin{aligned}
& \text { i) }\left((2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(3)^{1}(2)^{\frac{n-5}{2}}\right) \\
& \text { ii) }\left((2)^{\frac{n-1}{2}},(2)^{\frac{n-1}{2}},(3)^{1}(2)^{\frac{n-3}{2}},(2)^{\frac{n-3}{2}}\right)
\end{aligned}
$$

Proof. From lemma 2 we can assume that $\phi\left(w_{i}\right)=q_{i}$ for $i \in\{1,2,3\}$ and $\phi\left(w_{4}\right)=$ $\phi\left(w_{5}\right)=\phi\left(w_{6}\right)=q_{4}$. Next we consider the three cases for the ramification of $\psi: C \longrightarrow E$ and see what ramifications they induce on $\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$.

Suppose that $P \in \psi^{-1}(E[2]) \backslash W$ and $e_{\psi}(P)=1$. Then

$$
e_{\psi}(P) \cdot e_{\pi_{E}}(\psi(P))=e_{\pi_{C}}(P) \cdot e_{\phi}\left(\pi_{C}(P)\right)=2
$$

so $e_{\phi}\left(\pi_{C}(P)\right)=2$.
Case I: There are P_{1} and P_{2} in C such that $e_{\psi}\left(P_{1}\right)=e_{\psi}\left(P_{2}\right)=2$ and $\psi\left(P_{1}\right) \neq$ $\psi\left(P_{2}\right)$. By lemma $1, e_{\psi}\left(w\left(P_{1}\right)\right)=2$. So $w\left(P_{1}\right)=P_{1}$ or $w\left(P_{1}\right)=P_{2}$.

Suppose that $w\left(P_{1}\right)=P_{1}$, so $P_{1} \in W$. If $\pi_{C}\left(P_{1}\right)=w_{i}$ for $i \in\{1,2,3\}$, say $\pi_{C}\left(P_{1}\right)=w_{1}$, then $e_{\pi_{E} \circ \psi}\left(P_{1}\right)=e_{\phi \circ \pi_{C}}\left(P_{1}\right)=4$, which implies that $e_{\phi}\left(w_{1}\right)=2$. All other points in the fiber of $\pi_{E} \circ \psi\left(P_{1}\right)=: q_{1}$ have ramification index 2 under ϕ. So ϕ has even degree, which is a contradiction. If $\pi_{C}\left(P_{1}\right)=w_{i}$ for $i \in\{4,5,6\}$, say $\pi_{C}\left(P_{1}\right)=w_{4}$, then in the fiber of q_{4} are: w_{4} of ramification index $2, w_{5}$ and w_{6} unramified, and all other points have ramification index 2. So $\#\left(\phi^{-1}\left(q_{4}\right)\right)=$
$2+1+1+2 k$, is even. Thus $P_{1}, P_{2} \notin W$. Then $P_{1}, P_{2} \notin \psi^{-1}(E[2])$, otherwise they would be in the same fiber.

Thus $P_{2}=w\left(P_{1}\right) \in C \backslash \psi^{-1}(E[2])$ and $\psi\left(P_{1}\right)=-\psi\left(P_{2}\right)$. Let $\pi_{E} \circ \psi\left(P_{1}\right)=$ $\pi_{E} \circ \psi\left(P_{2}\right)=q_{5}$ and $\pi_{C}\left(P_{1}\right)=\pi_{C}\left(P_{2}\right)=S$. So $e_{\psi}\left(P_{1}\right) \cdot e_{\pi_{E}}\left(\psi\left(P_{1}\right)\right)=e_{\pi_{C}}\left(P_{1}\right)$. $e_{\phi}\left(\pi_{C}\left(P_{1}\right)\right)$. Thus, $e_{\phi}\left(\pi_{C}\left(P_{1}\right)\right)=e_{\phi}(S)=2$. All other points in $\phi^{-1}\left(q_{5}\right)$ are unramified.

For $P \in W, e_{\pi_{C}}(P)=2$. Thus $e_{\phi}\left(\pi_{C}(P)\right)=1$. All $w_{1}, \ldots w_{6}$ are unramified and other points in $\phi^{-1}(E[2])$ are of ramification index 2. By the Riemann - Hurwitz formula, ϕ is unramified everywhere else.

Thus, there are $\frac{n-1}{2}$ points of ramification index 2 in the fibers $\phi^{-1}\left(q_{1}\right), \phi^{-1}\left(q_{2}\right)$, $\phi^{-1}\left(q_{3}\right), \frac{n-3}{2}$ points of ramification index 2 in $\phi^{-1}\left(q_{4}\right)$, and one point of index 2 in $\phi^{-1}\left(q_{5}\right)$.

Case II: In this case, there are distinct P_{1} and P_{2} in C such that $e_{\psi}\left(P_{1}\right)=$ $e_{\psi}\left(P_{2}\right)=2$ and $\psi\left(P_{1}\right)=\psi\left(P_{2}\right)$. Then $P_{2}=w\left(P_{1}\right)$ or $w\left(P_{i}\right)=P_{i}$, for $i=1,2$.

Let P_{1} and P_{2} be in the fiber which has three Weierstrass points.
i) Suppose that w permutes P_{1} and P_{2}. So P_{1} and P_{2} are not Weierstrass points. Then $e_{\pi_{E} \circ \psi}\left(P_{1}\right)=e_{\psi}\left(P_{1}\right) \cdot e_{\pi_{E}}\left(\psi\left(P_{1}\right)\right)=4$. Thus $e_{\pi_{C}}\left(P_{1}\right) \cdot e_{\phi}\left(\pi_{C}\left(P_{1}\right)\right)=4$. Since $e_{\pi_{C}}\left(P_{1}\right)=1$ then $e_{\phi}\left(\pi_{C}\left(P_{1}\right)=4\right.$. So there is a point of index 4 in the fiber of q_{4}. The rest of the points are of ramification index 2 , as in previous case, other then the w_{1}, \ldots, w_{6} which are unramified.
ii) Suppose that w fixes P_{1} and P_{2}. Thus P_{1} and P_{2} are Weierstrass points. Then $e_{\psi}\left(P_{i}\right) \cdot e_{\pi_{E}}\left(\psi\left(P_{i}\right)\right)=e_{\pi_{C}}\left(P_{i}\right) \cdot e_{\phi}\left(\pi_{C}\left(P_{i}\right)\right)=4$. So $e_{\phi}\left(\pi_{C}\left(P_{i}\right)\right)=2$. Thus, $\pi_{C}\left(P_{i}\right)$ have ramification index 2 . The other points behave as in the previous case. So we have in each fiber of ϕ one unramified point and everything else has ramification index 2.

Suppose that P_{1} and P_{2} are in one of the fibers which have only one Weierstrass point.
iii) Then w has to permute them, so they are not Weierstrass points. As in case i) $e_{\phi}\left(\pi_{C}\left(P_{1}\right)\right)=4$. So there is a point of index 4 in one of $\psi^{-1}\left(q_{1}\right), \psi^{-1}\left(q_{2}\right), \psi^{-1}\left(q_{3}\right)$ and everything else is of ramification index 2 . The Weierstrass points are as in case i), unramified.

Case III: Let P be the ramified point of index 3. By lemma $1, e_{\psi} w(P)=3$. But there is only one such point in C , so $P \in W$. Then $e_{\pi_{E} \circ \psi}(P)=e_{\psi}(P)$. $e_{\pi_{E}}(\psi(P))=6$. So $e_{\pi_{C}}(P) \cdot e_{\phi}\left(\pi_{C}(P)\right)=6$. But $e_{\pi_{C}}(P)=2$, because $P \in W$. Thus, $e_{\phi}\left(\pi_{C}(P)\right)=3$.
i) Q is in the fiber that contains three Weierstrass points. Then we have a point of ramification index three in $\psi^{-1}\left(q_{4}\right)$, two other Weierstrass points are unramified, and all the other points are of ramification index 2.
ii) Q is in one of the fibers that contains only one Weierstrass point. Then in one of $\psi^{-1}\left(q_{1}\right), \psi^{-1}\left(q_{2}\right), \psi^{-1}\left(q_{2}\right)$ there is a point of index 3 and everything else is of index 2 .
3.2. The case when n is even. Let us assume now that $\operatorname{deg}(\psi)=n$ is an even number. The following theorem classifies the Frey-Kani coverings in this case.

Theorem 2. If n is an even number then the generic case for $\psi: C \longrightarrow E$ induce the following three cases for $\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$:
I.: $\left((2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n}{2}},(2)\right)$
II.: $\left((2)^{\frac{n-4}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(2)\right)$
III.: $\left((2)^{\frac{n-6}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(2)\right)$

Each of the above cases has the following degenerations (two of the branch points collapse to one)
I.: (1) $\left((2)^{\frac{n}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n}{2}}\right)$
(2) $\left((2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(4)(2)^{\frac{n-6}{2}},(2)^{\frac{n}{2}}\right)$
(3) $\left((2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(4)(2)^{\frac{n-4}{2}}\right)$
(4) $\left((3)(2)^{\frac{n-4}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n}{2}}\right)$
II.: (1) $\left((2)^{\frac{n-2}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$
(2) $\left((2)^{\frac{n-4}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$
(3) $\left((4)(2)^{\frac{n-8}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$
(4) $\left((2)^{\frac{n-4}{2}},(4)(2)^{\frac{n-6}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$
(5) $\left((2)^{\frac{n-4}{2}},(2)^{\frac{n-2}{2}},(2)^{\frac{n-4}{2}},(2)^{\frac{n}{2}}\right)$
(6) $\left((3)(2)^{\frac{n-6}{2}},(2)^{\frac{n-2}{2}},(4)(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$
(7) $\left((2)^{\frac{n-4}{2}},(3)(2)^{\frac{n-4}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$
III.: (1) $\left((2)^{\frac{n-4}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(4)(2)^{\frac{n}{2}}\right)$
(2) $\left((2)^{\frac{n-6}{2}},(4)(2)^{\frac{n-4}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$
(3) $\left((2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(4)(2)^{\frac{n-10}{2}}\right)$
(4) $\left((3)(2)^{\frac{n-8}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}},(2)^{\frac{n}{2}}\right)$

Proof. We know that the number of Weierstrass points in the fibers of 2 -torsion points is $0 \bmod (2)$. Combining this with the Riemann - Hurwitz formula we get the three cases of the general case.

To determine the degenerate cases we consider cases when there is one branch point for $\psi: C \longrightarrow E$.
I) First, assume that the branch point has two points P_{1} and P_{2} of index 2 (Case II). Then $w\left(P_{1}\right)=P_{i}$ for $i=1,2$ or $w\left(P_{1}\right)=P_{2}$. The first case implies that $P_{1}, P_{2} \in W$. Then $e_{\phi}\left(w\left(P_{1}\right)\right)=e_{\phi}\left(w\left(P_{2}\right)\right)=2$. So we have case I, 1. When $w\left(P_{1}\right)=P_{2}$ then $e_{\phi}\left(w\left(P_{1}\right)\right)=4$. Thus, we have a point of index 4 in $\phi^{-1}(q)$ for $q \in\left\{q_{1}, \ldots, q_{4}\right\}$. Therefore cases 2 and 3 . If there is $P \in C$ such that $e_{\psi}(P)=3$,
then $P \in W$ and $e_{\phi}(w(P))=3$. So we have case 4 .
II) As in case I, if P_{1} and P_{2} are Weierstrass points then they can be in the fiber of the point which has 4 or 2 Weierstrass points. So we get two cases, namely 1 and 2. Suppose now that P_{1} and P_{2} are not Weierstrass points, thus $w\left(P_{1}\right)=P_{2}$ and $e_{\phi}\left(w\left(P_{1}\right)\right)=4$. This point of index 4 can be in the same fiber with 4,2 or none Weierstrass points. So we get cases 3,4 , and 5 respectively. A point of index 3 is a Weierstrass point which can be in the fiber which has 4 or 2 Weierstrass points. So cases 6 and 7.
III) If P_{1} and P_{2} are Weierstrass points then they can be only in the fiber with 6 Weierstrass point so case 1 . If they are not then we have a point of index 4 which can be in the fiber with all Weierstrass points or with none. Therefore, cases 2 and 3. The point of index 3 is a Weierstrass point so it can be in the fiber where all the Weierstrass points are, so case 4 . This completes the proof.

4. Maximal coverings $\psi: C \longrightarrow E$.

Let $\psi_{1}: C \longrightarrow E_{1}$ be a covering of degree n from a curve of genus 2 to an elliptic curve. The covering $\psi_{1}: C \longrightarrow E_{1}$ is called a maximal covering if it does not factor over a nontrivial isogeny. A map of algebraic curves $f: X \rightarrow Y$ induces maps between their Jacobians $f^{*}: J_{Y} \rightarrow J_{X}$ and $f_{*}: J_{X} \rightarrow J_{Y}$. When f is maximal then f^{*} is injective and $\operatorname{ker}\left(f_{*}\right)$ is connected, see [9] (p. 158) for details.

Let $\psi_{1}: C \longrightarrow E_{1}$ be a covering as above which is maximal. Then $\psi^{*}{ }_{1}: E_{1} \rightarrow J_{C}$ is injective and the kernel of $\psi_{1, *}: J_{C} \rightarrow E_{1}$ is an elliptic curve which we denote by E_{2}, see [3] or [7]. For a fixed Weierstrass point $P \in C$, we can embed C to its Jacobian via

$$
\begin{gathered}
i_{P}: C \longrightarrow J_{C} \\
x \rightarrow[(x)-(P)]
\end{gathered}
$$

Let $g: E_{2} \rightarrow J_{C}$ be the natural embedding of E_{2} in J_{C}, then there exists $g_{*}: J_{C} \rightarrow E_{2}$. Define $\psi_{2}=g_{*} \circ i_{P}: C \rightarrow E_{2}$. So we have the following exact sequence

$$
0 \rightarrow E_{2} \xrightarrow{g} J_{C} \xrightarrow{\psi_{1, *}} E_{1} \rightarrow 0
$$

The dual sequence is also exact, see [3]

$$
0 \rightarrow E_{1} \xrightarrow{\psi_{1}^{*}} J_{C} \xrightarrow{g_{*}} E_{2} \rightarrow 0
$$

The following lemma shows that ψ_{2} has the same degree as ψ_{1} and is maximal.
Lemma 3. a) $\operatorname{deg}\left(\psi_{2}\right)=n$
b) ψ_{2} is maximal

Proof. For every $D \in \operatorname{Div}\left(E_{2}\right), \operatorname{deg}\left(\psi_{2}^{*} D\right)=\operatorname{deg}\left(\psi_{2}\right) \cdot \operatorname{deg}(D)$. Take $D=\mathcal{O}_{2} \in E_{2}$, then $\operatorname{deg}\left(\psi_{2}^{*} \mathcal{O}_{2}\right)=\operatorname{deg}\left(\psi_{2}\right)$. Also $\psi_{2}^{*}\left(\mathcal{O}_{2}\right)=\left(\psi_{2}^{*} \mathcal{O}_{2}\right)$ as divisor and

$$
\psi_{2}^{*} \mathcal{O}_{2}=i_{P}^{*} g\left(\mathcal{O}_{2}\right)=i_{P}^{*} \mathcal{O}_{J}=\psi_{1}^{*} \mathcal{O}_{1}
$$

So $\operatorname{deg}\left(\psi_{2}^{*} \mathcal{O}_{2}\right)=\operatorname{deg}\left(\psi_{1}^{*} \mathcal{O}_{1}\right)=\operatorname{deg}\left(\psi_{1}\right)=n$
To prove the second part suppose $\psi_{2}: C \longrightarrow E_{2}$ is not maximal. So there exists an elliptic curve E_{0} and morphisms ψ_{0} and β, such that the following diagram commutes

Take $\psi_{0}(P)$ to be the identity of E_{0}. Then exists $\psi_{0 *}: J_{C} \longrightarrow E_{0}$ such that $\psi_{0}=$ $\psi_{0 *} \circ i_{P}$. Thus, $\psi_{2, *}=\beta \circ \psi_{0, *}$. So $\operatorname{ker} \psi_{0, *}$ is a proper subgroup of $\operatorname{ker} \psi_{2, *}=E_{1}$, since $\operatorname{deg} \beta>1$. Thus,

$$
\left.\psi_{0, *}\right|_{E_{1}}: E_{1} \longrightarrow \operatorname{ker} \beta
$$

is a surjective homomorphism. Therefore, E_{1} has a proper subgroup of finite index. So, there exists an intermediate field between function fields $\mathbb{C}(C)$ and $\mathbb{C}\left(E_{1}\right)$. This contradicts the fact that ψ_{1} is maximal.

If $\operatorname{deg}\left(\psi_{1}\right)$ is an odd number then the maximal covering $\psi_{2}: C \rightarrow E_{2}$ is unique (up to isomorphism of elliptic curves), see Kuhn [7].

To each of the covers $\psi_{i}: C \longrightarrow E_{i}, i=1,2$, correspond Frey-Kani covers $\phi_{i}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$. If the cover $\psi_{1}: C \longrightarrow E_{1}$ is given, and therefore ϕ_{1}, we want to determine $\psi_{2}: C \longrightarrow E_{2}$ and ϕ_{2}. The study of the relation between the ramification structures of ϕ_{1} and ϕ_{2} provides information in this direction. The following lemma (see [3], p. 160) answers this question for the set of Weierstrass points $W=$ $\left\{P_{1}, \ldots, P_{6}\right\}$ of C when the degree of the cover is odd.

Let $\psi_{i}: C \longrightarrow E_{i}, i=1,2$, be maximal of odd degree n. Let $\mathcal{O}_{i} \in E_{i}[2]$ be the points which has three Weierstrass points in its fiber. Then we have the following:
Lemma 4 (Frey-Kani). The sets $\psi_{1}^{-1}\left(\mathcal{O}_{1}\right) \cap W$ and $\psi_{2}^{-1}\left(\mathcal{O}_{2}\right) \cap W$ form a disjoint union of W.

When n is even the ramification of ψ, is more precise.
Lemma 5. Let $\psi: C \longrightarrow E$ is maximal of even degree n, and $Q \in E[2]$. Then $\psi^{-1}(Q)$ has either none or two Weierstrass points.
Proof. If there are no Weierstrass points in $\psi^{-1}(Q)$ there is nothing to prove. Suppose there is one, from lemma 3.2 we know there are at least 2 , say P_{1}, P_{2}. We embed $C \hookrightarrow J_{C}$ via $x \longrightarrow\left[(x)-\left(P_{1}\right)\right]$ and $E \longrightarrow J_{E}$ via $x \longrightarrow[(x)-(Q)]$.

Then $\psi_{*}\left(\left[(x)-\left(P_{1}\right)\right]\right)=[(\psi(x))-(Q)]$.
Also, $\psi_{*} \psi^{*}=[n]$ is the multiplication by n in E. Since $2 \mid n$ then $E[2]$ is a subgroup of $E[n]$. So $\psi^{*}(E[2])=\operatorname{ker}\left(\left.\psi_{*}\right|_{J[2]}\right)$, we call this group H. Suppose $P_{3} \in \psi^{-1}(Q)$. Then $\psi_{*}\left(i_{P_{1}}\left(P_{3}\right)\right)=\mathcal{O}_{E}$, so $\left(P_{1}, P_{3}\right) \in H$, where the unordered pair $\left(P_{i}, P_{j}\right)$ denotes the point $\left[\left(P_{i}\right)-\left(P_{j}\right)\right]$ of order 2 in J_{C}. By addition of points of order 2 in $J_{C},\left(P_{2}, P_{3}\right) \in H$. So $H=\left\{0_{J},\left(P_{1}, P_{2}\right),\left(P_{1}, P_{3}\right),\left(P_{2}, P_{3}\right)\right\}$ can't have any other points, therefore $\psi^{-1}(Q)$ has three Weierstrass points, which contradicts theorem 2. Thus, there are only two Weierstrass points in $\psi^{-1}(Q)$.

The above lemma says that if ψ is maximal of even degree then the corresponding Frey-Kani covering can have only type I ramification, see theorem 1.

5. Arithmetic Applications

In this section, we characterize genus 2 curves with degree 3 elliptic subcovers and determine the j-invariants of these elliptic subcovers in terms of coefficients of the genus 2 curve. If the elliptic subcover is of degenerate ramification type, then its j-invariant is determined in terms of the absolute invariants of the genus 2 curve. We find two isomorphism classes of genus 2 curves which have both elliptic subcovers of degenerate type.

When $n=5$ or 7 we discuss only Case II, iii), and Case II, i) of theorem 1, respectively. In both cases we determine the j-invariants of elliptic subcovers in terms of the coefficients of the genus 2 curves. Other types of ramifications are computationally harder and results are very large for display.
5.1. Curves of genus 2 with a degree 3 elliptic subfield. Let $\psi: C \rightarrow E_{1}$ be a covering of degree 3 , where C is a genus 2 curve given by

$$
C: Y^{2}=x(x-1)(x-d)\left(x^{3}-a x^{2}+b x-c\right)
$$

and E_{1} an elliptic curve. Denote the 2 -torsion points of E_{1} by $0,1, t, s$. Let ϕ_{1} be the Frey-Kani covering with $\operatorname{deg}\left(\phi_{1}\right)=3$ such that $\phi_{1}(0)=0, \phi_{1}(1)=1$, $\phi_{1}(d)=t$, and the roots of $f(x)=x^{3}-a x^{2}+b x-c$, are in the fiber of s. The fifth branch point is infinity and in its fiber is u of index 1 and infinity of index 2 . So ϕ_{1} is of generic type (Theorem 1). Points of index 2 in the fibers of $0,1, t$ are m, n, p respectively. Then the cover is given by

$$
z=k \frac{x(x-m)^{2}}{x-u}
$$

Then from equations:

$$
z-1=k(x-1)(x-n)^{2}, \quad z-t=k(x-d)(x-p)^{2}, \quad z-s=f(x)
$$

we compare the coefficients of x and get a system of 9 equations in the variables $a, b, c, d, k, m, n, p, t, s, u$. Using the Buchberger's Algorithm (see [1], p. 86-91) and a computational symbolic package (as Maple) we get;

Lemma 6. Let E_{1} be the elliptic curve given by $y^{2}=z(z-1)(z-t)(z-s)$. Then the genus 2 curve

$$
C: Y^{2}=x(x-1)\left(x-\frac{a(a-2)}{2 a-3}\right)\left(x^{3}-a x^{2}+\left(\frac{(2 a-3) c}{(a-1)^{2}}+\frac{a^{2}}{4}\right) x-c\right)
$$

covers E_{1} with a maximal cover of degree 3 of generic case (Theorem 1). Moreover s and t are given by,

$$
t=\frac{a^{3}(a-2)}{(2 a-3)^{3}}, \quad s=\frac{4 c}{(a-1)^{2}}
$$

Next, we find the j-invariants of E_{1} and E_{2}. The j-invariant of E_{1} is as follows,

$$
j\left(E_{1}\right)=\frac{16}{C^{2}} \cdot \frac{A^{3}}{a^{6} c^{2}(a-1)^{2}(a-2)^{2}(a-3)^{6}\left((a-1)^{2}-4 c\right)^{2}}
$$

where A and C are:
(1)

$$
\begin{aligned}
A= & a^{12}-8 a^{11}+16 c^{2} a^{8}+11664 c^{2}+36720 c^{2} a^{4}-69984 c^{2} a^{3}-192 c^{2} a^{7}+77760 c^{2} a^{2} \\
& -46656 c^{2} a+1920 c^{2} a^{6}-11232 c^{2} a^{5}-4 a^{10} c+26 a^{10}-44 a^{9}+41 a^{8}-20 a^{7}+220 a^{8} c \\
& -904 a^{7} c+1740 a^{6} c-1800 a^{5} c-8 a^{9} c-216 c a^{3}+4 a^{6}+972 c a^{4} \\
C= & a^{6}-4 a^{5}+5 a^{4}-2 a^{3}-32 a^{3} c+144 c a^{2}-216 c a+108 c
\end{aligned}
$$

To find j_{2} we take $\phi_{2}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ such that $\phi_{2}(0)=\phi_{2}(1)=\phi_{2}(d)=\infty$. Three roots of $f_{3}(x)=x^{3}-a x^{2}+b x-c$ go to 2-torsion points s_{1}, s_{2}, s_{3} of E_{2} and 0 is the fifth branch point of ϕ_{2}. Solving the corresponding system we get s_{1}, s_{2}, s_{3} in terms of a and c. Then j_{2} is

$$
j\left(E_{2}\right)=-\frac{16}{C} \cdot \frac{B^{3}}{c\left((a-1)^{2}-4 c\right)}
$$

where A is as above and $B=a^{4}-2 a^{3}+a^{2}-24 c a+36 c$.
5.2. Degenerate Cases. Notice that only one degenerate case can occur when $n=3$. In this case, one of the Weierstrass points has ramification index 3 , so the cover is totally ramified at this point, see theorem 1.

Lemma 7. Let E be an elliptic curve given by $y^{2}=z(z-1)(z-s)$. Suppose that the genus two curve C with equation

$$
Y^{2}=x(x-1)\left(x-w_{1}\right)\left(x-w_{2}\right)\left(x-w_{3}\right)
$$

covers E, of degree 3, such that the covering is degenerate. Then w_{3} is given by

$$
w_{3}=\frac{\left(4 w_{1}^{3}-7 w_{1}^{2}+4 w_{1}-w_{2}\right)^{3}\left(4 w_{1}^{3}-3 w_{1}^{2}-w_{2}\right)}{16 w_{1}^{3}\left(w_{1}-1\right)^{3}\left(4 w_{1}^{3}-6 w_{1}^{2}+3 w_{1}-w_{2}\right)}
$$

and w_{1} and w_{2} satisfy the equation,

$$
\begin{equation*}
w_{1}^{4}-4 w_{1}^{3} w_{2}+6 w_{1}^{2} w_{2}-4 w_{1} w_{2}+w_{2}^{2}=0 \tag{2}
\end{equation*}
$$

Moreover,

$$
s=-27\left(w_{1}\left(w_{1}-1\right) \frac{\left(4 w_{1}^{3}-7 w_{1}^{2}+4 w_{1}-w_{2}\right)\left(4 w_{1}^{3}-5 w_{1}^{2}+2 w_{1}-w_{2}\right)}{\left(4 w_{1}^{3}-9 w_{1}^{2}-w_{2}+6 w_{1}\right)\left(4 w_{1}^{3}-3 w_{1}^{2}-w_{2}\right)\left(4 w_{1}^{3}-6 w_{1}^{2}+3 w_{1}-w_{2}\right)}\right)^{2}
$$

Proof. We take $\psi: C \rightarrow E$ and $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ its corresponding Frey-Kani covering. To compute ϕ, let w_{1} be the point of ramification index 3. Take a coordinate in the lower \mathbb{P}^{1} such that $\phi\left(w_{1}\right)=0, \phi\left(w_{2}\right)=s, \phi_{2}\left(w_{3}\right)=1$, and $\phi(0)=\phi(1)=$ $\phi(\infty)=\infty$. We denote points of ramification index 2 in the fibers of s and 1 by p and q, respectively. Then, ϕ is given as $z=k_{2} \frac{\left(x-w_{1}\right)^{3}}{x(x-1)}$. From the corresponding system we get the above result.

Denote the j-invariant of E by j_{1}. Using the above expression of s in terms of w_{1} and w_{2} we get an equation in terms of j_{1}, w_{1}, and w_{2}. Taking the resultant of
this expression and equation (2) we get,
(3)

$$
\begin{gathered}
2617344 w_{1}^{2}+38637 j_{1} w_{1}^{7}-17496 j_{1} w_{1}^{6}-29207808 w_{1}^{5}-7569408 w_{1}^{3}-7569408 w_{1}^{1} 5 \\
-729 w_{1}^{4} j_{1}+5103 j_{1} w_{1}^{5}+69984 j_{1} w_{1}^{9}-60507 j_{1} w_{1}^{8}+65536-589824 w_{1}+16411392 w_{1}^{4} \\
-29207808 w_{1}^{13}+44960208 w_{1}^{12}-60666336 w_{1}^{11}+72010800 w_{1}^{10}+44960208 w_{1}^{6} \\
-60666336 w_{1}^{7}+72010800 w_{1}^{8}-75998272 w_{1}^{9}+16411392 w_{1}^{14}+2617344 w_{1}^{16}-589824 w_{1}^{17} \\
-60507 j_{1} w_{1}^{10}+38637 j_{1} w_{1}^{11}-17496 j_{1} w_{1}^{12}+5103 j_{1} w_{1}^{13}-729 j_{1} w_{1}^{14}+65536 w_{1}^{18}=0
\end{gathered}
$$

We denote with j the j-invariant of the elliptic curve $y^{2}=\left(x-w_{1}\right)\left(x-w_{2}\right)\left(x-w_{3}\right)$. Then, proceeding as above, j can be expressed in terms of w_{1} as below,

$$
\begin{array}{r}
65536 w_{1}^{6}-196608 w_{1}^{5}+356352 w_{1}^{4}-385024 w_{1}^{3}+(289536-9 j) w_{1}^{2} \tag{4}\\
+(-129792+9 j) w_{1}+35152-9 j=0
\end{array}
$$

Taking the resultants of the two previous equations we have

$$
\begin{equation*}
256 A(j) j_{1}^{3}+3 B(j) j_{1}^{2}+6 C(j) j_{1}-D(j)=0 \tag{5}
\end{equation*}
$$

where
(6)

$$
\begin{aligned}
A(j) & =(9 j-35152)^{4} \\
B(j) & =-2187 j^{7}+38996640 j^{6}-277882258176 j^{5}+998642127618048 j^{4} \\
& -1868045010870009856 j^{3}+1669509508048367910912 j^{2} \\
& -543484034691057422696448 j+16612482057244821172518912 \\
C(j) & =27 j^{8}+1125216 j^{7}+9650655872 j^{6}-31593875152896 j^{5}+27748804997283840 j^{4} \\
& +1114515284358510673920 j^{3}-6061989956030939246100480 j^{2} \\
& +8346397859247767524611194880 j+353019691006036487376293855232 \\
D(j) & =\left(j^{3}+33120 j^{2}+290490624 j-310747594752\right)^{3}
\end{aligned}
$$

For the genus 2 curve C we compute the Igusa invariants $J_{2}, J_{4}, J_{6}, J_{10}$ in terms of the coefficients of the curve, see Igusa [8] for their definitions. The absolute invariants of C are defined it terms of Igusa invariants as follows,

$$
\begin{equation*}
i_{1}:=144 \frac{J_{4}}{J_{2}^{2}}, \quad i_{2}:=-1728 \frac{J_{2} J_{4}-3 J_{6}}{J_{2}^{3}}, \quad i_{3}:=486 \frac{J_{10}}{J_{2}^{5}} \tag{7}
\end{equation*}
$$

Two genus 2 curves with $J_{2} \neq 0$ are isomorphic if and only if they have the same absolute invariants. The absolute invariants can be expressed in terms of w_{1} and w_{2}. Taking the resultant of the first two equations in (7) we get an equation $F\left(i_{1}, i_{2}, w_{1}\right)=0$. The resultant of $F\left(i_{1}, i_{2}, w_{1}\right)$ and equation (4) we get $j=13824 \frac{S}{T}$ where S and T are:

$$
\begin{align*}
S & =247945848003 i_{1}^{3}-409722141024 i_{1}^{2}-7591354214400 i_{1}+17736744960000 \\
& +61379512488 i_{1} i_{2}+64268527400 i_{1}^{2} i_{2}-2031496516224 i_{2} \\
T & =1034723291140 i_{1}^{2} i_{2}-3175485076512 i_{1} i_{2}-7250280129792 i_{2}+1670535171333 i_{1}^{3} \tag{8}\\
& +366156782208 i_{1}^{2}-67382113075200 i_{1}+141893959680000
\end{align*}
$$

The conjugate solutions of (5) are j-invariants of E_{1} and E_{2}. For $j=0$ the equation (3) has one triple root $j_{1}=-\frac{1213857792}{28561}$. Then, C and E are given by,

$$
Y^{2}=x^{5}-x^{4}+216 x^{2}-216 x
$$

$$
y^{2}=x^{3}-668644200 x+6788828143125
$$

For $j=1728$ the values for j_{1} are

$$
j_{1}=1728, \quad \frac{942344950464}{1500625}, \quad \frac{942344950464}{1500625}
$$

This value of j does not give a genus 2 curve since the discriminant J_{10} of C is 0 .
Next we will see what happens when both ϕ_{1} and ϕ_{2} are degenerate. We find only two triples $\left(C, E_{1}, E_{2}\right)$ such that the corresponding $\phi_{i}: C \rightarrow E_{i}, i=1,2$, are degenerate. It is interesting that in both cases E_{1} and E_{2} are isomorphic.

Lemma 8. Let $E: y^{2}=z(z-1)(z-t)$ be an elliptic curve. Then the genus 2 curve

$$
Y^{2}=x(x-1)\left(x^{3}-\frac{3}{2} x^{2}+\frac{9}{16} x-\frac{t}{16}\right)
$$

covers E, such that the covering is of degree 3 and the corresponding Frey-Kani covering of type II, iii) (Theorem 1), for $t \neq 0,1$.

Proof. Let ϕ_{1} be the Frey-Kani covering with $\operatorname{deg}\left(\phi_{1}\right)=3$ such that $\phi_{1}\left(w_{1}\right)=$ $\phi_{1}\left(w_{2}\right)=\phi_{1}\left(w_{3}\right)=t, \phi_{1}(0)=0, \phi_{1}(1)=1, \phi_{1}(\infty)=\infty$. Let ∞ be the point of ramification index 3 , and denote the points of ramification index 2 in the fibers of 0 and 1 with m and n respectively. If z is a coordinate in the lower \mathbb{P}^{1} then ϕ_{1} is given by $z=k_{1} x(x-m)^{2}$. The relations $z-1=k_{1}(x-1)(x-n)^{2}$, $z-t=k_{1}\left(x^{3}-a x^{2}+b x-c\right)$ hold, where $x^{3}-a x^{2}+b x-c=\left(x-w_{1}\right)\left(x-w_{2}\right)\left(x-w_{3}\right)$. Comparing the coefficients and solving the system, we get

$$
\left(a, b, c, k_{1}, m, n\right)=\left(\frac{3}{2}, \frac{9}{16}, \frac{t}{16}, 16, \frac{3}{4}, \frac{1}{4}\right)
$$

To compute ϕ_{2}, let w_{1} be the point of ramification index 3. Take a coordinate in the lower \mathbb{P}^{1} such that $\phi_{2}\left(w_{1}\right)=0, \phi_{2}\left(w_{2}\right)=s, \phi_{2}\left(w_{3}\right)=1$, and $\phi_{2}(0)=$ $\phi_{2}(1)=\phi_{2}(\infty)=\infty$. The points of ramification index 2 in the fibers of s and 1 we denote by p and q, respectively. Then ϕ_{2} is given as $z_{2}=k_{2} \frac{\left(x-w_{1}\right)^{3}}{x(x-1)}$. Then from the corresponding system we get

$$
\begin{align*}
& w_{1}=-\frac{q(q-2)}{(2 q-1)}, w_{2}=\frac{-q^{3}(q-2)}{(2 q-1)}, w_{3}=\frac{-q\left(12 q-8-6 q^{2}+q^{3}\right)}{(2 q-1)^{3}} \\
& k_{2}=\frac{1}{27} \frac{(-1+2 q)^{3}}{q^{2}(q-1)^{2}}, s=\frac{-1}{27} \frac{(-1+2 q)^{2}(q-2)\left(-3 q+q^{3}-2\right)}{q^{2}(q-1)^{2}} \tag{9}
\end{align*}
$$

Using the fact that the a, b, c are the symmetric polynomials of w_{1}, w_{2}, w_{3} we have;

$$
\begin{equation*}
(t, q)=\left(\frac{1}{2}, \frac{1}{2} \pm \frac{1}{2} \sqrt{3}\right),\left(\frac{-241+22 I \sqrt{2}}{2+22 I \sqrt{2}}, \pm \frac{1}{2} I \sqrt{2}\right),\left(\frac{243}{2+22 I \sqrt{2}}, 1 \pm \frac{1}{2} I \sqrt{2}\right) \tag{10}
\end{equation*}
$$

where $I=\sqrt{-1}$. So we have three pairs of elliptic curves

$$
E_{1}: y^{2}=z(z-1)\left(z-\frac{1}{2}\right) \quad \text { and } \quad E_{2}: y^{2}=z(z-1)(z+1)
$$

with $j\left(E_{1}\right)=j\left(E_{2}\right)=1728$.

$$
E_{1}: y^{2}=z(z-1)\left(z-\frac{241+22 I \sqrt{2}}{-2+22 I \sqrt{2}}\right), \quad E_{2}: y^{2}=z(z-1)\left(z-\frac{241+22 I \sqrt{2}}{243}\right)
$$

Table 1.

$f_{3}(x)$	E_{1}	E_{2}	$j_{1}=j_{2}$
$x^{3}-\frac{3}{2} x^{2}+\frac{9}{16} x-\frac{1}{32}$	$z(z-1)\left(z-\frac{1}{2}\right)$	$z(z-1)(z+1)$	1728
$x^{3}-\frac{3}{2} x^{2}+\frac{9}{16} x-\frac{241+22 I \sqrt{2}}{-32(1+11 I \sqrt{2})}$	$\left.t_{1}=\frac{241+22 I \sqrt{2}}{-2+22 I \sqrt{2}}\right)$	$t_{2}=\frac{241+22 I \sqrt{2}}{243}$	$\frac{-873722816}{59049}$

with $j\left(E_{1}\right)=j\left(E_{2}\right)=\frac{-873722816}{59049}$.

$$
E_{1}: y^{2}=z(z-1)\left(z-\frac{243}{1+2(11 I \sqrt{2}}\right), \quad E_{1}: y^{2}=z(z-1)\left(z-\frac{241-22 I \sqrt{2}}{243}\right)
$$

and $j\left(E_{1}\right)=j\left(E_{2}\right)=\frac{-873722816}{59049}$. The last two cases correspond to the same isomorphism class of genus 2 curves. Thus, when ϕ_{1} and ϕ_{2} are both degenerate then we get two isomorphism classes of elliptic curves. Summarizing everything above we have the following table:
where $C: Y^{2}=x(x-1) f_{3}(x), E_{i}: y^{2}=z(z-1)\left(z-t_{i}\right)$. One can check, using the absolute invariants of the genus two curves, that they are not isomorphic to each other. Moreover, an equation for $E_{1} \cong E_{2}$ in the second case is as follows:

$$
y^{2}=z^{3}+z^{2}-277520614451197 z+1880509439898307064603
$$

and its conductor $N=2^{8} \cdot 3 \cdot 11^{2} \cdot 239^{2} \cdot 251^{2}$.
5.3. Curves of genus 2 with degree 5 elliptic subfields, the 4 -cycle case. Notice that the case II, i) does not occur when $n=5$. So we will consider only case II, iii). We will prove the following lemma:
Lemma 9. Let $\psi: C \rightarrow E_{1}$ be a covering of degree 5 such that the corresponding Frey-Kani cover is of ramification type II, iii) (theorem 1). Then the genus two curve can be given by

$$
Y^{2}=x(x-1)(x-d)\left(x^{3}-u x^{2}+v x-w\right)
$$

where

$$
d=\frac{\left(3 u^{2}-4 u-4 v+1\right)^{2}}{(2 u-3)\left(6 u^{2}-10 u+5-8 v\right)}, \quad w=-\frac{\left(u^{2}-6 u+4 v+5\right)\left(u^{2}-4 v\right)}{8(2 u-3)}
$$

and u and v satisfy

$$
15 u^{4}-82 u^{3}-8 v u^{2}+159 u^{2}-140 u+56 v u-16 v^{2}-52 v+50=0
$$

Moreover, an equation of E_{1} is $y^{2}=z(z-1)(z-t)$, where

$$
t=\frac{\left(u^{2}-4 v\right)\left(-8 u^{4}+24 u^{3}+63 u^{2}+64 v^{2}-192 u v+196 v+16 u^{2} v-180 u+100\right)}{(2 u-3)\left(6 u^{2}-10 u+5-8 v\right)}
$$

Proof. Take the genus 2 curve to be

$$
Y^{2}=x(x-1)(x-d)\left(x^{3}-u x^{2}+v-w\right)
$$

Let ϕ_{1} be the Frey-Kani covering with $\operatorname{deg}\left(\phi_{1}\right)=5$ such that $\phi_{1}\left(w_{1}\right)=\phi_{1}\left(w_{2}\right)=$ $\phi_{1}\left(w_{3}\right)=t, \phi_{1}(0)=0, \phi_{1}(1)=1$, and $\phi_{1}(d)=\infty$. Take ∞ to be the point of ramification index 4 such that $\phi_{1}(\infty)=\infty$. Then ϕ_{1} is given by

$$
z=k_{1} \frac{x\left(x^{2}-a x+b\right)^{2}}{(x-d)}
$$

Solving the corresponding system we get the above result.

From the previous lemma, the j-invariant of the elliptic curve satisfies

$$
F(u, v) j+G(u, v)=0
$$

Taking the resultant of the previous two equations, the j-invariant satisfies an equation of degree 2 :

$$
\begin{equation*}
A(u) j^{2}+B(u) j+C(u)=0 \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
A(u)=(u-1)^{2}(u-2)^{2}(3 u-4)^{6}(3 u-5)^{6}\left(2 u^{2}-6 u+5\right)^{8} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& B(u)=-16\left(-7105017544704 u^{33}-2816860828336128 u^{31}+175917390077952 u^{32}+\right. \tag{13}\\
& 623116122491175945628520 u^{12}+165647363105986609+1071822623072391493632 u^{24} \\
&-697664908494919962734400 u^{13}+10165770178171535328256 u^{22}- \\
& 3521178077017962627072 u^{23}-611366039933419582356480 u^{15}+ \\
& 211088208801275293447168 u^{18}-117843339238828016262912 u^{19}- \\
& 337258769605584067064448 u^{17}+480799396622391815599360 u^{16}+ \\
& 58612898603387517569664 u^{2} 0+139314069504 u^{34}-12909484419880734720 u^{27}- \\
& 284837487810868721664 u^{25}+65530387559293083648 u^{26}+40376325064521521748 u^{2}- \\
& 284029170057918018876 u^{3}-3711757861451181852 u-5749828391735587589364 u^{5}+ \\
& 1452158564376272108306 u^{4}+18345524820571264661416 u^{6}- \\
& 48457022965012856084616 u^{7}+108027612722856481764222 u^{8}- \\
& 206208961788595840640856 u^{9}+340743378168336968325408 u^{10}- \\
& 491546319356455960291344 u^{11}-25922857282984031345664 u^{21}+ \\
& 692593865844403162989888 u^{14}+32784067604201472 u^{30}+2146611912787372032 u^{28} \\
&\left.-295513372833693696 u^{29}\right)\left(2 u^{2}-6 u+5\right)^{4} \\
& C(u)=256\left(186624 u^{16}-4478976 u^{15}+50512896 u^{14}-355332096 u^{13}+1744993152 u^{12}\right. \\
&-6343287552 u^{11}+17655393792 u^{10}-38378452608 u^{9}+65842249648 u^{8} \\
&-89441495616 u^{7}+95875417216 u^{6}-80237127456 u^{5}+51388251464 u^{4}-24345314544 u^{3} \\
&\left.+8044840448 u^{2}-1656421080 u+160064701\right)^{3}
\end{align*}
$$

The solutions of (11) give the j-invariants of E_{1} and its complement E_{2}.
Example 1. The two elliptic curves are isomorphic when the equation

$$
A(u) j^{2}+B(u) j+C(u)=0
$$

of the above lemma has a double root. This happens for $u=\frac{3}{2} \pm \frac{1}{4} \sqrt{-5}$. Then

$$
j_{1}=j_{2}=\frac{28849701763}{16941456}
$$

The elliptic curve with j-invariant as above has equation,

$$
y^{2}+y z=z^{3}+6388018241406303862 z-754379181852600444980292108
$$

5.4. Curves of genus 2 with degree 7 elliptic subfields, 4-cycle case. The case $n=7$ is the first case that all degenerations occur. However, it is very difficult to compute the space of genus 2 curves with degree 7 elliptic subcovers. We discuss only one degenerate case, namely case II. iii) of theorem 1 . We will assume that the genus two curve is given by

$$
C: Y^{2}=x(x-1)(x-d)\left(x^{3}-a x^{2}+b x-c\right)
$$

and the elliptic curve in Legendre form $E_{1}: y^{2}=z(z-1)(z-t)$. Moreover, let's assume that the corresponding Frey-Kani covering $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is of type II, i) of theorem 1. Take the coordinates such that, $\phi(0)=0, \phi(1)=1, \phi(d)=t$, and three distinct roots of $x^{3}-a x^{2}+b x-c$ are in the fiber of infinity. Let the point of ramification index 4 be infinity, which is in the same fiber as roots of $x^{3}-a x^{2}+b x-c$. Then the cover is given by,

$$
z=k \frac{x P_{1}^{2}(x)}{x^{3}-a x^{2}+b x-c}
$$

where $P_{1}(x)$ is a cubic polynomial which represents the three points of order 2 in the fiber of 0 . Solving the corresponding system we get,

$$
\begin{align*}
a= & -\frac{1}{4 A}\left(7 d^{20}+424 t^{4} d^{8}-11072 d^{12} t^{3}+2368 t^{3} d^{13}-872 d^{16} t^{2}-1532 d^{17} t-21568 d^{14} t^{2}-56 d^{19} t\right. \tag{14}\\
& +478 d^{18} t+36 t^{5} d-42 t^{5} d^{2}+18160 t^{3} d^{11}-4356 t^{3} d^{10}-624 t^{4} d^{6}+8 t^{5} d^{3}-736 t^{4} d^{7} \\
& -52594 t^{2} d^{12}+624 t d^{14}-2576 t d^{15}+2725 t d^{16}+736 t d^{13}-36 d^{19}-2368 t^{2} d^{7}+42 d^{18} \\
& +6112 d^{15} t^{2}-29576 t^{3} d^{9}-7 t^{5}+52594 t^{3} d^{8}-44496 t^{3} d^{7}+2576 t^{4} d^{5}-2725 t^{4} d^{4} \\
& +1532 t^{4} d^{3}+56 t^{4} d+872 t^{3} d^{4}-6112 t^{3} d^{5}-478 t^{4} d^{2}-18160 d^{9} t^{2}-424 d^{12} t+11072 d^{8} t^{2} \\
& \left.-8 d^{17}+44496 t^{2} d^{13}+21568 t^{3} d^{6}+4356 d^{10} t^{2}+29576 t^{2} d^{11}\right) \\
b= & \frac{1}{16 A}\left(-14 d^{21}+77 d^{20}+400 d^{9} t^{4}-3496 t^{4} d^{8}+94280 d^{12} t^{3}+1680 t^{3} d^{14}-21232 t^{3} d^{13}\right. \\
& +1008 d^{17} t^{2}+35 d^{17} t+31612 d^{14} t^{2}+84 d^{20} t-616 d^{19} t+1313 d^{18} t-77 t^{5} d+121 t^{5} d^{2} \\
& -10356 t^{4} d^{6}-72 t^{5} d^{3}+9016 t^{4} d^{7}+20 t^{5} d^{4}-139344 t^{2} d^{13}+269886 t^{2} d^{12}-9016 t d^{14} \\
& -5222 t d^{16}+3496 t d^{13}-121 d^{19}-1680 t^{2} d^{7}-20 d^{17}+72 d^{18}+5352 d^{15} t^{2}-269886 t^{3} d^{9} \\
& +139344 t^{3} d^{8}-31612 t^{3} d^{7}+5222 t^{4} d^{5}-35 t^{4} d^{4}-5352 t^{3} d^{6}-1313 t^{4} d^{3}-84 t^{4} d-1008 t^{3} d^{4} \\
& +616 t^{4} d^{2}-94280 d^{9} t^{2}-400 d^{12} t+21232 d^{8} t^{2}+219712 d^{10} t^{2}-308478 t^{2} d^{11}+308478 t^{3} d^{10} \\
& \left.-219712 t^{3} d^{11}+5080 t^{3} d^{5}-5080 d^{16} t^{2}+10356 t d^{15}+14 t^{5}\right) \\
c= & -\frac{1}{448 A}\left(28 d^{11}-7 d^{12}-561 d^{4} t^{2}-1800 d^{7} t+84 d^{10} t+12 t^{2} d+364 t^{2} d^{3}-118 t^{2} d^{2}+t^{3}\right. \\
& \left.+20 d^{9}+120 t d^{4}-608 t d^{5}+1400 t d^{6}+1311 t d^{8}-42 d^{10}-140 d^{6} t^{2}-504 d^{9} t+440 d^{5} t^{2}\right)^{2}
\end{align*}
$$

where,
(15)

$$
\begin{aligned}
A & =d\left(90 d^{4} t^{2}-36 d^{7} t-9 t^{2} d-84 t^{2} d^{3}+36 t^{2} d^{2}+t^{3}-d^{9}+36 t d^{4}-90 t d^{5}+84 t d^{6}+9 t d^{8}\right. \\
& \left.-36 d^{5} t^{2}\right)\left(168 t d^{6}-t^{2}-168 t d^{5}-20 t d^{3}+6 t^{2} d-10 t^{2} d^{2}+5 t^{2} d^{3}+90 t d^{4}-90 d^{7} t+20 t d^{8}\right. \\
& \left.-6 d^{10}+d^{11}+10 d^{9}-5 d^{8}\right)
\end{aligned}
$$

Also, t and d satisfy the equation,
(16)

$$
\begin{aligned}
& d^{16}-16\left(t d^{15}+t^{3} d\right)+120 t d^{14}-560 t d^{13}+\left(400 t^{2}+1420 t\right) d^{12}-\left(2400 t^{2}+1968 t\right) d^{11} \\
& +\left(6608 t^{2}+1400 t\right) d^{10}-\left(11040 t^{2}+400 t\right) d^{9}+12870 t^{2} d^{8}-\left(400 t^{3}+11040 t^{2}\right) d^{7}+120 t^{3} d^{2} \\
& +\left(1400 t^{3}+6608 t^{2}\right) d^{6}-\left(1968 t^{3}+2400 t^{2}\right) d^{5}+\left(1420 t^{3}+400 t^{2}\right) d^{4}-560 t^{3} d^{3}+t^{4}=0
\end{aligned}
$$

Thus, we can express the coefficients of C in terms of t and d. Absolute invariants i_{1}, i_{2}, i_{3} of C can be expressed in terms of t and d. Using resultants and a symbolic computational package as Maple we are able to get an equation in terms of i_{1}, i_{2}, i_{3}. The equation is quite large for display. This is the moduli space of genus two curves whose Jacobian is the product of two elliptic curves and the Frey-Kani coverings are of degree 7 and ramification as above.

References

[1] David Cox, John Little, and Donal O'Shea, Ideals, varieties, and algorithms, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR1417938
[2] Gerhard Frey, On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2, Elliptic curves, modular forms, \& Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 79-98. MR1363496
[3] Gerhard Frey and Ernst Kani, Curves of genus 2 covering elliptic curves and an arithmetical application, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 153-176. MR1085258
[4] F Fried, Twisted Modular Curves, (preprint).
[5] Everett W. Howe, Franck Leprévost, and Bjorn Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math. 12 (2000), no. 3, 315-364. MR1748483
[6] E. Kani and W. Schanz, Modular diagonal quotient surfaces, Math. Z. 227 (1998), no. 2, 337-366. MR1609061
[7] Robert M. Kuhn, Curves of genus 2 with split Jacobian, Trans. Amer. Math. Soc. 307 (1988), no. 1, 41-49. MR936803
[8] Jun-ichi Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72 (1960), 612-649. MR0114819
[9] Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l'institut de mathématique de l'université de Nancago, VII. Hermann, Paris, 1959 (French). MR0103191
[10] Tanush Tony Shaska, Curves of genus two covering elliptic curves, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)-University of Florida. MR2701993
[11] T. Shaska, Genus 2 fields with degree 3 elliptic subfields, Forum Math. 16 (2004), no. 2, 263-280. MR2039100
[12] Tanush Shaska and Helmut Völklein, Elliptic subfields and automorphisms of genus 2 function fields, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, pp. 703-723. MR2037120
[13] T. Shaska, Computational aspects of hyperelliptic curves, Computer mathematics, Lecture Notes Ser. Comput., vol. 10, World Sci. Publ., River Edge, NJ, 2003, pp. 248-257. MR2061839

[^0]: Key words and phrases. Curves of genus 2, Elliptic Curves.

