
An Infinite-Pane, Zooming User Interface Window Manager and Survey of X Window Managers

Submitted by
Evan Bradley

Computer Science

To
The Honors College
Oakland University

In partial fulfillment of the
requirement to graduate from

The Honors College

Mentor: Serge Kruk, Professor of Mathematics
Department of Mathematics and Statistics

Oakland University

(02/15/2018)



Abstract: This thesis describes a zoomable user interface window manager for the X Window

System that aims to provide mechanisms for easily managing a large number of windows. This is

motivated in part by greatly increased memory capabilities provided to modern computers as well

as the relative stagnation of window managers since the desktop metaphor was first implemented.

To address this, a window manager was written that allows the user to zoom over an infinite

plane, on which windows may be arbitrarily placed. Taking advantage of the properties emerging

from this model, algorithms were written to manage the windows using their associated Euclidean

coordinates. Furthermore, a menu system similar to those employed in Oberon and Acme was

written to provide the user with the ability to exercise greater control over the window manager.

To ensure that it is usable on standard systems for a typical user workflow, it was developed on

the X Window System, despite the system’s shortcomings. While this is the first window manager

developed for the X Window System with the synthesis of these features, it takes inspiration from

other window managers, user interfaces, and HCI research. As such, a brief discussion on other

research interfaces is included alongside a more extensive survey on X11 window managers,

which provide a substantial source for contemporary window management research.

1 Introduction

Early conceptualizations of computer interfaces focused on using the processing power offered by

computers to extend the information processing capabilities of humans. “As We May Think,” a

1945 essay written by Vannevar Bush to describe a path forward for scientific collaboration after

World War II, outlined the idea of the ‘memex’, which would take the form of a mechanical

machine used to quickly find and transmit information [1]. Inspired by this, Douglas Engelbart

1



outlined his idea for a similar system in his essay, “Augmenting Human Intellect: A Conceptual

Framework”, which was put into action for the “Mother of All Demos” at a conference in 1968

[2, 3]. The earliest widely-available computer interface to emerge from these ideas came in the

form of the Xerox Alto, which presented users with many of the graphical metaphors that are seen

in modern systems. It featured a mouse to control a bitmap interface containing windows with

text and graphics, and used its graphical capabilities to provide facilities including a text editor,

graphics editor, and file manager [4].

GUIs continued to improve after the Alto, which was directly succeeded by the Xerox Star

and Apple Lisa. These split off into the windowing systems and GUI standards that we know

today, most popularly Apple’s macOS, Microsoft’s Windows, and the X Window System

(abbreviated as simply X) seen on UNIX-like systems.

A window manager is a program that concerns itself with the organization of the user’s

documents and applications. They are typically GUI programs that operate on other programs

written within an operating system’s GUI framework. More sophisticated window managers will

often provide two layers of interaction: functions for manipulating individual windows, and

systems for dealing with the relationships between windows. Simple window manipulation often

includes operations that move or resize a window, which can then be applied to multiple windows

if desired. Window organization often takes the form of virtual desktops or workspaces that

provide structure to the layout of windows and facilitate switching between windows.

These functionalities are frequently exposed through keyboard commands or on-screen

interfaces, but can also be controlled through computer interfaces to other programs such as by a

socket or filesystem. Furthermore, the windows themselves can either be floating or tiled, which

changes the manner in which the windows are positioned and sized on the user’s screen. In

2



window managers that support floating windows, windows are freely placed and sized by the

user, typically through a mouse with an on-screen interface. Tiling window managers

automatically place and resize windows across the screen, and are generally operated with the

user’s keyboard in place of using a mouse.

While window managers have seen many improvements in the near-half-century since the

Xerox Alto was first introduced, many elements of its interface have been reused in modern

window managers. Those on Microsoft Windows and Apple’s macOS, the two most popular

operating systems on desktop computers, have largely retained the menu-driven, floating window

interface the Xerox Alto espoused. Their most significant additions are adding workspaces in Mac

OS X 10.5 [5] and Windows 10 [6], alongside smaller window manipulation features such as

limited support for tiling. Other systems have seen more substantial innovations, particularly

within the X Window System, where more sophisticated layout and control techniques like tiling

and more powerful virtual desktop models have been pioneered.

Current research often focuses on task-oriented management techniques and methods of

displaying more information on the user’s screen. Task-oriented techniques include systems like

Taskposé [7], which seek to organize a user’s windows into groups that represent the activity of

which they are a part. Other systems like WinCuts [8] or Laukkanen’s window manager [9] aim to

take advantage of increasing display sizes to increase the amount of information a user can

reasonably process. Zooming User Interfaces have also seen a small amount of research for

spatially representing large amounts of information. This research primarily takes place in

consumer products such as Prezi, but has seen developments like Laukkanen’s window manager

and ETH Zürich’s A2 OS [10, 11].

3



2 Motivation

The primary aim of this thesis is to offer a unified view of the current state of window

management research, both academic and non-academic, and to present a window manager that

combines the best of these ideas with extensions to them.

Academic window management research has largely ignored the improvements made by

research outside academia, which in turn results in window managers or similar utilities that exist

inside systems that only make a single improvement on the state-of-the-art, or on research systems

that may present numerous improvements, but at the cost of compatibility with popularly-used

programs. Examples like WinCuts or Laukkanen’s window manager are made for Windows, and

while they make notable improvements on it, they are otherwise restricted by the fundamental

simplicity of the Windows window manager, and furthermore have not been made easily

available for public consumption. Similarly, research systems such as Stack & Tile [12], Rio on

Plan 9 [13], or ETH Zürich’s A2, while presenting a number of novel features, are restricted by

their sole availability on obscure operating systems in that they cannot be used by the majority of

users who use more complex applications which do not have a port. None of the three operating

systems just mentioned have a web browser that works with the majority of modern websites, for

example. While these are complete systems and “power users” could, if desired, use them as a

primary system, the lack of widespread support limits the effects of the ideas presented in these

systems, despite the portability of the ideas across window display systems.

Conversely, window managers available for public use, whether commercially or freely

available, have failed to incorporate many of the more advanced features provided by academic

window managers. The default window managers available on Microsoft Windows and macOS

4



only offer a basic array of window management utilities, and are overall considerably behind free

offerings. While some extensions have been written to extend their capabilities, these programs

are often limited due to the restricted nature of the platform for which they were written.

Freely-available window managers compatible with commonly-used systems, which are

primarily Linux-based, but also include BSD systems and a few other UNIX-like systems, have

seen substantially more development. This has primarily taken place on X, which has over 200

window managers written with the X11 protocol. These window managers have presented a

number of window management interactions and related software architecture advances that have

not seen intensive study in academic research. Most notably, the use of tiling has provided a

number of novel interaction and organization techniques for handling windows, and the flexibility

provided by these systems provides a good base for further exploration by both users and

researchers. However, despite the improvements they have made, development has almost

entirely been performed in complete separation from academic research. Of the few visible

interactions between X11-based window managers and academic research are 9wm’s [14]

development out of Rob Pike’s research that cumulated into 8½ [15] and Rio, and the partial

inspiration of Stack & Tile from Ion [16].

Owing to the improvements they have offered against the state-of-the-art in academic

research and to the lack of an academic review of window managers built on X, part of this thesis

has been devoted to providing a survey of these window managers. The goal of this survey is to

examine the different families of window managers based on the lineage of their code and ideas,

and to examine novel features that are offered by more advanced window managers. While some

catalogs have been made of X window managers, these focus more so on the raw set of features

provided by these window managers and their installation and use on a GNU/Linux-based system.

5



Instead, the window management capabilities and user-interface elements provided by these

window managers will be examined in the survey presented in this thesis. Furthermore, we look

to examine the current landscape of non-X11-based window managers to assess ideas presented

on less accessible, but still publicly-available, window managers.

The culmination of this research lies in a new window manager described in this paper,

which was written to bridge the gap between academic and non-academic window manager

research, and to extend the state-of-the-art with a few new features. It makes use of a Zoomable

User Interface, which has been extensively researched and most recently attempted in Benjamin

Bederson’s work academically, but has also been described in Jef Raskin’s The Humane Interface

[17], and consequently implemented in A2. Similarly, ideas from Oberon and Acme have been

implemented to add to the functionality of the Zoomable User Interface. Finally, the large desktop

functionality allows for the encoding of Cartesian coordinates within the windows, and

consequently these can be used for a number of novel applications. This thesis argues that the

combination of these features will allow for the management of a larger number of windows

through creating better mental links between windows in the minds of users, and to allow for

easier organization even when not all windows are present on the screen. It is hoped that these

will provide a basis for further research on these ideas in an environment that is easily accessible

and allows for testing with typical workflows.

While the details of HCI can often become intertwined between the on-screen and

functional interfaces provided to a user, this thesis primarily focuses on functionality related to

window management rather than on user-centric models of interaction. As such, it is guided by,

but does not optimize for, user interface ease-of-use, speed, accessibility, and aesthetics. To ensure

a narrow scope and to optimize for compatibility with current systems, it also does not aim to take

6



a critical look at the desktop or “windows, icons, menus, pointer” metaphors. Instead, it merely

aims to extend a currently available system to examine new ideas in a practical and usable manner.

3 X11 Window Managers

There have been a few serious efforts to catalog X11 window managers, but they usually focus on

user-facing details like the interface or installation and usability, and are conducted in an informal,

non-academic fashion. The Arch Wiki’s catalog on window managers provides a list of window

managers and their associated features, with pages on certain window managers describing more

in-depth usage [18, 19]. Wikipedia provides a similar catalog, with a greater emphasis on

comparison on the basic details of each window manager [20]. More in-depth surveys also exist,

such as the Wikibooks Guide to X11 Window Managers, which lists a significant number of

window managers with details on installation and features offered by select window managers

[21]. Giles Orr has offered the most complete writings on X11-based window managers,

including a detailed writeup of his experiences with each of a selection of window managers, and

a consistently updated exhaustive list of X11-based window managers including minor details

about them [22, 23].

Here, we look at the window managers not just as interfaces, but as systems for managing

windows; this includes the code and concepts as well as the interactions the window manager

provides. Additionally, the lineage of ideas and code that influenced a window manager are

discussed to give a background to the window management ideas that are prevalent today. To

provide a complete picture, window managers without any significant features or details are still

given mention as a part the lineage of a window manager or window management concept.

7



Window managers are divided into families organized by their direct ancestry or by a defining

feature, if the window manager has a more complex history or marked a shift in philosophy from

its predecessors.

3.1 Overview

The X Window System has been discussed in great detail [24, 25] elsewhere, so here we merely

give a brief overview of the architecture, libraries, and methodologies used in programming

window managers with the X11 protocol. The X Window System is written in a fully

network-transparent manner, using the X server that communicates directly with the computer’s

graphics card to draw graphics to the screen and with any I/O devices for user interaction.

Furthermore, it holds its own state about currently open windows and their corresponding

information. The X11 protocol is then used to communicate with the X server by client programs,

most often window managers, which send commands and receive information from the X server

regarding the state of the system. Information received from the X server can include the display

geometry, information about currently open windows, and events received from I/O devices.

As the predominant language for system-side development on Linux, C is the most

frequently used language in X11 development, closely followed by C++, but as it is merely a

protocol, other languages have found use. The oldest, and still most-used client-side library for

X11 is Xlib. It allows for full communication with the X server over a socket and can be used to

interface with the X server using C or C++. Bindings also exist for other languages, including

Python, Common Lisp, Go, and JavaScript.

A newer library, the X protocol C-language Binding (XCB), has gained popularity as

8



X-based programs seek to modernize their code. XCB is much lower-level than Xlib and only

consists of asynchronous calls to the X server, whereas Xlib contains both synchronous and

asynchronous calls. It is written using an XML protocol specification, which is then translated by

a parser into code in a particular language. Parsers exist for C, Python, Perl, and Emacs Lisp.

Window managers use these libraries to move and resize windows, as well as controlling

which windows appear on the screen, which can be applied to both floating and tiled windows.

Floating window managers frequently support maximizing a window, where it is resized to cover

the screen, minimizing, where it is hidden, and resizing or moving through moving the mouse

after activating that functionality. This is also frequently called “stacking,” but here we use the

term floating to indicate the way the windows are placed. Stacking refers to the ordering of

windows by “stacking” them upon one another, but this describes functionality used in switching

windows, and does not explicitly refer to how they are placed.

Tiling window managers will frequently provide functionality to automatically resize a

window, but will also allow for manual resizing of a window’s allotted space, which will

frequently result in the resizing of other windows in accordance with the changes to optimize for

available screen-space. Windows are frequently hidden in tiling window managers through virtual

desktops, but windows can also be layered over one another. Virtual desktops, also called

workspaces, assign a label to a group of windows, where a user may then select a label and view

the windows corresponding to that label. Windows not associated with the corresponding label

are consequently hidden. Both forms of interaction will provide functionality to close a window,

and often to open a new window by spawning a new process.

9



3.2 Tab Window Manager

The Tab Window Manager (TWM), originally named “Tom’s Window Manager,” was started by

Tom LaStrange in 1987 to improve upon what he saw as deficiencies in the Ultrix Window

Manager [26, 27]. It was written as a floating window manager that reparents windows to give

them decorations, which were used to hold buttons and perform operations on the window. It was

primarily controlled through the mouse, and offered a configuration file to change interactions

[28]. TWM is written in C, the only language with an X11 interface at the time, using Xlib.

Owing to its features, it measured at roughly 11,000 lines of code as of its release for X11R6 [29].

Ideas from TWM have continued on to newer window managers both through its code and

concepts. Direct descendents include Claude’s Tab Window Manager written by Claude

Lecommandeur (CTWM) [30], the Virtual Tab Window Manager by Dave Edmonson (VTWM)

[31, 32], and Tom’s Virtual Tab Window Manager by Tom LaStrange (TVTWM) [31, 33]. All

three have the primary aim of adding virtual desktops to TWM, but have added other features as

well, such as a pager in the case of VTWM [32]. LaStrange also developed the Solbourne

Window Manager (swm), which built off of TWM’s ideas, and added the concept of a virtual

desktop that spanned the entire X root window, using the screen as a viewport into that window

[34]. It was released in 1990, and was one of the first, if not the first window manager to do this

on X; the next closest window managers are VTWM, ostensibly released in 1992 [35] and

CTWM, first released in 1992. SWM and VTWM both offer the ability to pan over the virtual

desktop, which has a maximum size of 32767 by 32767 pixels, the maximum dimensions of an X

window. Windows can be made sticky in SWM, retaining their position on the screen, which by

default applies to the pager, which shows an overview of the virtual desktop and provides

10



interactivity for manipulating it [34]. These features were later copied by Edmonson for use in

VTWM, and later by LaStrange for inclusion in TVTWM [31]. Virtual desktops quickly became a

popular feature, and are now included in the majority of available X11 window managers.

3.3 NeXTSTEP

NeXSTEP was the operating system written by NeXT, Inc. to run on NeXT computers, which

came with a desktop environment that quickly became and has since remained a favorite among

those who used it. Users could manipulate windows using the titlebars on the windows and with

the dock on the side of the screen. Further interactivity was performed through a menu summoned

by clicking on the desktop. Many of these features would find themselves a part of Mac OS X

after Apple acquired NeXT in 1996. Similarly, projects like WindowMaker [36] and AfterStep

would attempt to recreate the NeXTSTEP environment in a free and open source system.

WindowMaker provides an environment that is very close to the original NeXTSTEP

interface, matching its design and functionality as part of the GNUStep project. At around 38,000

lines of C code, it contains a lot of functionality typical of a more complete desktop environment

[37]. The desktop menu allows for numerous configurability options, and there are UI elements in

the form of widgets, menus, docks, and window title bars that provide the user functionality [38].

WindowMaker also provided an inspiration for the design of Blackbox [39], which can be

seen in its “slit”, which provides dock functionality, window title bars, and interaction through

clicking on the desktop. Blackbox has spawned a number of derivatives, including Fluxbox [40],

which aims to include more features by default than Blackbox, and Openbox [41], which offers a

number of configuration and theme options.

11



3.4 Rio

Rio is the default window manager on Plan 9 from Bell Labs, which was written by Rob Pike as a

rewrite of 8½ with a strong focus on concurrency [13], while still maintaining the Unix philosophy

used in 8½, as the two are largely functionally equivalent. Rio effectively acts as a multiplexer for

the screen, keyboard, and mouse, as it simply reads from the file created for each device by Plan

9. Window functions are all performed through the mouse, which are accessed through a click on

the desktop. Windows are created by outlining the window on the desktop for a new terminal,

after which all windows created thereafter are contained within the outline of their parent terminal

[42, 43]. These ideas were faithfully transcribed into 9wm, a clone of 8½ for X11 written by

David Hogan in 1994 in roughly 2,600 lines of C code [44]. 9wm became the basis, either in code

or through ideas, for other early X11 floating window managers: AEWM [45], Larswm [46], lwm

[47], w9wm [48], and windowlab [49]. The most notable of these are Larswm and AEWM.

Larswm introduced controlling windows tiling and included a status bar by default at the

bottom of the screen. The tiling followed a basic stacking tiling model, where a master window is

placed in its own area on one side of the screen, while all other windows are sized to be placed in

the remaining screen area. It also included a document view mode, where a selected window

would be resized with the same proportions as an 8½ inch by 11 inch sheet of paper. The status

bar shows the current desktop and contains a string that encodes information about that desktop,

and provides an area to click and view a menu for controlling the window manager [46].

AEWM was written by Decklin Foster in 1998 to optimize for Fitt’s Law by offering large

UI elements, such as a large title bar, buttons, and the user’s desktop, for manipulating windows

[45]. It is written with approximately 2,600 lines of C code, which has made it a popular basis for

12



other window managers [50].

Evilwm [51] is the most popular of the AEWM derivatives, offering both usability and

functionality extensions as part of its fork. It is written by Ciaran Anscomb, who began writing it

in 1999. Like AEWM, it is written in C, and only encompasses 3,000 lines of code (roughly 400

more than AEWM), indicating it is more a refinement of AEWM than a total rewrite. evilwm

contains basic virtual desktop support, mouse control, the ability to move and resize windows

with the keyboard, and a basic configuration file. It also contains a feature that allows easier

window alignment called “snap-to-border,” where positing a window within a certain number of

pixels from the monitor border or the border of another window will cause the window to move

such that there is no space between the two borders. mcwm [52] and 2bwm [53] have been forked

from Evilwm and also function as refinements of EvilWM’s functionality.

The Calm Window Manager (commonly known as CWM) was originally based off

EvilWM, but has since been rewritten from scratch [54]. It is part of OpenBSD, and has been

written by Marius Aamodt Eriksen since 2004 [54, 55]. Measuring at 5,300 lines of C, it is the

most serious deviation from EvilWM in functionality [54]. It shares most of its base functionality

with Evilwm, but includes a more flexible group model allowing windows to belong to multiple

virtual desktops, and has the ability to search for windows. Its search feature is its most novel, and

allows the user to find a window by searching for its label, current title, five previous titles, or

class [56]. This allows locating a window without the requirement to remember where it was

placed, with the tradeoff being the number of keystrokes necessary to access it.

13



3.5 Suckless

Suckless is a software group with a focus on simple software that favors power users. Members of

suckless have released user-facing software programs for Linux and other Unix-like operating

systems that keep to this philosophy, generally written in C. Anslem R. Garbe, one member of

Suckless, has been the initial creator and primary contributor of the window managers WMI,

WMII, and DWM, which have been released through Suckless.

WMI was a tiling window manager that was written by Garbe from 2003-2009 [57]. It

was designed to be a window manager that combined what he perceived as the best parts of

Larswm, Ion, TrsWM [58], EvilWM, and Ratpoison [59] operated through a vi-style interface

[60]. WMI had numerous features and was highly configurable, written in around 13,000 lines of

C++ code [57].

Window Manager Improved 2, often shortened to WMII, was forked from wmi by Garbe,

who wrote for it from 2004-2006, before its maintenance by Kris Maglione from 2006-2014.

Measuring in at 11,500 lines of C code, it represents a significant departure from wmi in its

design. It took significant inspiration from Plan 9, mostly through its integration of 9p, the Plan 9

network-transparent filesystem interface, and also through acme, which offers tiling window

functionality to organize editing panes. Configuration and control of the window manager are

primarily done through a 9p interface that serves a virtual filesystem with writable files for

available options and functionality [61].

Seeing WMII as being consumed by its own feature-set, Garbe sought to design a highly

minimal window manager that would meet his needs, which was initally called gridwm before

being renamed to the Dynamic Window Manager (DWM) [62]. DWM has since become the

14



premiere tiling window manager supported by Suckless. It was first written by Garbe in 2006, and

has a 2000-SLOC limit to enforce minimalism as a design philosophy; it currently measures at

2,400 lines of C code [62, 63]. All configuration to the window manager is done through its

source code, either through a header file or by directly amending DWM’s primary source file.

Frequently, these changes are distributed in the form of patch files [64]. Stacking and maximized

tiling modes are supported in addition to a floating mode. A bar is provided to display information

and select between different workspaces, which are defined as tags in DWM. The primary

difference between DWM’s tags and normal workspaces are that a window can be assigned to

multiple tags, and if desired, multiple tags can be displayed at once [63].

Owing to its small code base, DWM has become the basis for other tiling window

managers, both through ideas and code. CatWM [65], dminiwm [66], monsterwm [67, 68], and

FrankenWM [69] are direct descendents, which aim to be more focused versions of DWM, and

include goals such as smaller codebases or more tiling layouts. Awesome was also initially

written as a DWM fork [70] with the intention of removing the SLOC restriction and

incorporating feature patches to DWM. It was started in 2007 by Julien Danjou (now maintained

by Uli Schlachter), and has grown to roughly 9,000 lines of code [71]. 2wm [72], Xmonad

[xmona], and i3 [73] have also taken inspiration from DWM.

3.6 Scripting

Scripting has become a popular feature in window managers as a method of allowing users to

easily add functionality. In particular, many window managers use languages such as Lua to

provide a user with a popular, Turing- complete, and well-supported language to script their

15



window manager.

One of the earlier window managers to do this is Ion, which began development in 1999

and continued development until 2009 [16]. Ion supports basic static tiling functionality, and later

became known for its tabbed layout, which allows the user to switch between frames on a

workspace. These frames could themselves be divided into sub-frames. Ion is a substantial

window manager, registering at roughly 44,000 lines of C code and 4,000 lines of Lua code [16].

This is in part due to Ion’s integration of a Lua interpreter, which is used to script any part of the

window manager. Awesome also supports a similar Lua interface for control.

Another early window manager to offer scripting capabilities is Sawfish, a floating

window manager first developed in 1999, and sees current development [74, 75]. Sawfish is

scripted using rep, a Lisp-like scripting language that comes with similar facilities to regular

Lisps, like an Emacs interaction mode and REPL [74]. Sawfish also supports “large desktop”, and

comes with a pager to navigate this desktop by panning the actual screen as a viewport over a

number of screen-sized “cells”, for which there can be many [76].

Qtile [77] and PyWM [78] are both scriptable in Python, which is more mainstream than

rep or Lua. PyWM was originally written in 2003 by David McNab (continued in 2006 by Elmo

Mäntynen), exists largely as a small (1,000 lines) wrapper around FLWM, which is thereby

scriptable in Python [78, 79]. Qtile represents a more extensive effort, with a code base amounting

to roughly 17,000 lines of Python, an extensive test suite, documentation, and interaction methods

through a shell [80, 81]. Since it is written in Python, it can be scripted using the same language

since Python can be interpreted.

Xmonad [82] is analogous to Qtile for its use of a single language for both the core

window manager and for scripting. Xmonad was started by Spencer Janssen in 2007 as a window

16



manager written in a purely functional style using Haskell [83]. It has also been formally verified

through a rewrite in Coq by Wouter Swierstra, which passed the Xmonad test suite and fulfilled

the functionality covered by these tests, showing the rewritten portions of code to be essentially

bug-free [84]. Users may simply use Xmonad’s API to add interaction and tiling techniques. It is

relatively simple at its core, comprising 1,700 lines of Haskell. Extra functionality is included in

the Xmonad-contrib package, which contains hundreds of extensions. These include actions that

interact with some aspect of Xmonad, configuration options and utilities offering interactions or

customization, hooks for running code after events, and tiling layouts.

StumpWM [85] also follows this philosophy through its use of Common Lisp. StumpWM

was started as a reimplementation of Ratpoison by Shawn Betts, and is now maintained by David

Bjergaard [86]. It runs inside a compiled Lisp image that allows for on-the-fly reconfiguration of

both extensions and window manager code, which lends itself to StumpWM’s attempt to be the

“Emacs of WMs” [86]. StumpWM’s code is defined within a Common Lisp package that may be

accessed during runtime, but is written to expose an API to be used by any user-written code; it

consists of roughly 12,000 lines of Common Lisp code [86]. The flexibility of StumpWM’s

runtime assist in features that include commands that can accept user input and are executed by

the window manager, hooks that allow access to X events, and an input bar that offers the ability

to run and edit Lisp code in a miniature REPL. Configuration of StumpWM is also done through

Lisp, offering the same level of control as pre-compiled code. StumpWM offers many of the same

basic features as Ratpoison, but sees more development, and offers the ability to extend it through

user-added code. Features considered not general enough for inclusion with the main distribution

have been developed as modules, which extend StumpWM through its API. These include

utilities that interface with or extend the functionality of X or the operating system, interact with a

17



particular program, or display information on the modeline [87].

Taking inspiration from StumpWM and TinyWM [88], the Common Lisp FullScreen

Window Manager (CLFSWM) was developed by Philippe Brochard starting in 2005 [89, 90]. It

was written using the same CLX backend as StumpWM, but with a completely separate code

base, and currently comprises around 11,600 lines of code [90]. CLFSWM organizes windows

using frames organized in a tree-like fashion, which then can be navigated to use a certain

window. The X root window functions as the root of the tree, within which other frames and

windows can be placed. These frames may be switched to in a virtual desktop-like manner by

maximizing them and making them the current root, where windows and other frames may be

placed and navigated to. Each frame can have any number of children frames or windows, and

children frames are visible even when a parent frame has been selected as the current root frame.

CLFSWM also allows flexibility within this scheme: frames can apply tiling layouts to windows

within themselves, windows can be in more than one frame, and rules can be applied to windows

for placement on the screen and which frames they belong to [89]. Like StumpWM, CLFSWM

can also be controlled and extended through Lisp.

Scripting offers far greater flexibility than can be afforded by window managers that

simply take configuration options, while allowing a cleaner interface than directly editing the

source code of a window manager. In essence, it allows for the user to create new management

techniques and interactions on top of the window manager, using its core as a base. This can

improve the portability, stability, and development speed of additions by removing any direct

interfacing with the X server from the application.

A key feature of some window managers is simply the language they’re written in, since

the window manager may then be controlled and configured through that language. To take

18



advantage of this property, these window managers will often structure their code in such a way

that the internal code itself is sufficiently modular to be modified, or that it is well-encapulsated

and offers an API suitable for extension through modules.

3.7 Socket-control

To free users from having to use a particular language when scripting their window manager,

other window managers provide socket interfaces that can be used by any language. In this model,

the window manager acts as an intermediary between the client program and the X server,

combined with some of its own rules or functionality.

WMII was one of the earliest window managers to offer this functionality, which it

implemented through a 9p interface [61]. Since 9p is network-transparent, any program capable

of networking with WMII can simply connect to its interface, mount the virtual filesystem it

presents, and write to predetermined files to interact with it. Despite the flexibility offered by this

interface, it has not been used in any of its successors, which have used local sockets or simpler

socket protocols.

Inspired by some of the ideas from WMII, but having a different vision, Michael

Stapelberg began developing i3 in 2009 [73, 91], and it now contains a host of features, written

over 16,000 lines of C code using XCB. i3 extends from WMII’s dynamic window management

strategy, automatically placing windows and organizing them in a tree structure. The tree layout

of i3 uses the X root window as the root of the tree, and creates two frames from it, split either

horizontally or vertically. Each frame can contain either a window or another pair of frames. The

tree can be as large as the user wants, or as large as required to fit the user’s windows. Each virtual

19



desktop contains its own tree holding the frames and windows [92]. i3 also can be controlled

through a Unix socket it opens, and the i3-msg utility can communicate with it through this

socket. Through this interface, i3-msg can send any command available in i3’s configuration file

for use in keybindings, or can issue commands to retrieve information from i3 [93].

Herbstluftwm takes inspiration from both i3 and WMII, as well as Musca and Xmonad,

focusing on a more socket-driven interface [94]. Thorsten Wißmann began developing it in 2011,

and today it comprises approximately 12,000 lines of C++ code using Xlib [95]. Herbstluftwm is

controlled entirely through its Unix socket interface, herbstclient, which is invoked as an

executable by another program and passed arguments to send to herbsluftwm [96].

This approach has also been adopted by the Binary Space Partitioning Window Manager

(bspwm), written in about 10,000 lines of C code since 2012 by Bastien Dejean, which uses

Dejean’s programs bspc and the Simple X HotKey Daemon (sxhkd) [97] to control bspwm [98].

Binary Space Partitioning works in bspwm in a fashion similar to i3, where the X root window is

split into pairs of frames, which themselves may hold a window or two more frames. Only the

replace and pair functions may be applied to the nodes of the tree. The replace function replaces a

node with a new one and moves the old node to another branch, while the pair function replaces

the node with a new parent node and places both the old and new nodes as children inside the new

parent node. To control bspwm, bspc is invoked in a fashion very similar to herbstclient, and this

is often used in tandem with sxhkd to bind keyboard and mouse inputs to bspc commands [98].

Basedwm also can be controlled through SXHKD, though it is a significant departure in

ideology from the previous window managers. BasedWM is a markedly simple floating window

manager, written by Antti Korpi from 2014 to 2015, consisting of roughly 400 lines of LiveScript,

a language that compiles to JavaScript [99, 100]. BasedWM offers the ability to pan the desktop

20



by moving all currently mapped windows by a specified distance. The effect of this is the

appearance of moving “across” the desktop, when in fact it is the windows that are moving [99].

The secondary consequence of this is that the desktop is essentially infinite, since windows can be

panned out of the viewport offered by the new screen, allowing for more windows to be placed on

the newly-empty space. This model is also not restricted to grids sized to the screen like in other

window managers such as VTWM, offering greater flexibility, but also less support for alignment.

To take advantage of the large desktop, Korpi also wrote Hudkit, a transparent web browser that

shows the windows on the user’s desktop, that gives an overview of the desktop much like a pager

[101].

3.8 Unconventional Window Managers

Some window managers seek to provide users with more customizable or tailored interactions

through appealing to a niche. The Emacs X Window Manager (EXWM), written by Chris Feng

[102], is an example of this as a window manager written for use in Emacs. EXWM uses the X

protocol Emacs Lisp Binding (XELB) as its basis, which converts the XCB specifications to

Emacs Lisp directly from XML. It is then loaded as an Emacs package and stores windows as

Emacs buffers, which can be operated as normal. EXWM also includes functionality for

workspaces, floating windows, multi-monitor, compositing, and a system tray [103]. Pyro

Desktop took a similar approach to EXWM by placing window management facilities in Firefox,

using Firefox’s (now deprecated) XML User Interface Language (XUL) in combination with X

compositing to accomplish this.

It is also possible to avoid using a proper window manager at all, instead controlling

21



windows through tools that separately communicate with X. No-WM [104] claims that the

functionality encompassed by most window managers is orthogonal (i.e. inherently disjointed), it

should be dispersed into separate programs. To this degree, it only contains basic facilities for

positioning and switching between windows, totaling about 400 lines of C code to accomplish

this. For any other functionality, such as binding keys, launching programs, or other utilities, it

refers to other tools. WMutils [105] takes a similar approach, except with the addition of more

tools, with the core programs clocking in at roughly 900 lines of C code [106], written on top of

XCB. It provides additional tools, such as the ability to view information about windows, change

their border, and moving the pointer. The different components of WMutils are intended to be tied

together through scripts to compose a full window manager, as shown in the contrib repository

[107].

3.9 Discussion

New window managers written for X will often draw inspiration from particular attributes of

other window managers in their development. The open-source and highly-standardized nature of

the Unix-like ecosystem has contributed in large part to the evolution of the field, as developers

can draw on previous research more directly than in an academic context. To illustrate the current

state of research, 11 window managers were selected for display in tables listing relevant

attributes. These were selected for their relative popularity or influence, feature set, and

uniqueness compared to other window managers.

While many X window managers were developed since the release of the X Window

System in the late 1980’s and leading into the 2000’s, the latter half of the 2000’s onward has seen

22



an uptick in development: 7 of the 11 window managers selected began development after 2005.

This is likely due to increased internet access, and the popularity of code-sharing websites such as

SourceForge and GitHub, which currently or have previously hosted many of these window

managers. It is important to note, in addition, that the level of activity of a window manager will

often impact its development and influence; most of the window managers listed below are in

relatively active development. The exceptions to this are FVWM and EvilWM, which offset the

need for further updates with the length of time they have been in development and the

completeness of their feature set relative to their goals.

Name Initial Release

Awesome 2007-09-05

BSPWM 2012-07-28

DWM 2006-07-10

EvilWM 1999

EXWM 2015-07-17

FVWM 1993

i3 2009-02-06

Openbox 2002-04-11

StumpWM 2003-07-21

WMutils’ core 2014-11-26

Xmonad 2007-03-07

Table 1: Source code attributes for chosen windowmanagers.

23



The source code of a window manager provides a method to directly continue research, as

it allows research to continue with minimal setup costs. The two primary factors involved with

this is the number of source lines of code and the language used to develop the window manager.

Window managers that contain only a few thousand lines of code tend to see more forks than

counterparts with substantially more. This has two likely primary contributing factors: smaller

codebases are easier to work with, and smaller window managers are likely to provide a more

minimal base of ideas that can be extended without extra features. 9wm, AEWM, and DWM are

all examples of this: each is composed of roughly 2,500 lines of code, and has numerous forks.

Newer window managers tend to use XCB instead of Xlib, though not universally. XCB is

typically seen as a leaner, more straightforward, and faster alternative to Xlib since it is composed

of entirely asynchronous calls. Some window managers like Awesome or FrankenWM, both

based on DWM, have either rewritten DWM routines or written new routines to adopt XCB, or in

the case of FVWM, have declared an intention to replace Xlib calls with XCB equivalents [108].

Name Language Approximate SLOC Library

Awesome C 13,700 XCB

BSPWM C 10,000 XCB

DWM C 2,400 Xlib

EvilWM C 3,000 Xlib

EXWM Emacs Lisp 6,500 XELB

FVWM C 148,900 Xlib

i3 C 16,000 XCB

24



Openbox C 34,500 Xlib

StumpWM Common Lisp 12,400 CLX

WMutils’ core C 800 XCB

Xmonad Haskell 1,700 Xlib

Table 2: Source code attributes for chosen windowmanagers.

Dynamic window management has become the default tiling philosophy in the majority of

newly-released tiling window managers for its flexibility and the numerous options available in

tiling algorithms. These algorithms can be changed for a workspace at runtime, reorganizing the

windows, and can in some cases be nested or selected per-workspace. The following is a list of

some popular layouts. Note that the names of layouts differ between window managers, and many

offer both horizontal and vertical flavors.

• Maximized: A single window covers the entire monitor. Windows are either switched

through keyboard bindings, or through on-screen tabs (typically called a tabbed layout).

• Grid:Windows are placed in columns, rows, or cells based on specified grid dimensions.

• Tree/Binary Space Partitioning: The focused window or frame is split on the creation of

each new window, forming a tree of windows. Binary Space Partitioning is a specialization

of this and splits the window into two even sections.

• Stack: One or more windows fill a reserved master area, while all other windows are

25



arranged in a specified pattern inside one or multiple stack areas. This is typically done in a

pattern resembling a fibonacci spiral.

Floating windows are allowed in tiling window managers as well, which have modes for

handling dialog windows created by programs or windows that do not conform well to tiling.

These either come in the form of a floating layer above tiling windows, or a separate floating

mode where tiling is disabled. As tiling is a subset of floating, in that it simply automatically

calculates and places windows, instead of putting that responsibility on the user, it is technically

the default state of a window manager. This is seen in WMutils, which despite not technically

being a window manager, provides utilities for a user to implement both schemes with minimal

friction.

Name Type Graphics

Awesome Dynamic Info bar, menus

BSPWM Dynamic –

DWM Dynamic Info bar

EvilWM Floating –

EXWM Manual Through Emacs

FVWM Floating Titlebar, menus, taskbar

i3 Dynamic Title bar, Info bar

Openbox Floating Title bars, menus, taskbar

StumpWM Manual Input/output line, modeline

WMutils’ core – –

Xmonad Dynamic –

26



Table 3: List of interaction attributes for chosenwindowman-

agers

4 Other Systems

4.1 Windows and macOS

Despite the plethora of X11-based window managers available, Linux and other Unix-like

operating systems only comprise an estimated 2.33% of the desktop operating system market

[109], where X11 is primarily used. Another 96.93% of the market goes to Windows and macOS,

which have an estimated market share of 89.01% and 7.92% respectively. Both operating systems

have remained largely faithful to the vision of the desktop laid out by Apple’s early attempts with

the Apple Lisa and Macintosh. Each uses floating window management as its primary style, with

minor tiling features included. Window decorations offer the primary source of interaction, with

some keyboard shortcuts allotted for specific actions. Native configurability compared to

previously discussed window managers is low, with few options being given to stylistic or

functional customization. Owing to the popularity of these windowing systems and the narrow

scope of their feature set, we explicitly enumerate their capabilities.

Windows offers simple stacking capabilities, operated through the window’s title bar

decoration and the start bar, with corresponding keyboard shortcuts for most actions. The window

decoration presents three buttons: one to remove the window from the screen, one to resize it to

27



encompass the entire screen, and a third to close the window. Users are also given basic tiling

functions by dragging a window to the left or right sides of the screen. If desired, all windows can

be hidden through a button on the start bar. Basic virtual desktop functionality was added in

Windows 10, allowing a user to add a new desktop, add windows to that desktop, and either

switch to or remove that desktop. A menu is also offered to switch between windows, or, in

Windows 10, a user can enter a view that displays all windows adjacent to one another, and raise

and focus a window from those.

macOS offers slightly more advanced capabilities than Windows, but still shares the

majority of its feature set. When resizing a window to fill the screen, it may either be resized

within the current virtual desktop, to the limits of the menu bar and dock, or may be placed within

its own virtual desktop in a typical full-screen fashion. Windows un-maximized from their own

workspace will return to their original workspace. Two windows may be vertically tiled within

these full-screen virtual desktops, and the ratio of their sizes may be resized by dragging along the

border separating them.

4.2 Wayland

Wayland [110] is a protocol that is intended to serve as a replacement to X. X was originally

developed in 1984 as a network-transparent display system with the intention of being run and

displayed on different computers, one server and one client, respectively. This model is

considered outdated due to the current model of computing, where computers are sufficiently

powerful to render and display graphics in a single machine. Similarly, the complexity of the X

codebase has drawn criticism for its complexity and difficulty in maintenance. While Wayland

28



has been in development since 2008, it is still used by a minority of users of Unix-like desktop

operating systems.

Sway [111] is an early popular Wayland compositor and window manager written by

Drew DeVault et al. which seeks to closely replicate the functionality of i3. As of writing, it is

compatible with the majority of i3 features and commands, including i3’s configuration file

format [112]. The Wayland protocol moves complexity that would normally be in the X server

into compositors however, resulting in Sway’s codebase measuring at roughly 21,000 lines of C

code, despite being roughly equivalent in features to i3, which is close to 16,000 lines.

Way Cooler [113] is a similar Wayland compositor and window manager written in Rust,

which takes inspiration from both i3 and Awesome. As such, it is scriptable in Lua and has

planned compatibility for Awesome. Way Cooler is written by Preston Carpenter et al. and

consists of approximately 13,000 lines of Rust code [114].

Currently Sway and Way Cooler are both built on the Wayland Compositor [114, 115] and

its respective Rust port. However, both have plans to respectively move to C and Rust versions of

wlroots, a new Wayland Compositor written by the authors of Sway and Way Cooler for

providing basic utilities for Wayland Compositors [116] in a fashion similar to Xlib or XCB.

4.3 Experimental Operating Systems

Experimental and research operating systems have the advantage over more established systems

of incorporating more advanced features deeper into their architectures, allowing greater

sophistication in higher-level applications. This is not always a product of the core operating

systems so much as the philosophies that guide the development of these operating systems, and

29



the changes enabling more experimental UIs often reside in the display servers, which generally

can be operating system-agnostic. However, these changes frequently are seen in the desktop

environment of the operating system for which they are built, due to the self-contained nature of

most experimental operating systems, which requires that they recreate their own versions of

everyday tools.

Haiku is an operating system that aims to recreate BeOS, a now-defunct operating system

created by Be, Inc. Haiku offers a unique interface that noticeably differs from most other

environments. It uses TWM-style window decorations that only cover a portion of the top of a

window’s upper border, which aptly allows for windows to be stacked in a fashion similar to the

tabbed features offered by Ion. Windows can also be tiled by attaching their borders, which links

them when one is moved or resized. Similarly, windows can be moved across up to 32

workspaces, divided into a maximum of 16 columns and 2 rows. Each workspace is highly

independent: moving a widget in one workspace will not cause it to be moved in others, and each

workspace can have its own monitor settings. Haiku uses the deskbar as the primary menu, which

offers menus for starting an application and lists all currently-open windows much like the TWM

icons menu. A study by Zeidler et al. showed that the Stack & Tile features they wrote, which

perform the aforementioned tabbing and tiling, improved user effectiveness in managing

windows, specifically with task completion times and interface satisfaction [12].

A2, formerly AOS or Bluebottle, is a new version of the Oberon operating system based

on the Active Oberon language. A2 uses the standard minimize, maximize, and close buttons

within a top-edge window decoration to control windows. Windows are all floating, and can also

be resized by dragging along the window’s borders. It supports an infinite large desktop, and

allows windows to be placed freely within this plane, even to be resized outside the boundaries of

30



the screen. The desktop can also be panned by moving the mouse to the edge of the screen and

holding it there until the desired coordinates are reached. A2’s UI is a Zooming/Zoomable User

Interface (ZUI), which was inspired by Jef Raskin’s suggestion that ZUIs are the next logical step

in standard UI research. The desktop in A2 can be zoomed in or out to a significant degree,

respectively enlarging or shrinking UI elements on the screen. This gives an overview of currently

open windows, and offers a way to quickly pan the desktop.

4.4 Research Window Managers

Much like experimental operating systems, window management schemes arising from academic

research shed practicality in exchange for attaining loftier aims.

Like many tiling window managers, maximizing the utilization efficiency of a user’s

screen and the amount of information they can fit on their screen is a frequent goal found in

window management research. The Siemens’ RTL window manager [117] was built upon the

belief that automatic tiling would best optimize a user’s screen space according to the number of

windows available. By making estimated guesses about which windows were important and could

be reduced in size to accommodate windows estimated to be more important, all windows could

be fit on the screen while keeping most of the user’s desired information on the screen. A

two-dimensional space-tracking algorithm, called corner stitching [118], was used to make

estimates based on how much screen space was empty and how much was used in addition to the

relative importance of the windows. Other systems like Elastic Windows [119] and Bell and

Feiner’s work in Dynamic Space Management for User Interfaces [120] have also focused on

algorithmically maximizing screen usage for user interfaces including window managers.

31



WinCuts [8] was also developed with screen utilization in-mind, but took an alternate

approach, operating on the graphics of the windows as opposed to strictly the windows

themselves. Rather than resizing the windows themselves to fit all information on the screen, the

relevant parts of windows could be selected and mirrored in their own windows, WinCuts, for

organization by the user. This provided the user with greater flexibility, as by reducing the amount

of information on the screen to just what is needed, more information can be fit on the screen.

Furthermore, WinCuts could be shared with other users and could be used to construct new

interfaces based on the parts of the component interfaces in the WinCuts. Metisse also made use

of directly manipulating the graphics of windows to present new types of interfaces and

interactions within the desktop metaphor [121]. By allowing the user to perform typical graphical

operations on windows, such as scaling or rotation, it opened up the possibilities for interactions

such as zooming out a particular window, or rotating a window for viewing at a different

perspective relative to the computer monitor.

5 Thesis Window Manager

The culmination of this thesis is the creation of a new window manager that implements the

concepts found in state-of-the-art window managers and combines them on a platform that will

allow for extensive testing with a diverse set of workflows. The resulting window manager is

forked from StumpWM, and uses the Compton compositing manager [122] to perform all

zooming functions.

32



5.1 Framework and Methodology

StumpWM was chosen as the base for the thesis window manager due to the flexibility afforded

to it by Common Lisp. This proved helpful for the power of the language itself as well as its

environment, where on-demand reloading made it possible to test new functionality without

reloading the window manager. StumpWM’s flexibility is also important to the goal of the thesis

window manager to allow for flexible management of windows.

The thesis window manager presents a ZUI interface similar to A2: the desktop can be

freely zoomed, panned, and manipulated directly, without need for any special interfaces for

interaction such as a pager. This functionality manifests itself in two modes, which are largely

invisible to the user. When no scaling is applied to the desktop, all windows can be interacted

with normally. Clicking on the desktop and dragging along it moves all currently mapped

windows, effectively panning the desktop. However, upon using the scroll-wheel on the desktop,

the “overview” mode is engaged wherein scaling is applied to all windows in the current

workspace. This causes the graphics for each currently-displayed image to shrink, and therefore

allows for more windows to be displayed on the physical screen. For simplicity, windows cannot

be interacted with using the mouse in overview mode. However, they can be moved and resized

anywhere in the currently visible area, and the desktop can be scaled as before. To re-enter the

normal mode, a user simply has to set the desktop to be unscaled. As previously mentioned, the

two modes are largely invisible to the user in that the transition between them only changes how

the user interacts with the windows, and does not produce any visual effects that would

distinctively separate them; the user feels as if they are directly interacting with the desktop at all

times.

33



A compositor is needed to manipulate window graphics in this way, which stores the

image data for each window in a way that is accessible by other functions within the display

server or an external program for manipulation. In X11, this is accomplished through the

Composite extension, which allows the programmer to request for a window’s pixmap, the X11

native image data format, to be made available in memory for manipulation by the compositor. To

accomplish this, Compton was used as an external compositor to scale the window pixmaps and

draw the resulting image to the screen. Compton was chosen since it is an independent program

and fairly small, measuring at around 10,000 lines of C code. To communicate when Compton

should scale, its DBUS interface was extended to include functions that specify the desktop scale,

which is utilized by StumpWM when a user chooses a new scale.

To leverage the diverse functions offered by the thesis window manager with a mouse, an

editable text field, the command bar, is added to each window as a window decoration. It was

repurposed from the StumpWM input field, and offers most of the same keyboard interactions and

rendering capabilities, but holds text in its buffer even after execution and is operable through the

mouse. The command bar’s interactions are similar to the tag pane in acme and universal text

commands in Oberon, with a left click allowing the user to select text and place the cursor, and a

middle click selecting the current word, delimited by spaces. Text executed in the command bar is

executed entirely at runtime, and can consist of pre-defined commands, StumpWM commands,

Lisp functions, or terminal commands. Commands are specified in a hash table and simply map

arbitrary text to a specified command with a preferred method of evaluation, i.e. the Lisp function

that will evaluate the command.

The command bar is typically placed on the top of the window through reparenting the bar

and the window to a single parent window, making it functionally identical to bars in most

34



floating window managers. However, it functions as an independent window, and can also be

placed on the top of the screen as a dock. All command bars have their own text buffer and can

correspondingly be edited independently from other bars. The initial text in a command bar can be

set through a global variable configurable by the user. Following English-language conventions,

text is left-justified, making the command bar resemble the window decorations of window

managers like macOS, Unity, and TWM. The command bar spans the window’s whole width, and

text can be entered over the entire width. As an anchor for moving and resizing the window, a

character has been placed on the leftmost location on the window, usable through the mouse.

5.2 Algorithms and Features

The fundamental model used to organize windows in the thesis window manager is each

window’s dimensions, labeled as its geometry, which consists of the window’s Cartesian

coordinates at its upper-left corner, and the coordinates at its lower-right corner. These are

organized into lists for when all windows must be processed and a graph structure when a more

directed approach is desired. An infinite space in each axis is assumed, where the actual screen’s

dimensions are not considered.

To make it easy to view all windows in a particular set within the bounds of the screen, a

trivial overview algorithm was written that returns the coordinates of the rectangle containing all

windows in the set. In essence, the coordinates of the furthest points in the negative x and positive

y axes and in the positive x and negative y axes are returned. This algorithm is sufficiently

optimal for its use, running in O(n) for an input of n windows.

These overviews are tied directly into views, a feature similar to the doors used in

35



VTWM. A view consists of a reference window, that window’s current coordinates, and a

specified scale. To activate a view, the window’s new coordinates and its previous coordinates are

subtracted to obtain a coordinate delta between the current position in the desktop and the

coordinates of the view. The scale is then simply set to finish activating the view.

Simple tiling and maximizing features are offered for automatically sizing windows in

relation to the screen size. Windows can be resized to any divisor of the screen’s space, and can be

anchored to any side of the screen. This scheme allows for basic manual static tiling layouts,

including full-screen, vertical, horizontal, and grid tiling.

A key component of the thesis window manager is the automatic placement of new

windows, which allows for easier and faster navigation when creating a new window. Ordinarily,

a new window will spawn within the current screen, which in many cases will be above the

currently-viewed window. This then requires navigating the desktop to find a suitable place for

the window and move it. To relieve the user of this burden and optimize usage of the local

desktop area, windows are automatically placed in an open space found by searching around the

root of the current window’s cluster.

Each cluster consists of a graph of windows centered around a root node. Each node has

four edges: one for each side of the window, which specifies the window closest to that window

and its distance. If there is no window within the current cluster on that side of the window, it is

labeled as being an infinite distance.

To place the new window and construct the graph, a breadth-first search is performed on

the graph of the current cluster, where windows are added in a counter-clockwise fashion starting

at the root window. Each edge coming out of each window is tested to see whether it represents a

space large enough to hold the new window. If it is, a temporary geometry is placed within the

36



edge and is then tested for overlap against all other windows in the cluster. If this is successful,

the geometry is added as a candidate; otherwise, it is discarded. If the window at the other end of

the edge has not been examined, any untested edges are then added to a queue in the

aforementioned order. This process repeats until all edges have been tested.

6 Discussion

While the thesis window manager pulls substantially from previous research in the basics of its

framework and ideas, it also contains novel ideas that may be used for window management or

further research on window management.

The thesis window manager is task-centric, much like contemporary research window

management systems, in that it focuses on individual tasks that may be composed of multiple

programs as opposed to details around the specific programs that are run. It is intended that a user

will have windows that comprise a single project or task close to one another in the virtual

desktop. The effect of this is that the virtual desktop will consist of clusters laid across it,

essentially composing spatially-arranged workspaces.

Another effect of this, and a guiding principle in the thesis window manager is its intended

use for a substantial number of windows; as a guideline, more than twenty. The core feature that

allows for this is the large desktop, which allows the user to place windows in a memorable way.

In floating window managers, windows are simply placed over each other, which leaves them

visually indistinct when an open window is selected again. This is aided by the ZUI, which offers

a way to easily view and manipulate these window positions while retaining the spatial

relationship between the windows. The need for this is clear: the amount of RAM available in

37



consumer computers has increased substantially since the advent of the GUI, but despite this no

window managers have focused on managing an arbitrarily large number of windows.

This spatial relationship between windows also affords this model another useful property:

the encoding of Cartesian coordinates within the windows. The algorithms used for automatically

organizing windows rely on this as a means to derive information about the windows.

Furthermore, it opens up the possibility for framing a number of window management problems

as standard machine learning problems. Since the relationships between the windows have a clear

visual aspect for the user, as well as a data-centric aspect for any algorithms, this property is

helpful in translating a user’s intentions into data for an algorithm.

Despite the power afforded to users by most tiling window managers in comparison to

floating window managers, many completely lack discoverability. That is to say that a user using

a tiling window manager without any prior experience will have an exceptionally difficult time

using it without reading the manual, as there are no on-screen cues to indicate how to operate it.

Even long-term users may find themselves having difficulties if keyboard shortcuts are forgotten.

While keyboard shortcuts afford considerable gains in speed due to the time involved in aiming

and moving a cursor as opposed to pressing a key combination, the thesis window manager uses a

more mouse-centric model to make features accessible without prior knowledge. Furthermore, the

text-based nature of window decoration buttons makes their function clear; if necessary, these can

also be remapped to labels that are more intuitive for a particular user.

Many modern tiling window managers aim to automatically perform some management

capabilities for the user in an effort to reduce friction when using the window manager. The thesis

window manager has extended this to placing and classifying windows, by letting the user place a

window without regard for placement in a grid system, and by classifying a window for the user.

38



Ordinarily, windows must either be placed within a statically-sized frame or require specification

of a workspace or tag. In the thesis window manager, placement within a grid, as in systems like

VTWM or FVWM, is not necessary, allowing less focus on where a window is placed and how it

aligns. Furthermore, determining workspace a window belongs in is often unnecessary, as the

window placement algorithm will simply place it in the current cluster.

While the thesis window manager improves on other state-of-the-art window managers in

its goals, it also necessitated trade-offs to better improve those goals. At a core level, it was

developed for Linux (though should be compatible with other Unix-like operating systems), as

opposed to a research operating system like A2 or Plan 9. The reasons for this ultimately relate to

the popularity behind Linux.

From the perspective of a developer, X (especially on Linux) is a well-documented system

with numerous tools and libraries, owing to its availability for over thirty years and large

mindshare. This makes it somewhat easier to develop for, and offers a significant amount of code

for learning and re-use as a nature of the open development model most programmers use. These

advantages are in contrast to systems like Plan 9, which despite their architectural elegance have

largely remained a strong interest for a small core of devoted developers, and a curiosity for a

slightly larger group of others. The thesis window manager also did not test more sophisticated

system-level changes, and so did not need the cleaner designs offered by research systems.

The X window system is also a strong choice from the user perspective. As the default

display system on Unix-like operating systems, virtually all graphical programs for these systems

have been written for it. Owing to the 2.33% desktop marketshare Linux possesses, Linux has

shown itself to be a viable system for daily use by a significant number of users, which makes it a

ripe option for testing actual workflows outside of a specialized environment.

39



Despite these advantages, X is showing its age, and is planned for deprecation in favor of

Wayland, a new display server and corresponding protocol designed to fix its architectural flaws.

However, despite the benefits of developing on what would seem to be a more forward-thinking

and future-proof system, Wayland has distinct disadvantages. The largest of which is the amount

of code required to develop a Wayland compositor, the basic rendering mechanisms under the

window manager. As TinyWM has shown, a simple window manager can be written in under 100

SLOC. However, the boilerplate code required for a Wayland compositor is much higher, and

would not have added to testing window management techniques. Similarly, its immaturity means

it is not yet the default system on many Linux distributions, and the tools available for it are fewer

in number than their X11 counterparts.

7 Future Work

The thesis window manager only provides a framework and a basic set of functions to showcase

this framework and provide a usable window manager. Further research would focus on features

within this window manager that make use of the ideas presented in this thesis.

To separate different tasks, users may wish to group their windows into clusters of

windows pertaining to a particular task, in a fashion similar to virtual desktops. To automatically

determine which task a window belongs to, a clustering algorithm could be written to cluster

“connected” windows, defined as being within a certain absolute distance of each other. In

essence, a cluster is merely an index for a particular window graph, and does not hold any

independent information on the windows it holds.

To construct a cluster, a list of clusters and a hash table mapping each individual window

40



back to its list index are initialized. The list of all windows currently mapped to the display is then

processed to determine the initial clusters by its node, with edges in each direction to the closest

window in that direction. If a window is connected to the current window, and has not been

previously checked, it is added to the current window’s cluster. Otherwise, it is placed in its own

cluster. If the window has been checked, but is connected, it is moved to the cluster of the current

window. This process repeats for each unchecked window until all windows have been checked,

and the resulting list of clusters is returned.

To make navigating between windows more even as a product of better alignment, a

compaction algorithm could be developed that shortens the spaces between windows. To

accomplish this, it simply performs a breadth-first traversal of all nodes in the window graph,

starting at the root node, and shortens any edges greater than a certain length between windows,

updating the windows and their corresponding nodes on each compaction. The resulting window

cluster would have a uniform amount of space between each window.

To fully make use of the compositing used in the thesis window manager, “portal”

windows, as outlined by Ben Bederson in his work on Pad++ [123, 124], would be a very

powerful feature to better integrate the ZUI with the desktop. Portal windows would entail a

window containing an image rendered by the compositor that marks a certain scale and location in

the desktop. Implementation could simply consist of rendering any window pixmaps contained in

the region of the portal inside its window. Interactivity would mostly function as in the overview

mode, and allow the user basic pager functionality.

Anchoring the position of windows relative to other items on the desktop would allow for

more sophisticated relationships between windows at a user-determined level. These could

include “sticky” windows that are not panned, and hold their size and location on the user’s

41



monitor when the user pans the desktop. This could also possibly apply to scaling to control how

windows are scaled as the user scales the desktop; however, this feature would need to be

implemented with care due to the input issues involved with scaling. Windows could also be

attached to other windows, in a fashion similar to Stack & Tile.

The algorithms used to process windows in the thesis window manager provide a good

basic set of features, but also a path forward for future research. An interface by which the current

state of the desktop acted as input for a function for manipulating the windows on a desktop

would be useful in providing for new work. This would allow greater modularization in how

windows are processed and provide greater flexibility in how these algorithms are applied.

Interacting with an interface would provide a level of abstraction useful in prototyping these

algorithms, and would allow users to swap them out as necessary. For example, different

clustering algorithms could be used depending on desired behavior.

Research on additional algorithms to use in processing windows would be one of the more

obvious, but more conceptually-involved additions to the framework outlined here. The explosion

of machine learning research could likely be applied to this problem, as windows contain a

significant amount of information about them aside from the coordinate-based algorithms that

have been demonstrated. Reinforcement learning could potentially prove a useful method of

learning which window a user would switch to next, by suggesting a window to switch to, but

allowing for spontaneity in which window a user selects. Algorithms could also be devised which

take a greater role in automatic organization of windows. An example algorithm would give the

user different views of open windows on different virtual desktops. Views could entail clusters

sorted by program or program-type, clusters arranged by how much different windows have been

used, or could organize windows such that more frequently used programs gravitate toward the

42



center of each cluster.

The architecture of the system also could be a rewarding area for further research. The

primary components of the thesis window manager are largely orthogonal in functionality, and

could possibly be split into separate tools for window management, as in the case of WMutils. In

this vein, the command bar provides a good basis for text commands and customization, but does

not fully reach the power attained by Oberon or Acme. In Oberon, any available text item can be

used as a command, as opposed to the limitation of the thesis window manager to only text in a

command bar. This could likely be accomplished with an X11 function call that captures any

selected text. In Acme, the core philosophy behind text commands is the ability to integrate with

the existing system. Text commands in Acme take their input and return their output to it,

allowing external programs to be called within Acme that are also usable as general-purpose

tools. However, as the interface of the thesis window manager is graphically-based and not

text-based, the majority of currently-available command-line tools are not particularly useful.

Despite this, the flexibility of the X11 protocol could allow for the thesis window manager to pipe

tools information about the current desktop, and have their output applied to the desktop. Output

could also be pushed to an external window or even to the tag bar itself, for example as in a

function which reads from the system clock and outputs it to its command bar. These functions

would allow the thesis window manager to, like Acme, integrate with the existing system and

make the command bar a more powerful component.

A dock would also be highly useful to the thesis window manager as an interface

component to provide more mouse-based functionality. This could include features that are not

currently present in X11-based docks by taking advantage of large desktop functionality. The

most obvious of these is a tree-style window list that indents or colors windows based on their

43



cluster, giving the user a quick overview of all open windows that could likely be scanned more

quickly than images, and could potentially also offer basic interaction functionality, such as

closing or moving windows.

8 Conclusions

This thesis has presented an academic survey of the architectures and designs of X11 Linux

window managers, both popular and lesser-known, in addition to other display systems on Linux

and other operating systems. It was found that there are very strong lines of heritage in X window

managers, owing to many of them being free software with easily accessible codebases.

Furthermore, the simplicity of some of these window managers has given way to numerous forks,

some of which improve upon the concepts implemented in their predecessor. All X window

managers fall under the categories of floating or tiled, though most tiled window managers

support floating windows, and furthermore that tiling comes in dynamic and manual flavors, with

numerous dynamic algorithms by which to arrange windows. Some window managers also accept

scripts from users, providing a layer of abstraction that allows for a high level of customization.

In the future, window manager developers will likely move to developing for Wayland,

which has been designed for use on personal computers, as opposed to the terminal-mainframe

style computing that guided the design of X. The structure of Wayland will require complete

rewrites of current window managers, but provides new opportunities through its ability to

natively composite windows.

The window manager presented by this thesis has taken into account ideas from both

academic and non-academic sources to provide features not available in any single window

44



manager. Of note are its combination of an Oberon-style textual command bar with a pannable

large desktop and compositing to provide easy viewing and navigation of this desktop. To take

advantage of these features, algorithms were developed which operate on windows across a large

virtual desktop. Its compatibility with X, the default display system on Unix-like operating

systems, and intention for public availability under the GNU General Public license will

encourage further research. Features regarding the algorithms used to process windows and the

structure of the window manager have been proposed as potential places for further research.

References

[1] Vannevar Bush. As We May Think.

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-

think/303881/. 1945.

[2] Douglas Englebart. Augmenting Human Intellect: A Conceptual Framework.

https://www.dougengelbart.org/pubs/augment-3906.html. 1962.

[3] Douglas Englebart. The Demo: 1968.

http://www.dougengelbart.org/firsts/dougs-1968-demo.html. 1968.

[4] Xerox Palo Alto Research Center. Alto User’s Handbook. 3333 Coyote Hill Road, Palo

Alto, CA, 94304, 1979.

[5] Inc. Apple. Mac OS X Leopard - Features - Spaces.

https://web.archive.org/web/20070710195557/http:

//www.apple.com/macosx/leopard/features/spaces.html. 2007.

45

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.dougengelbart.org/pubs/augment-3906.html
http://www.dougengelbart.org/firsts/dougs-1968-demo.html
https://web.archive.org/web/20070710195557/http://www.apple.com/macosx/leopard/features/spaces.html
https://web.archive.org/web/20070710195557/http://www.apple.com/macosx/leopard/features/spaces.html


[6] Richie Fang. Virtual Desktops in Windows 10 - The Power of Windows...Multiplied.

https://blogs.windows.com/windowsexperience/2015/04/16/virtual-

desktops-in-windows-10-the-power-of-windowsmultiplied/. 2015.

[7] Michael S Bernstein, Jeff Shrager, and Terry Winograd. “Taskposé: exploring fluid

boundaries in an associative window visualization”. In: Proceedings of the 21st annual

ACM symposium on User interface software and technology. ACM. 2008, pp. 231–234.

[8] Desney S Tan, Brian Meyers, and Mary Czerwinski. “WinCuts: manipulating arbitrary

window regions for more effective use of screen space”. In: CHI’04 extended abstracts on

Human factors in computing systems. ACM. 2004, pp. 1525–1528.

[9] Joona Antero Laukkanen. “A scalable and tiling multi-monitor aware window manager”.

In: CHI’11 Extended Abstracts on Human Factors in Computing Systems. ACM. 2011,

pp. 911–916.

[10] Thomas M. Frey. “Bluebottle: A Thread-safe Multimedia and GUI Framework for Active

Oberon”. en. PhD thesis. ETH Zürich, 2005. DOI: 10.3929/ethz-a-004999723.

[11] ETH Zürich. Oberon Community Platform.

http://www.ocp.inf.ethz.ch/wiki/Documentation/Oberon. 2007.

[12] Clemens Zeidler, Christof Lutteroth, and Gerald Weber. “An evaluation of stacking and

tiling features within the traditional desktop metaphor”. In: IFIP Conference on

Human-Computer Interaction. Springer. 2013, pp. 702–719.

[13] Rob Pike. http://doc.cat-v.org/plan_9/3rd_edition/rio/.

[14] David Hogan. 9wm. http://unauthorised.org/dhog/9wm.html. 1996.

46

https://blogs.windows.com/windowsexperience/2015/04/16/virtual-desktops-in-windows-10-the-power-of-windowsmultiplied/
https://blogs.windows.com/windowsexperience/2015/04/16/virtual-desktops-in-windows-10-the-power-of-windowsmultiplied/
http://dx.doi.org/10.3929/ethz-a-004999723
http://www.ocp.inf.ethz.ch/wiki/Documentation/Oberon
http://doc.cat-v.org/plan_9/3rd_edition/rio/
http://unauthorised.org/dhog/9wm.html


[15] 8 1/2. http://doc.cat-v.org/plan_9/4th_edition/papers/812/.

[16] Tuomo Valkonen. A tiling tabbed window manager designed for keyboard users. This

repository is intended to make the last official ion3 release available because Tuomo has

abandoned it. https://github.com/jan0sch/Ion3. 2009.

[17] Jef Raskin. The humane interface: new directions for designing interactive systems.

Addison-Wesley Professional, 2000.

[18] Window manager. https://wiki.archlinux.org/index.php/window_manager.

2018.

[19] Comparison of tiling window managers. https:

//wiki.archlinux.org/index.php/Comparison_of_tiling_window_managers.

[20] Comparison of X window managers.

https://en.wikipedia.org/wiki/Comparison_of_X_window_managers. 2017.

[21] Guide to X11/Window Managers.

https://en.wikibooks.org/wiki/Guide_to_X11/Window_Managers. 2017.

[22] Giles Orr. The Comprehensive List of Window Managers for Unix.

http://gilesorr.com/wm/table.html. 2017.

[23] Giles Orr. The Other Window Managers.

http://gilesorr.com/papers/otherwm2003/book1.html. 2003.

[24] Christopher Tronche. The Xlib Manual. https://tronche.com/gui/x/xlib/. 2005.

[25] among others Jasper St. Pierre. Explanations - Play, don’t show.

https://magcius.github.io/xplain/article/. 2017.

47

http://doc.cat-v.org/plan_9/4th_edition/papers/812/
https://github.com/jan0sch/Ion3
https://wiki.archlinux.org/index.php/window_manager
https://wiki.archlinux.org/index.php/Comparison_of_tiling_window_managers
https://wiki.archlinux.org/index.php/Comparison_of_tiling_window_managers
https://en.wikipedia.org/wiki/Comparison_of_X_window_managers
https://en.wikibooks.org/wiki/Guide_to_X11/Window_Managers
http://gilesorr.com/wm/table.html
http://gilesorr.com/papers/otherwm2003/book1.html
https://tronche.com/gui/x/xlib/
https://magcius.github.io/xplain/article/


[26] Index of /afs/athena/project/windowmanagers/dev/uwm.

https://stuff.mit.edu/afs/athena/project/windowmanagers/dev/uwm/. 1997.

[27] Brian Proffitt. From the Desktop: Tom LaStrange Speaks!

http://www.linuxplanet.com/linuxplanet/reports/3000/1. 2001.

[28] Tom LaStrange. “An Overview of twm (Tom’s WindowManager)”. In: Xhibition [Last89]

Nahaboo, Colas,‘‘GWM, The Generic X11 Window Manager,’’Xhibition 89 (1989).

[29] X Consortium. TWM Source Code.

http://xwinman.org/archive/twm/twm-X11R6-xc-fix13.tar.gz. 1994.

[30] Matthew Fuller. CTWM. http://www.ctwm.org/index.html. 2017.

[31] Håkon Wium Lie. Appendix A.

https://www.w3.org/People/howcome/TEB/www/hwl_th_18.html. 1995.

[32] Callum Gibson and Seth Robertson. vtwm. http://www.vtwm.org/. 2013.

[33] https://github.com/da4089/tvtwm.

[34] Thomas E LaStrange. “swm: An X Window Manager Shell.” In: USENIX Summer. 1990,

pp. 299–306.

[35] Callum Gibson and Seth Robertson. vtwm-5.4.7.tar.gz.

http://sourceforge.net/projects/vtwm/files/vtwm-5.4.7.tar.gz. 2005.

[36] Window Maker Home. http://windowmaker.org. 2017.

[37] The GNUStep Project.WindowMaker. http://repo.or.cz/wmaker-crm.git.

[38] The GNUStep Project.WindowMaker Tour.

http://windowmaker.org/guidedtour/index.html.

48

https://stuff.mit.edu/afs/athena/project/windowmanagers/dev/uwm/
http://www.linuxplanet.com/linuxplanet/reports/3000/1
http://xwinman.org/archive/twm/twm-X11R6-xc-fix13.tar.gz
http://www.ctwm.org/index.html
https://www.w3.org/People/howcome/TEB/www/hwl_th_18.html
http://www.vtwm.org/
https://github.com/da4089/tvtwm
http://sourceforge.net/projects/vtwm/files/vtwm-5.4.7.tar.gz
http://windowmaker.org
http://repo.or.cz/wmaker-crm.git
http://windowmaker.org/guidedtour/index.html


[39] Blackbox Wiki. http://blackboxwm.sourceforge.net. 2006.

[40] fluxbox.org. http://fluxbox.org/. 2018.

[41] Openbox. http://openbox.org/wiki/Main_Page. 2018.

[42] http://man.cat-v.org/plan_9/1/rio.

[43] http://man.cat-v.org/plan_9/4/rio.

[44] David Hogan. 9wm. https://github.com/9wm/9wm. 1996.

[45] Decklin Foster. aewm. http://www.red-bean.com/decklin/aewm/. 2007.

[46] Lars Bernhardsson. Larswm. http://porneia.free.fr/larswm/larswm.html. 2004.

[47] James Carter. lwm. http://www.jfc.org.uk/software/lwm.html.

[48] Benjamin Drieu. w9wm. http://www.drieu.org/code/w9wm.en.html. 2000.

[49] Nick Gravgaard.Windowlab. https://github.com/nickgravgaard/windowlab.

2016.

[50] Decklin Foster. aewm source code.

http://www.red-bean.com/decklin/aewm/aewm-1.3.12.tar.bz2. 2007.

[51] Ciaran Anscomb. evilwm. http://www.6809.org.uk/evilwm/. 2015.

[52] Michael Cardell Widerkrantz. mcwm. http://hack.org/mc/hacks/mcwm/. 2015.

[53] venam. A fast floating WM written over the XCB library and derived from mcwm.

https://github.com/venam/2bwm. 2017.

[54] Marius Aamodt Eriksen. cwm. https://github.com/chneukirchen/cwm. 2017.

49

http://blackboxwm.sourceforge.net
http://fluxbox.org/
http://openbox.org/wiki/Main_Page
http://man.cat-v.org/plan_9/1/rio
http://man.cat-v.org/plan_9/4/rio
https://github.com/9wm/9wm
http://www.red-bean.com/decklin/aewm/
http://porneia.free.fr/larswm/larswm.html
http://www.jfc.org.uk/software/lwm.html
http://www.drieu.org/code/w9wm.en.html
https://github.com/nickgravgaard/windowlab
http://www.red-bean.com/decklin/aewm/aewm-1.3.12.tar.bz2
http://www.6809.org.uk/evilwm/
http://hack.org/mc/hacks/mcwm/
https://github.com/venam/2bwm
https://github.com/chneukirchen/cwm


[55] OpenBSD. FAQ - The X Window System.

https://www.openbsd.org/faq/faq11.html#Intro. 2017.

[56] Marius Aamodt Eriksen. CWM(1). https://man.openbsd.org/cwm. 2017.

[57] wmi-11. https://dl.suckless.org/wmi/wmi-11.tar.gz.

[58] Yaroslav Rastrigin. TrsWM.

https://web.archive.org/web/20070104075513/http:

//yarick.territory.ru/trswm/. 2004.

[59] Jérémie Courrèges-Anglas. Ratpoison. http://www.nongnu.org/ratpoison/. 2017.

[60] https://web.archive.org/web/20120919235334/http://wmi.suckless.org/.

2012.

[61] Anselm R. Garbe. wmii. https://github.com/0intro/wmii.

[62] Suckless. dwm - dynamic window manager. https://git.suckless.org/dwm/. 2017.

[63] Suckless. dwm - dynamic window manager. https://dwm.suckless.org. 2017.

[64] patches. https://dwm.suckless.org/patches/.

[65] Rinaldini Julien (pyknite). catwm is a very simple tiling window manager.

https://github.com/pyknite/catwm. 2011.

[66] moetunes. A minimal dynamic tiling window manager built from catwm.

https://github.com/moetunes/dminiwm. 2014.

[67] Ivan Kanakarakis (c00kiemon5ter). tiny but monstrous tiling window manager.

https://github.com/c00kiemon5ter/monsterwm. 2012.

50

https://www.openbsd.org/faq/faq11.html#Intro
https://man.openbsd.org/cwm
https://dl.suckless.org/wmi/wmi-11.tar.gz
https://web.archive.org/web/20070104075513/http://yarick.territory.ru/trswm/
https://web.archive.org/web/20070104075513/http://yarick.territory.ru/trswm/
http://www.nongnu.org/ratpoison/
https://web.archive.org/web/20120919235334/http://wmi.suckless.org/
https://github.com/0intro/wmii
https://git.suckless.org/dwm/
https://dwm.suckless.org
https://dwm.suckless.org/patches/
https://github.com/pyknite/catwm
https://github.com/moetunes/dminiwm
https://github.com/c00kiemon5ter/monsterwm


[68] Jari Vetoniemi (Cloudef). Port of monsterwm to xcb.

https://github.com/Cloudef/monsterwm-xcb. 2016.

[69] Robin Schroer (sulami). Fast dynamic tiling window manager.

https://github.com/sulami/FrankenWM. 2017.

[70] Julien Danjou. Announcing ”awesome”. http:

//article.gmane.org/gmane.comp.window-managers.dwm/3285/match=awesome.

2007.

[71] Uli Schlachter. https://github.com/awesomeWM/awesome.

[72] Sander Van Dijk Anslem R. Garbe. 2wm 0.1.

https://dl.suckless.org/misc/2wm-0.1.tar.gz. 2007.

[73] Michael Stapelberg. i3wm. https://i3wm.org.

[74] Official Sawfish website. http://sawfish.wikia.com/wiki/Main_Page. 2017.

[75] Sawfish Window-Manager. https://github.com/SawfishWM/sawfish. 2017.

[76] Viewports. https://sawfish.tuxfamily.org/sawfish.html/Viewports.html.

[77] Qtile - A hackable tiling window manager written in Python. http://www.qtile.org/.

2017.

[78] Elmo Mäntynen. PYWM - your Python Window Manager.

http://pywm.sourceforge.net/. 2006.

[79] Elmo Mäntynen. PyWM Source Code.

https://sourceforge.net/projects/pywm/files/pywm/0.1-1-a4-1/pywm-0.1-

1-a4-1.tar.bz2/download. 2006.

51

https://github.com/Cloudef/monsterwm-xcb
https://github.com/sulami/FrankenWM
http://article.gmane.org/gmane.comp.window-managers.dwm/3285/match=awesome
http://article.gmane.org/gmane.comp.window-managers.dwm/3285/match=awesome
https://github.com/awesomeWM/awesome
https://dl.suckless.org/misc/2wm-0.1.tar.gz
https://i3wm.org
http://sawfish.wikia.com/wiki/Main_Page
https://github.com/SawfishWM/sawfish
https://sawfish.tuxfamily.org/sawfish.html/Viewports.html
http://www.qtile.org/
http://pywm.sourceforge.net/
https://sourceforge.net/projects/pywm/files/pywm/0.1-1-a4-1/pywm-0.1-1-a4-1.tar.bz2/download
https://sourceforge.net/projects/pywm/files/pywm/0.1-1-a4-1/pywm-0.1-1-a4-1.tar.bz2/download


[80] A small, flexible, scriptable tiling window manager written in Python.

https://github.com/qtile/qtile. 2017.

[81] Everything you need to know about Qtile. http://docs.qtile.org/en/latest/. 2016.

[82] xmonad | the tiling window manager that rocks. http://xmonad.org.

[83] Spencer Janssen. xmonad. https://github.com/xmonad/xmonad. 2017.

[84] Wouter Swierstra. “Xmonad in Coq (Experience Report): Programming a Window

Manager in a Proof Assistant”. In: SIGPLAN Not. 47.12 (Sept. 2012), pp. 131–136. ISSN:

0362-1340. DOI: 10.1145/2430532.2364523. URL:

http://doi.acm.org/10.1145/2430532.2364523.

[85] David Bjergaard. stumpwm.github.io/. https://stumpwm.github.io/. 2017.

[86] The Stump Window Manager. https://stumpwm.github.io/. 2017.

[87] Extension Modules for StumpWM. https://github.com/stumpwm/stumpwm-contrib.

2017.

[88] Nick Welch. TinyWM. http://incise.org/tinywm.html. 2005.

[89] Philippe Brochard. CLFSWM. https://common-lisp.net/project/clfswm/. 2012.

[90] Philippe Brochard. A(nother) Common Lisp Full Screen Window Manager.

https://github.com/spacefrogg/clfswm. 2015.

[91] Michael Stapelberg. i3. https://github.com/i3/i3. 2017.

[92] Michael Stapelberg. i3 User’s Guide. https://i3wm.org/docs/userguide.html.

2013.

[93] Michael Stapelberg. i3-msg(1). https://build.i3wm.org/docs/i3-msg.html. 2012.

52

https://github.com/qtile/qtile
http://docs.qtile.org/en/latest/
http://xmonad.org
https://github.com/xmonad/xmonad
http://dx.doi.org/10.1145/2430532.2364523
http://doi.acm.org/10.1145/2430532.2364523
https://stumpwm.github.io/
https://stumpwm.github.io/
https://github.com/stumpwm/stumpwm-contrib
http://incise.org/tinywm.html
https://common-lisp.net/project/clfswm/
https://github.com/spacefrogg/clfswm
https://github.com/i3/i3
https://i3wm.org/docs/userguide.html
https://build.i3wm.org/docs/i3-msg.html


[94] Thorsten Wißmann. herbstluftwm. https://www.herbstluftwm.org/. 2017.

[95] A manual tiling window manager for X11.

https://github.com/herbstluftwm/herbstluftwm. 2017.

[96] Thorsten Wißmann. herbstluftwm(1).

http://herbstluftwm.org/herbstluftwm.html. 2014.

[97] Bastien Dejean. Simple X hotkey daemon. https://github.com/baskerville/sxhkd.

2017.

[98] Bastien Dejean. bspwm. https://github.com/baskerville/bspwm. 2017.

[99] Antti Korpi. experimental panning X window manager, with an infinite desktop.

https://github.com/anko/basedwm. 2015.

[100] LiveScript - a language which compiles to JavaScript. http://livescript.net/. 2016.

[101] Antti Korpi. transparent fullscreen click-through WebKit browser window, for making

cool desktop HUDs. https://github.com/anko/hudkit. 2017.

[102] Chris Feng. Emacs X Window Manager. https://github.com/ch11ng/exwm. 2018.

[103] Chris Feng. EXWM User Guide. https://github.com/ch11ng/exwm/wiki. 2017.

[104] Patrick Haller. Use X11 without a window manager.

https://github.com/patrickhaller/no-wm. 2017.

[105] dcat. wmutils. https://github.com/wmutils. 2017.

[106] Set of window manipulation tools. https://github.com/wmutils/core. 2017.

[107] Useful bits and pieces. https://github.com/wmutils/contrib. 2017.

53

https://www.herbstluftwm.org/
https://github.com/herbstluftwm/herbstluftwm
http://herbstluftwm.org/herbstluftwm.html
https://github.com/baskerville/sxhkd
https://github.com/baskerville/bspwm
https://github.com/anko/basedwm
http://livescript.net/
https://github.com/anko/hudkit
https://github.com/ch11ng/exwm
https://github.com/ch11ng/exwm/wiki
https://github.com/patrickhaller/no-wm
https://github.com/wmutils
https://github.com/wmutils/core
https://github.com/wmutils/contrib


[108] Official FVWM repository. https://github.com/fvwmorg/fvwm. 2017.

[109] Operating System Market Share. https://netmarketshare.com/operating-

system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%

3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%

22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%

3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%

22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%

22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-

12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-

1000%22%7D. 2017.

[110] Wayland. https://wayland.freedesktop.org/.

[111] Drew DeVault et al. Sway. http://swaywm.org/.

[112] Drew DeVault. i3 feature support. https://github.com/swaywm/sway/issues/2.

2016.

[113] Preston Carpenter et al.Way Cooler. https://github.com/way-cooler/way-cooler.

[114] Preston Carpenter et al. Customizable Wayland compositor (window manager).

https://github.com/way-cooler/way-cooler. 2018.

[115] Drew DeVault et al. i3-compatible Wayland compositor.

https://github.com/swaywm/sway. 2018.

[116] Drew DeVault. The future of Wayland, and sway’s role in it.

http://sircmpwn.github.io/2017/10/09/Future-of-sway.html. 2017.

54

https://github.com/fvwmorg/fvwm
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222016-12%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://wayland.freedesktop.org/
http://swaywm.org/
https://github.com/swaywm/sway/issues/2
https://github.com/way-cooler/way-cooler
https://github.com/way-cooler/way-cooler
https://github.com/swaywm/sway
http://sircmpwn.github.io/2017/10/09/Future-of-sway.html


[117] Ellis S Cohen et al. “Automatic strategies in the Siemens RTL tiled window manager”. In:

Computer Workstations, 1988., Proceedings of the 2nd IEEE Conference on. IEEE. 1988,

pp. 111–119.

[118] Dileep A Divekar and Richard I Dowell. “Corner stitching: A data-structuring technique

for VLSI layout tools”. In: IEEE Transactions on Computer-Aided Design 3.1 (1984),

p. 87.

[119] Eser Kandogan and Ben Shneiderman. “Elastic Windows: evaluation of multi-window

operations”. In: Proceedings of the ACM SIGCHI Conference on Human factors in

computing systems. ACM. 1997, pp. 250–257.

[120] Blaine A. Bell and Steven K. Feiner. “Dynamic Space Management for User Interfaces”.

In: Proceedings of the 13th Annual ACM Symposium on User Interface Software and

Technology. UIST ’00. San Diego, California, USA: ACM, 2000, pp. 239–248. ISBN:

1581132123. DOI: 10.1145/354401.354790. URL:

http://doi.acm.org/10.1145/354401.354790.

[121] Olivier Chapuis and Nicolas Roussel. “Metisse is not a 3D desktop!” In: Proceedings of

the 18th annual ACM symposium on User interface software and technology. ACM. 2005,

pp. 13–22.

[122] Christopher Jeffrey. A compositor for X11. https://github.com/chjj/compton. 2017.

[123] Ben B Bederson, Larry Stead, and James D Hollan. “Pad++: Advances in multiscale

interfaces”. In: Conference companion on Human factors in computing systems. ACM.

1994, pp. 315–316.

55

http://dx.doi.org/10.1145/354401.354790
http://doi.acm.org/10.1145/354401.354790
https://github.com/chjj/compton


[124] Ben Bederson and Jonathan Meyer. “Implementing a zooming user interface: experience

building Pad++”. In: ().

56


	Introduction
	Motivation
	X11 Window Managers
	Overview
	Tab Window Manager
	NeXTSTEP
	Rio
	Suckless
	Scripting
	Socket-control
	Unconventional Window Managers
	Discussion

	Other Systems
	Windows and macOS
	Wayland
	Experimental Operating Systems
	Research Window Managers

	Thesis Window Manager
	Framework and Methodology
	Algorithms and Features

	Discussion
	Future Work
	Conclusions

