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Abstract. Let C be a curve of genus 2 and ψ1 : C −→ E1 a map of degree
n, from C to an elliptic curve E1, both curves defined over C. This map

induces a degree n map φ1 : P1 −→ P1 which we call a Frey-Kani covering.
We determine all possible ramifications for φ1. If ψ1 : C −→ E1 is maximal

then there exists a maximal map ψ2 : C −→ E2, of degree n, to some elliptic

curve E2 such that there is an isogeny of degree n2 from the Jacobian JC to
E1×E2. We say that JC is (n, n)-decomposable. If the degree n is odd the pair

(ψ2, E2) is canonically determined. For n = 3, 5, and 7, we give arithmetic

examples of curves whose Jacobians are (n, n)-decomposable.

1. Introduction

Curves of genus 2 with non-simple Jacobians are of much interest. Their Jaco-
bians have large torsion subgroups, e.g. Howe, Leprévost, and Poonen have found
a family of genus 2 curve with 128 rational points in its Jacobian, see [5]. For
other applications of genus 2 curves with (n, n)-decomposable Jacobians see Frey
[2]. In this paper, we discuss genus 2 curves C whose function fields have maximal
elliptic subfields. These elliptic subfields occur in pairs (E1, E2) and we call each
the complement of the other in JC . The Jacobian of C is isogenous to E1×E2. Let
ψ : C → E be a maximal cover (cf. section 4) of odd degree n. The moduli space
parameterizing these covers is a surface, more precisely the product of modular
curves X(n) ×X(n)/∆, see Kani [6]. When ψ : C → E is degenerate (cf. section
2), this moduli space is a curve. Getting algebraic descriptions for these spaces is
extremely difficult for large n (e.g. n ≥ 7). Also, one would like to know how the
elements of the pair (E1, E2) relate to each other.

In sections 2 and 3 we define a Frey-Kani covering and determine all their possible
ramifications. In section 4 we consider maximal covers. These covers allow us
to determine the complement of E1 uniquely. The last section deals with some
applications when n = 3, 5, or 7.

2. Frey - Kani covers

Let C and E be curves of genus 2 and 1, respectively. Both are smooth, pro-
jective curves defined over C. Let ψ : C −→ E be a covering of degree n. We say
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2 CURVES OF GENUS 2 WITH (N,N)–DECOMPOSABLE JACOBIANS

that E is an degree n elliptic subcover of C. From the Riemann-Hurwitz formula,∑
P∈C (eψ (P ) − 1) = 2 where eψ(P ) is the ramification index of points P ∈ C,

under ψ. Thus, we have two points of ramification index 2 or one point of ramifi-
cation index 3. The two points of ramification index 2 can be in the same fiber or
in different fibers. Therefore, we have the following cases of the covering ψ:

Case I. There are P1, P2 ∈ C, such that eψ(P1) = eψ(P2) = 2, ψ(P1) 6= ψ(P2),
and ∀P ∈ C \ {P1, P2}, eψ(P ) = 1.

Case II. There are P1, P2 ∈ C, such that eψ(P1) = eψ(P2) = 2, ψ(P1) = ψ(P2),
and ∀P ∈ C \ {P1, P2}, eψ(P ) = 1.

Case III. There is P1 ∈ C such that eψ(P1) = 3, and ∀P ∈ C \{P1}, eψ(P ) = 1

In case I (resp. II, III) the cover ψ has 2 (resp. 1) branch points in E.
Denote the hyperelliptic involution of C by w. We choose O in E such that w

restricted to E is the hyperelliptic involution on E, see [3] or [7]. We denote the
restriction of w on E by v, v(P ) = −P . Thus, ψ ◦ w = v ◦ ψ. E[2] denotes the
group of 2-torsion points of the elliptic curve E, which are the points fixed by v.
The proof of the following two lemmas is straightforward and will be omitted.

Lemma 1. a) If Q ∈ E, then ∀P ∈ ψ−1(Q), w(P ) ∈ ψ−1(−Q).
b) For all P ∈ C, eψ(P ) = eψ (w(P )).

Let W be the set of points in C fixed by w. Every curve of genus 2 is given, up
to isomorphism, by a binary sextic, so there are 6 points fixed by the hyperelliptic
involution w, namely the Weierstrass points of C. The following lemma determines
the distribution of the Weierstrass points in fibers of 2-torsion points.

Lemma 2. The following hold:

(1) ψ(W ) ⊂ E[2]
(2) If n is an odd number then

i) ψ(W ) = E[2]
ii) If Q ∈ E[2] then #(ψ−1(Q) ∩W ) = 1 mod (2)

(3) If n is an even number then for all Q ∈ E[2],

#(ψ−1(Q) ∩W ) = 0 mod (2).

Let πC : C −→ P1 and πE : E −→ P1 be the natural degree 2 projections. The
hyperelliptic involution permutes the points in the fibers of πC and πE . The ramified
points of πC , πE are respectively points in W and E[2] and their ramification index
is 2. There is φ : P1 −→ P1 such that the diagram commutes, see Frey [3] or Kuhn
[7].

C
πC−→ P1

ψ ↓ ↓ φ
E

πE−→ P1

The covering φ : P1 −→ P1 will be called the corresponding Frey-Kani cov-
ering of ψ : C −→ E. It has first appeared in [3] and [2]. The term, Frey-Kani
covering, has first been used by Fried in [4].
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3. The ramification of Frey-Kani coverings

In this section we will determine the ramification of Frey-Kani coverings φ :
P1 −→ P1. First we fix some notation. For a given branch point we will denote
the ramification of points in its fiber as follows. Any point P of ramification index
m is denoted by (m). If there are k such points then we write (m)k. We omit
writing symbols for unramified points, in other words (1)k will not be written.
Ramification data between two branch points will be separated by commas. We
denote by πE(E[2]) = {q1, . . . , q4} and πC(W ) = {w1, . . . , w6}.

3.1. The case when n is odd. The following theorem classifies the ramification
types for the Frey-Kani coverings φ : P1 −→ P1 when the degree n is odd.

Theorem 1. If ψ : C −→ E is a covering of odd degree n then the three cases of
ramification for ψ induce the following cases for φ : P1 −→ P1.

Case I:: (the generic case)(
(2)

n−1
2 , (2)

n−1
2 , (2)

n−1
2 , (2)

n−3
2 , (2)1

)
or the following degenerate cases:

Case II:: (the 4-cycle case and the dihedral case)

i)
(

(2)
n−1
2 , (2)

n−1
2 , (2)

n−1
2 , (4)1(2)

n−7
2

)
ii)
(

(2)
n−1
2 , (2)

n−1
2 , (2)

n−1
2 , (2)

n−1
2

)
iii)

(
(2)

n−1
2 , (2)

n−1
2 , (4)1(2)

n−5
2 , (2)

n−3
2

)
Case III:: (the 3-cycle case)

i)
(

(2)
n−1
2 , (2)

n−1
2 , (2)

n−1
2 , (3)1(2)

n−5
2

)
ii)
(

(2)
n−1
2 , (2)

n−1
2 , (3)1(2)

n−3
2 , (2)

n−3
2

)
Proof. From lemma 2 we can assume that φ(wi) = qi for i ∈ {1, 2, 3} and φ(w4) =
φ(w5) = φ(w6) = q4. Next we consider the three cases for the ramification of
ψ : C −→ E and see what ramifications they induce on φ : P1 −→ P1.

Suppose that P ∈ ψ−1(E[2]) \W and eψ(P ) = 1. Then

eψ(P ) · eπE
(ψ(P )) = eπC

(P ) · eφ(πC(P )) = 2,

so eφ(πC(P )) = 2.

Case I: There are P1 and P2 in C such that eψ (P1) = eψ (P2) = 2 and ψ(P1) 6=
ψ(P2). By lemma 1, eψ (w(P1)) = 2. So w(P1) = P1 or w(P1) = P2.

Suppose that w(P1) = P1, so P1 ∈ W . If πC(P1) = wi for i ∈ {1, 2, 3}, say
πC(P1) = w1, then eπE◦ψ(P1) = eφ◦πC

(P1) = 4, which implies that eφ(w1) = 2.
All other points in the fiber of πE ◦ ψ(P1) =: q1 have ramification index 2 under
φ. So φ has even degree, which is a contradiction. If πC(P1) = wi for i ∈ {4, 5, 6},
say πC(P1) = w4, then in the fiber of q4 are: w4 of ramification index 2, w5 and
w6 unramified, and all other points have ramification index 2. So #(φ−1(q4)) =
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2 + 1 + 1 + 2k, is even. Thus P1, P2 /∈W . Then P1, P2 /∈ ψ−1(E[2]), otherwise they
would be in the same fiber.

Thus P2 = w(P1) ∈ C \ ψ−1(E[2]) and ψ(P1) = −ψ(P2). Let πE ◦ ψ(P1) =
πE ◦ ψ(P2) = q5 and πC(P1) = πC(P2) = S. So eψ(P1) · eπE

(ψ(P1)) = eπC
(P1) ·

eφ (πC(P1)). Thus, eφ (πC(P1)) = eφ (S) = 2. All other points in φ−1(q5) are
unramified.

For P ∈W , eπC
(P ) = 2. Thus eφ (πC(P )) = 1. All w1, . . . w6 are unramified and

other points in φ−1(E[2]) are of ramification index 2. By the Riemann - Hurwitz
formula, φ is unramified everywhere else.

Thus, there are n−1
2 points of ramification index 2 in the fibers φ−1(q1), φ−1(q2),

φ−1(q3), n−32 points of ramification index 2 in φ−1(q4), and one point of index 2 in

φ−1(q5).

Case II: In this case, there are distinct P1 and P2 in C such that eψ(P1) =
eψ(P2) = 2 and ψ(P1) = ψ(P2). Then P2 = w(P1) or w(Pi) = Pi, for i = 1, 2.

Let P1 and P2 be in the fiber which has three Weierstrass points.
i) Suppose that w permutes P1 and P2. So P1 and P2 are not Weierstrass points.

Then eπE◦ψ(P1) = eψ(P1) · eπE
(ψ(P1)) = 4. Thus eπC

(P1) · eφ(πC(P1)) = 4. Since
eπC

(P1) = 1 then eφ(πC(P1) = 4. So there is a point of index 4 in the fiber of q4.
The rest of the points are of ramification index 2, as in previous case, other then
the w1, . . . , w6 which are unramified.

ii) Suppose that w fixes P1 and P2. Thus P1 and P2 are Weierstrass points. Then
eψ(Pi) · eπE

(ψ(Pi)) = eπC
(Pi) · eφ(πC(Pi)) = 4. So eφ(πC(Pi)) = 2. Thus, πC(Pi)

have ramification index 2. The other points behave as in the previous case. So we
have in each fiber of φ one unramified point and everything else has ramification
index 2.

Suppose that P1 and P2 are in one of the fibers which have only one Weierstrass
point.

iii) Then w has to permute them, so they are not Weierstrass points. As in case
i) eφ (πC(P1)) = 4. So there is a point of index 4 in one of ψ−1(q1), ψ−1(q2),ψ−1(q3)
and everything else is of ramification index 2. The Weierstrass points are as in case
i), unramified.

Case III: Let P be the ramified point of index 3. By lemma 1, eψ w(P ) = 3.
But there is only one such point in C, so P ∈ W . Then eπE◦ψ (P ) = eψ (P ) ·
eπE

(ψ(P )) = 6. So eπC
(P ) · eφ (πC(P )) = 6. But eπC

(P ) = 2, because P ∈ W .
Thus, eφ(πC(P )) = 3.

i) Q is in the fiber that contains three Weierstrass points. Then we have a point
of ramification index three in ψ−1(q4), two other Weierstrass points are unramified,
and all the other points are of ramification index 2.

ii) Q is in one of the fibers that contains only one Weierstrass point. Then in
one of ψ−1(q1), ψ−1(q2), ψ−1(q2) there is a point of index 3 and everything else is
of index 2.

�

3.2. The case when n is even. Let us assume now that deg(ψ) = n is an even
number. The following theorem classifies the Frey-Kani coverings in this case.
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Theorem 2. If n is an even number then the generic case for ψ : C −→ E induce
the following three cases for φ : P1 −→ P1:

I.:
(

(2)
n−2
2 , (2)

n−2
2 , (2)

n−2
2 , (2)

n
2 , (2)

)
II.:

(
(2)

n−4
2 , (2)

n−2
2 , (2)

n
2 , (2)

n
2 , (2)

)
III.:

(
(2)

n−6
2 , (2)

n
2 , (2)

n
2 , (2)

n
2 , (2)

)
Each of the above cases has the following degenerations (two of the branch points
collapse to one)

I.: (1)
(

(2)
n
2 , (2)

n−2
2 , (2)

n−2
2 , (2)

n
2

)
(2)

(
(2)

n−2
2 , (2)

n−2
2 , (4)(2)

n−6
2 , (2)

n
2

)
(3)

(
(2)

n−2
2 , (2)

n−2
2 , (2)

n−2
2 , (4)(2)

n−4
2

)
(4)

(
(3)(2)

n−4
2 , (2)

n−2
2 , (2)

n−2
2 , (2)

n
2

)
II.: (1)

(
(2)

n−2
2 , (2)

n−2
2 , (2)

n
2 , (2)

n
2

)
(2)

(
(2)

n−4
2 , (2)

n
2 , (2)

n
2 , (2)

n
2

)
(3)

(
(4)(2)

n−8
2 , (2)

n−2
2 , (2)

n
2 , (2)

n
2

)
(4)

(
(2)

n−4
2 , (4)(2)

n−6
2 , (2)

n
2 , (2)

n
2

)
(5)

(
(2)

n−4
2 , (2)

n−2
2 , (2)

n−4
2 , (2)

n
2

)
(6)

(
(3)(2)

n−6
2 , (2)

n−2
2 , (4)(2)

n
2 , (2)

n
2

)
(7)

(
(2)

n−4
2 , (3)(2)

n−4
2 , (2)

n
2 , (2)

n
2

)
III.: (1)

(
(2)

n−4
2 , (2)

n
2 , (2)

n
2 , (4)(2)

n
2

)
(2)

(
(2)

n−6
2 , (4)(2)

n−4
2 , (2)

n
2 , (2)

n
2

)
(3)

(
(2)

n
2 , (2)

n
2 , (2)

n
2 , (4)(2)

n−10
2

)
(4)

(
(3)(2)

n−8
2 , (2)

n
2 , (2)

n
2 , (2)

n
2

)
Proof. We know that the number of Weierstrass points in the fibers of 2-torsion
points is 0 mod (2). Combining this with the Riemann - Hurwitz formula we get
the three cases of the general case.

To determine the degenerate cases we consider cases when there is one branch
point for ψ : C −→ E.

I) First, assume that the branch point has two points P1 and P2 of index 2
(Case II). Then w(P1) = Pi for i = 1, 2 or w(P1) = P2. The first case implies
that P1, P2 ∈ W . Then eφ(w(P1)) = eφ(w(P2)) = 2. So we have case I, 1. When
w(P1) = P2 then eφ(w(P1)) = 4. Thus, we have a point of index 4 in φ−1(q) for
q ∈ {q1, . . . , q4}. Therefore cases 2 and 3. If there is P ∈ C such that eψ(P ) = 3,
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then P ∈W and eφ(w(P )) = 3. So we have case 4.

II) As in case I, if P1 and P2 are Weierstrass points then they can be in the fiber
of the point which has 4 or 2 Weierstrass points. So we get two cases, namely 1 and
2. Suppose now that P1 and P2 are not Weierstrass points, thus w(P1) = P2 and
eφ(w(P1)) = 4. This point of index 4 can be in the same fiber with 4, 2 or none
Weierstrass points. So we get cases 3, 4, and 5 respectively. A point of index 3 is
a Weierstrass point which can be in the fiber which has 4 or 2 Weierstrass points.
So cases 6 and 7.

III) If P1 and P2 are Weierstrass points then they can be only in the fiber with
6 Weierstrass point so case 1. If they are not then we have a point of index 4 which
can be in the fiber with all Weierstrass points or with none. Therefore, cases 2 and
3. The point of index 3 is a Weierstrass point so it can be in the fiber where all the
Weierstrass points are, so case 4. This completes the proof.

�

4. Maximal coverings ψ : C −→ E.

Let ψ1 : C −→ E1 be a covering of degree n from a curve of genus 2 to an elliptic
curve. The covering ψ1 : C −→ E1 is called a maximal covering if it does not
factor over a nontrivial isogeny. A map of algebraic curves f : X → Y induces maps
between their Jacobians f∗ : JY → JX and f∗ : JX → JY . When f is maximal
then f∗ is injective and ker(f∗) is connected, see [9] (p. 158) for details.

Let ψ1 : C −→ E1 be a covering as above which is maximal. Then ψ∗1 : E1 → JC
is injective and the kernel of ψ1,∗ : JC → E1 is an elliptic curve which we denote
by E2, see [3] or [7]. For a fixed Weierstrass point P ∈ C, we can embed C to its
Jacobian via

iP : C −→ JC

x→ [(x)− (P )]

Let g : E2 → JC be the natural embedding of E2 in JC , then there exists
g∗ : JC → E2. Define ψ2 = g∗ ◦ iP : C → E2. So we have the following exact
sequence

0→ E2
g−→ JC

ψ1,∗−→ E1 → 0

The dual sequence is also exact, see [3]

0→ E1
ψ∗

1−→ JC
g∗−→ E2 → 0

The following lemma shows that ψ2 has the same degree as ψ1 and is maximal.

Lemma 3. a) deg (ψ2) = n
b) ψ2 is maximal

Proof. For every D ∈ Div (E2), deg (ψ∗2D) = deg (ψ2)·deg (D). Take D = O2 ∈ E2,
then deg (ψ∗2 O2) = deg (ψ2). Also ψ∗2 (O2) = (ψ∗2 O2) as divisor and

ψ∗2 O2 = i∗P g(O2) = i∗P OJ = ψ∗1 O1

So deg (ψ∗2 O2) = deg (ψ∗1 O1) = deg (ψ1) = n
To prove the second part suppose ψ2 : C −→ E2 is not maximal. So there exists

an elliptic curve E0 and morphisms ψ0 and β, such that the following diagram
commutes
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C

ψ0

��

ψ2

!!
E0

β // E2

Take ψ0(P ) to be the identity of E0. Then exists ψ0 ∗ : JC −→ E0 such that ψ0 =
ψ0 ∗ ◦ iP . Thus, ψ2,∗ = β ◦ ψ0,∗. So ker ψ0,∗ is a proper subgroup of ker ψ2,∗ = E1,
since deg β > 1. Thus,

ψ0,∗|E1 : E1 −→ ker β

is a surjective homomorphism. Therefore, E1 has a proper subgroup of finite index.
So, there exists an intermediate field between function fields C(C) and C(E1). This
contradicts the fact that ψ1 is maximal.

�
If deg(ψ1) is an odd number then the maximal covering ψ2 : C → E2 is unique

(up to isomorphism of elliptic curves), see Kuhn [7].
To each of the covers ψi : C −→ Ei, i = 1, 2, correspond Frey-Kani covers

φi : P1 −→ P1. If the cover ψ1 : C −→ E1 is given, and therefore φ1, we want to
determine ψ2 : C −→ E2 and φ2. The study of the relation between the ramification
structures of φ1 and φ2 provides information in this direction. The following lemma
(see [3], p. 160) answers this question for the set of Weierstrass points W =
{P1, . . . , P6} of C when the degree of the cover is odd.

Let ψi : C −→ Ei, i = 1, 2, be maximal of odd degree n. Let Oi ∈ Ei[2] be the
points which has three Weierstrass points in its fiber. Then we have the following:

Lemma 4 (Frey-Kani). The sets ψ−11 (O1) ∩W and ψ−12 (O2) ∩W form a disjoint
union of W.

When n is even the ramification of ψ, is more precise.

Lemma 5. Let ψ : C −→ E is maximal of even degree n, and Q ∈ E[2]. Then
ψ−1(Q) has either none or two Weierstrass points.

Proof. If there are no Weierstrass points in ψ−1(Q) there is nothing to prove. Sup-
pose there is one, from lemma 3.2 we know there are at least 2, say P1, P2. We
embed C ↪→ JC via x −→ [(x)− (P1)] and E −→ JE via x −→ [(x)− (Q)].

C
iP1−→ JC

ψ ↓ ↓ ψ∗
E

iQ−→ JE

Then ψ∗([(x)− (P1)]) = [(ψ(x))− (Q)].
Also, ψ∗ψ

∗ = [n] is the multiplication by n in E. Since 2|n then E[2] is a
subgroup of E[n]. So ψ∗(E[2]) = ker(ψ∗|J[2]), we call this group H. Suppose

P3 ∈ ψ−1(Q). Then ψ∗(iP1
(P3)) = OE , so (P1, P3) ∈ H, where the unordered pair

(Pi, Pj) denotes the point [(Pi) − (Pj)] of order 2 in JC . By addition of points of
order 2 in JC , (P2, P3) ∈ H. So H = {0J , (P1, P2), (P1, P3), (P2, P3)} can’t have
any other points, therefore ψ−1(Q) has three Weierstrass points, which contradicts
theorem 2. Thus, there are only two Weierstrass points in ψ−1(Q).

�
The above lemma says that if ψ is maximal of even degree then the corresponding

Frey-Kani covering can have only type I ramification, see theorem 1.
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5. Arithmetic Applications

In this section, we characterize genus 2 curves with degree 3 elliptic subcovers
and determine the j-invariants of these elliptic subcovers in terms of coefficients
of the genus 2 curve. If the elliptic subcover is of degenerate ramification type,
then its j-invariant is determined in terms of the absolute invariants of the genus 2
curve. We find two isomorphism classes of genus 2 curves which have both elliptic
subcovers of degenerate type.

When n = 5 or 7 we discuss only Case II, iii), and Case II, i) of theorem 1,
respectively. In both cases we determine the j-invariants of elliptic subcovers in
terms of the coefficients of the genus 2 curves. Other types of ramifications are
computationally harder and results are very large for display.

5.1. Curves of genus 2 with a degree 3 elliptic subfield. Let ψ : C → E1 be
a covering of degree 3, where C is a genus 2 curve given by

C : Y 2 = x(x− 1)(x− d)(x3 − ax2 + bx− c)

and E1 an elliptic curve. Denote the 2-torsion points of E1 by 0, 1, t, s. Let φ1
be the Frey-Kani covering with deg (φ1) = 3 such that φ1 (0) = 0, φ1 (1) = 1,
φ1 (d) = t, and the roots of f(x) = x3 − ax2 + bx − c, are in the fiber of s. The
fifth branch point is infinity and in its fiber is u of index 1 and infinity of index 2.
So φ1 is of generic type (Theorem 1). Points of index 2 in the fibers of 0, 1, t are
m, n, p respectively. Then the cover is given by

z = k
x(x−m)2

x− u

Then from equations:

z − 1 = k(x− 1)(x− n)2, z − t = k(x− d)(x− p)2, z − s = f(x)

we compare the coefficients of x and get a system of 9 equations in the variables
a, b, c, d, k,m, n, p, t, s, u. Using the Buchberger’s Algorithm (see [1], p. 86-91) and
a computational symbolic package (as Maple) we get;

Lemma 6. Let E1 be the elliptic curve given by y2 = z(z − 1)(z − t)(z − s). Then
the genus 2 curve

C : Y 2 = x(x− 1)

(
x− a(a− 2)

2a− 3

)(
x3 − ax2 +

(
(2a− 3)c

(a− 1)2
+

a2

4

)
x− c

)
covers E1 with a maximal cover of degree 3 of generic case (Theorem 1). Moreover
s and t are given by,

t =
a3(a− 2)

(2a− 3)3
, s =

4c

(a− 1)2

�
Next, we find the j-invariants of E1 and E2. The j-invariant of E1 is as follows,

j(E1) =
16

C2
· A3

a6c2(a− 1)2(a− 2)2(a− 3)6 ((a− 1)2 − 4c)2



CURVES OF GENUS 2 WITH (n, n)–DECOMPOSABLE JACOBIANS 9

where A and C are:

A = a12 − 8a11 + 16c2a8 + 11664c2 + 36720c2a4 − 69984c2a3 − 192c2a7 + 77760c2a2

− 46656c2a+ 1920c2a6 − 11232c2a5 − 4a10c+ 26a10 − 44a9 + 41a8 − 20a7 + 220a8c

− 904a7c+ 1740a6c− 1800a5c− 8a9c− 216ca3 + 4a6 + 972ca4

C = a6 − 4a5 + 5a4 − 2a3 − 32a3c+ 144ca2 − 216ca+ 108c

(1)

To find j2 we take φ2 : P1 → P1 such that φ2(0) = φ2(1) = φ2(d) = ∞. Three
roots of f3(x) = x3 − ax2 + bx − c go to 2-torsion points s1, s2, s3 of E2 and 0 is
the fifth branch point of φ2. Solving the corresponding system we get s1, s2, s3 in
terms of a and c. Then j2 is

j(E2) = −
16

C
· B3

c ((a− 1)2 − 4c)

where A is as above and B = a4 − 2a3 + a2 − 24ca+ 36c.

5.2. Degenerate Cases. Notice that only one degenerate case can occur when
n = 3. In this case, one of the Weierstrass points has ramification index 3, so the
cover is totally ramified at this point, see theorem 1.

Lemma 7. Let E be an elliptic curve given by y2 = z(z − 1)(z − s). Suppose that
the genus two curve C with equation

Y 2 = x(x− 1)(x− w1)(x− w2)(x− w3)

covers E, of degree 3, such that the covering is degenerate. Then w3 is given by

w3 =
(4w3

1 − 7w2
1 + 4w1 − w2)3 (4w3

1 − 3w2
1 − w2)

16w3
1(w1 − 1)3 (4w3

1 − 6w2
1 + 3w1 − w2)

and w1 and w2 satisfy the equation,

(2) w4
1 − 4w3

1w2 + 6w2
1w2 − 4w1w2 + w2

2 = 0

Moreover,

s = −27
(
w1(w1 − 1)

(4w3
1 − 7w2

1 + 4w1 − w2)(4w
3
1 − 5w2

1 + 2w1 − w2)

(4w3
1 − 9w2

1 − w2 + 6w1)(4w3
1 − 3w2

1 − w2)(4w3
1 − 6w2

1 + 3w1 − w2)

)2

Proof. We take ψ : C → E and φ : P1 → P1 its corresponding Frey-Kani covering.
To compute φ, let w1 be the point of ramification index 3. Take a coordinate in
the lower P1 such that φ (w1) = 0, φ (w2) = s, φ2 (w3) = 1, and φ (0) = φ (1) =
φ (∞) = ∞. We denote points of ramification index 2 in the fibers of s and 1 by

p and q, respectively. Then, φ is given as z = k2
(x−w1)

3

x(x−1) . From the corresponding

system we get the above result.
�

Denote the j-invariant of E by j1. Using the above expression of s in terms of
w1 and w2 we get an equation in terms of j1, w1, and w2. Taking the resultant of
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this expression and equation (2) we get,

2617344w2
1 + 38637j1w

7
1 − 17496j1w

6
1 − 29207808w5

1 − 7569408w3
1 − 7569408w1

15

−729w4
1j1 + 5103j1w

5
1 + 69984j1w

9
1 − 60507j1w

8
1 + 65536− 589824w1 + 16411392w4

1

−29207808w13
1 + 44960208w12

1 − 60666336w11
1 + 72010800w10

1 + 44960208w6
1

−60666336w7
1 + 72010800w8

1 − 75998272w9
1 + 16411392w14

1 + 2617344w16
1 − 589824w17

1

−60507j1w10
1 + 38637j1w

11
1 − 17496j1w

12
1 + 5103j1w

13
1 − 729j1w

14
1 + 65536w18

1 = 0

(3)

We denote with j the j-invariant of the elliptic curve y2 = (x−w1)(x−w2)(x−w3).
Then, proceeding as above, j can be expressed in terms of w1 as below,

65536w6
1 − 196608w5

1 + 356352w4
1 − 385024w3

1 + (289536− 9j)w2
1

+(−129792 + 9j)w1 + 35152− 9j = 0
(4)

Taking the resultants of the two previous equations we have

(5) 256A(j) j31 + 3B(j) j21 + 6C(j) j1 −D(j) = 0

where

A(j) = (9j − 35152)4

B(j) = −2187j7 + 38996640j6 − 277882258176j5 + 998642127618048j4

− 1868045010870009856j3 + 1669509508048367910912j2

− 543484034691057422696448j + 16612482057244821172518912

C(j) = 27j8 + 1125216j7 + 9650655872j6 − 31593875152896j5 + 27748804997283840j4

+ 1114515284358510673920j3 − 6061989956030939246100480j2

+ 8346397859247767524611194880j + 353019691006036487376293855232

D(j) = (j3 + 33120j2 + 290490624j − 310747594752)3

(6)

For the genus 2 curve C we compute the Igusa invariants J2, J4, J6, J10 in terms
of the coefficients of the curve, see Igusa [8] for their definitions. The absolute
invariants of C are defined it terms of Igusa invariants as follows,

(7) i1 := 144
J4

J2
2

, i2 := −1728J2J4 − 3J6

J3
2

, i3 := 486
J10

J5
2

Two genus 2 curves with J2 6= 0 are isomorphic if and only if they have the
same absolute invariants. The absolute invariants can be expressed in terms of w1

and w2. Taking the resultant of the first two equations in (7) we get an equation
F (i1, i2, w1) = 0. The resultant of F (i1, i2, w1) and equation (4) we get j = 13824 S

T
where S and T are:

S = 247945848003i31 − 409722141024i21 − 7591354214400i1 + 17736744960000

+ 61379512488i1i2 + 64268527400i21i2 − 2031496516224i2

T = 1034723291140i21i2 − 3175485076512i1i2 − 7250280129792i2 + 1670535171333i31

+ 366156782208i21 − 67382113075200i1 + 141893959680000

(8)

The conjugate solutions of (5) are j-invariants of E1 and E2. For j = 0 the equation
(3) has one triple root j1 = − 1213857792

28561 . Then, C and E are given by,

Y 2 = x5 − x4 + 216x2 − 216x
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y2 = x3 − 668644200x+ 6788828143125

For j = 1728 the values for j1 are

j1 = 1728,
942344950464

1500625
,

942344950464

1500625

This value of j does not give a genus 2 curve since the discriminant J10 of C is 0.
Next we will see what happens when both φ1 and φ2 are degenerate. We find

only two triples (C,E1, E2) such that the corresponding φi : C → Ei, i = 1, 2, are
degenerate. It is interesting that in both cases E1 and E2 are isomorphic.

Lemma 8. Let E : y2 = z(z − 1)(z − t) be an elliptic curve. Then the genus 2
curve

Y 2 = x(x− 1)

(
x3 − 3

2
x2 +

9

16
x− t

16

)
covers E, such that the covering is of degree 3 and the corresponding Frey-Kani
covering of type II, iii) (Theorem 1), for t 6= 0, 1.

Proof. Let φ1 be the Frey-Kani covering with deg (φ1) = 3 such that φ1 (w1) =
φ1 (w2) = φ1 (w3) = t, φ1 (0) = 0, φ1 (1) = 1, φ1 (∞) = ∞. Let ∞ be the
point of ramification index 3, and denote the points of ramification index 2 in the
fibers of 0 and 1 with m and n respectively. If z is a coordinate in the lower P1

then φ1 is given by z = k1x(x − m)2. The relations z − 1 = k1(x − 1)(x − n)2,
z−t = k1(x3−ax2+bx−c) hold, where x3−ax2+bx−c = (x−w1)(x−w2)(x−w3).
Comparing the coefficients and solving the system, we get

(a, b, c, k1,m, n) =

(
3

2
,

9

16
,
t

16
, 16,

3

4
,

1

4

)
�

To compute φ2, let w1 be the point of ramification index 3. Take a coordinate
in the lower P1 such that φ2 (w1) = 0, φ2 (w2) = s, φ2 (w3) = 1, and φ2 (0) =
φ2 (1) = φ2 (∞) = ∞. The points of ramification index 2 in the fibers of s and 1

we denote by p and q, respectively. Then φ2 is given as z2 = k2
(x−w1)

3

x(x−1) . Then from

the corresponding system we get

w1 = − q(q − 2)

(2q − 1)
, w2 =

−q3(q − 2)

(2q − 1)
, w3 =

−q(12q − 8− 6q2 + q3)

(2q − 1)3
,

k2 =
1

27

(−1 + 2q)3

q2(q − 1)2
, s =

−1
27

(−1 + 2q)2(q − 2)(−3q + q3 − 2)

q2(q − 1)2

(9)

Using the fact that the a, b, c are the symmetric polynomials of w1, w2, w3 we
have;

(10) (t, q) =

(
1

2
,
1

2
± 1

2

√
3

)
,

(
−241 + 22I

√
2

2 + 22I
√
2

,±1

2
I
√
2

)
,

(
243

2 + 22I
√
2
, 1± 1

2
I
√
2

)
where I =

√
−1. So we have three pairs of elliptic curves

E1 : y2 = z(z − 1)(z − 1

2
) and E2 : y2 = z(z − 1)(z + 1)

with j(E1) = j(E2) = 1728.

E1 : y2 = z(z − 1)

(
z − 241 + 22I

√
2

−2 + 22I
√
2

)
, E2 : y2 = z(z − 1)

(
z − 241 + 22I

√
2

243

)
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Table 1.

f3(x) E1 E2 j1 = j2

x3 − 3
2x

2 + 9
16x−

1
32 z(z − 1)(z − 1

2 ) z(z − 1)(z + 1) 1728

x3 − 3
2x

2 + 9
16x−

241+22I
√
2

−32(1+11I
√
2)

t1 = 241+22I
√
2

−2+22I
√
2

) t2 = 241+22I
√
2

243
−873722816

59049

with j(E1) = j(E2) = −873722816
59049 .

E1 : y2 = z(z − 1)

(
z − 243

1 + 2(11I
√
2

)
, E1 : y2 = z(z − 1)

(
z − 241− 22I

√
2

243

)
and j(E1) = j(E2) = −873722816

59049 . The last two cases correspond to the same
isomorphism class of genus 2 curves. Thus, when φ1 and φ2 are both degenerate
then we get two isomorphism classes of elliptic curves. Summarizing everything
above we have the following table:

where C : Y 2 = x(x− 1)f3(x), Ei : y2 = z(z − 1)(z − ti). One can check, using
the absolute invariants of the genus two curves, that they are not isomorphic to
each other. Moreover, an equation for E1

∼=E2 in the second case is as follows:

y2 = z3 + z2 − 277520614451197z + 1880509439898307064603

and its conductor N = 28 · 3 · 112 · 2392 · 2512.

5.3. Curves of genus 2 with degree 5 elliptic subfields, the 4-cycle case.
Notice that the case II, i) does not occur when n = 5. So we will consider only case
II, iii). We will prove the following lemma:

Lemma 9. Let ψ : C → E1 be a covering of degree 5 such that the corresponding
Frey-Kani cover is of ramification type II, iii) (theorem 1). Then the genus two
curve can be given by

Y 2 = x(x− 1)(x− d)(x3 − ux2 + vx− w)

where

d =
(3u2 − 4u− 4v + 1)2

(2u− 3)(6u2 − 10u+ 5− 8v)
, w = − (u2 − 6u+ 4v + 5)(u2 − 4v)

8(2u− 3)

and u and v satisfy

15u4 − 82u3 − 8vu2 + 159u2 − 140u+ 56vu− 16v2 − 52v + 50 = 0

Moreover, an equation of E1 is y2 = z(z − 1)(z − t), where

t =
(u2 − 4v)(−8u4 + 24u3 + 63u2 + 64v2 − 192uv + 196v + 16u2v − 180u+ 100)

(2u− 3)(6u2 − 10u+ 5− 8v)

Proof. Take the genus 2 curve to be

Y 2 = x(x− 1)(x− d)(x3 − ux2 + v − w)

Let φ1 be the Frey-Kani covering with deg (φ1) = 5 such that φ1 (w1) = φ1 (w2) =
φ1 (w3) = t, φ1 (0) = 0, φ1 (1) = 1, and φ1 (d) = ∞. Take ∞ to be the point of
ramification index 4 such that φ1 (∞) =∞. Then φ1 is given by

z = k1
x(x2 − ax+ b)2

(x− d)

Solving the corresponding system we get the above result.
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�
From the previous lemma, the j-invariant of the elliptic curve satisfies

F (u, v)j +G(u, v) = 0

Taking the resultant of the previous two equations, the j-invariant satisfies an equa-
tion of degree 2:

(11) A(u)j2 +B(u)j + C(u) = 0

where

A(u) = (u− 1)2(u− 2)2(3u− 4)6(3u− 5)6(2u2 − 6u+ 5)8(12)

B(u) = −16(−7105017544704u33 − 2816860828336128u31 + 175917390077952u32+

623116122491175945628520u12 + 165647363105986609 + 1071822623072391493632u24

− 697664908494919962734400u13 + 10165770178171535328256u22−

3521178077017962627072u23 − 611366039933419582356480u15+

211088208801275293447168u18 − 117843339238828016262912u19−

337258769605584067064448u17 + 480799396622391815599360u16+

58612898603387517569664u20 + 139314069504u34 − 12909484419880734720u27−

284837487810868721664u25 + 65530387559293083648u26 + 40376325064521521748u2−

284029170057918018876u3 − 3711757861451181852u− 5749828391735587589364u5+

1452158564376272108306u4 + 18345524820571264661416u6−

48457022965012856084616u7 + 108027612722856481764222u8−

206208961788595840640856u9 + 340743378168336968325408u10−

491546319356455960291344u11 − 25922857282984031345664u21+

692593865844403162989888u14 + 32784067604201472u30 + 2146611912787372032u28

− 295513372833693696u29)(2u2 − 6u+ 5)4

C(u) = 256(186624u16 − 4478976u15 + 50512896u14 − 355332096u13 + 1744993152u12

− 6343287552u11 + 17655393792u10 − 38378452608u9 + 65842249648u8

− 89441495616u7 + 95875417216u6 − 80237127456u5 + 51388251464u4 − 24345314544u3

+ 8044840448u2 − 1656421080u+ 160064701)3

(13)

The solutions of (11) give the j-invariants of E1 and its complement E2.

Example 1. The two elliptic curves are isomorphic when the equation

A(u)j2 +B(u)j + C(u) = 0

of the above lemma has a double root. This happens for u = 3
2 ±

1
4

√
−5. Then

j1 = j2 =
28849701763

16941456

The elliptic curve with j-invariant as above has equation,

y2 + yz = z3 + 6388018241406303862z − 754379181852600444980292108
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5.4. Curves of genus 2 with degree 7 elliptic subfields, 4-cycle case. The
case n = 7 is the first case that all degenerations occur. However, it is very difficult
to compute the space of genus 2 curves with degree 7 elliptic subcovers. We discuss
only one degenerate case, namely case II. iii) of theorem 1. We will assume that
the genus two curve is given by

C : Y 2 = x(x− 1)(x− d)(x3 − ax2 + bx− c)

and the elliptic curve in Legendre form E1 : y2 = z(z − 1)(z − t). Moreover, let’s
assume that the corresponding Frey-Kani covering φ : P1 → P1 is of type II, i)
of theorem 1. Take the coordinates such that, φ(0) = 0, φ(1) = 1, φ(d) = t, and
three distinct roots of x3− ax2 + bx− c are in the fiber of infinity. Let the point of
ramification index 4 be infinity, which is in the same fiber as roots of x3−ax2+bx−c.
Then the cover is given by,

z = k
xP 2

1 (x)

x3 − ax2 + bx− c

where P1(x) is a cubic polynomial which represents the three points of order 2 in
the fiber of 0. Solving the corresponding system we get,

a =
−1
4A

(7d20 + 424t4d8 − 11072d12t3 + 2368t3d13 − 872d16t2 − 1532d17t− 21568d14t2 − 56d19t

+ 478d18t+ 36t5d− 42t5d2 + 18160t3d11 − 4356t3d10 − 624t4d6 + 8t5d3 − 736t4d7

− 52594t2d12 + 624td14 − 2576td15 + 2725td16 + 736td13 − 36d19 − 2368t2d7 + 42d18

+ 6112d15t2 − 29576t3d9 − 7t5 + 52594t3d8 − 44496t3d7 + 2576t4d5 − 2725t4d4

+ 1532t4d3 + 56t4d+ 872t3d4 − 6112t3d5 − 478t4d2 − 18160d9t2 − 424d12t+ 11072d8t2

− 8d17 + 44496t2d13 + 21568t3d6 + 4356d10t2 + 29576t2d11)

b =
1

16A
(−14d21 + 77d20 + 400d9t4 − 3496t4d8 + 94280d12t3 + 1680t3d14 − 21232t3d13

+ 1008d17t2 + 35d17t+ 31612d14t2 + 84d20t− 616d19t+ 1313d18t− 77t5d+ 121t5d2

− 10356t4d6 − 72t5d3 + 9016t4d7 + 20t5d4 − 139344t2d13 + 269886t2d12 − 9016td14

− 5222td16 + 3496td13 − 121d19 − 1680t2d7 − 20d17 + 72d18 + 5352d15t2 − 269886t3d9

+ 139344t3d8 − 31612t3d7 + 5222t4d5 − 35t4d4 − 5352t3d6 − 1313t4d3 − 84t4d− 1008t3d4

+ 616t4d2 − 94280d9t2 − 400d12t+ 21232d8t2 + 219712d10t2 − 308478t2d11 + 308478t3d10

− 219712t3d11 + 5080t3d5 − 5080d16t2 + 10356td15 + 14t5)

c =− 1

448A
(28d11 − 7d12 − 561d4t2 − 1800d7t+ 84d10t+ 12t2d+ 364t2d3 − 118t2d2 + t3

+ 20d9 + 120td4 − 608td5 + 1400td6 + 1311td8 − 42d10 − 140d6t2 − 504d9t+ 440d5t2)2

(14)

where,

A = d(90d4t2 − 36d7t− 9t2d− 84t2d3 + 36t2d2 + t3 − d9 + 36td4 − 90td5 + 84td6 + 9td8

− 36d5t2) (168td6 − t2 − 168td5 − 20td3 + 6t2d− 10t2d2 + 5t2d3 + 90td4 − 90d7t+ 20td8

− 6d10 + d11 + 10d9 − 5d8)

(15)
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Also, t and d satisfy the equation,

d16 − 16(td15 + t3d) + 120td14 − 560td13 + (400t2 + 1420t)d12 − (2400t2 + 1968t)d11

+ (6608t2 + 1400t)d10 − (11040t2 + 400t)d9 + 12870t2d8 − (400t3 + 11040t2)d7 + 120t3d2

+ (1400t3 + 6608t2)d6 − (1968t3 + 2400t2)d5 + (1420t3 + 400t2)d4 − 560t3d3 + t4 = 0

(16)

Thus, we can express the coefficients of C in terms of t and d. Absolute invariants
i1, i2, i3 of C can be expressed in terms of t and d. Using resultants and a symbolic
computational package as Maple we are able to get an equation in terms of i1, i2, i3.
The equation is quite large for display. This is the moduli space of genus two curves
whose Jacobian is the product of two elliptic curves and the Frey-Kani coverings
are of degree 7 and ramification as above.
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[9] Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’institut de
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