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ABSTRACT 

 

INTELLIGENT PERFORMANCE, ARCHITECTURE ANALYSIS, AND 

FUNCTIONAL SAFETY METRICS OF AUTOMATED STEERING SYSTEMS FOR 

AUTONOMOUS VEHICLES 

 

by 

 

Saif Yoseif Salih  

 

 

Adviser:  Richard Olawoyin, Ph.D. 

 

 

The increasing complexities and functionalities of the electrical and/or electronic 

(E/E) systems in present day automobiles, make it challenging for original equipment 

manufacturers (OEMs) and suppliers to ensure a high level of safety in the automotive 

critical safety systems. The steering systems represent a standard functionality on every 

vehicle to control the direction of the vehicle literally and provide more stability for the 

vehicle motion. High automated vehicles require intelligent steering systems in which more 

Advanced Driver Assistance Systems (ADAS) applications are linked together such as 

cameras, radars, Lidars, and global positioning system (GPS). These integrated systems 

and applications are required for environmental perception, communications, data fusion, 

planning, prediction, decision making, and actuation processes all in real-time. Therefore, 

hardware (HW) and software (SW) solutions are developed and implemented in 

compliance with ISO 26262 standard, Road Vehicles – Functional Safety. Due to the lack 

of the steering systems published information and the crucial role of the steering associated 

with complex functionalities challenges, this dissertation provides a case study of how the 
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steering systems of different automated driving levels can be complied with ISO 26262 

given the emerging challenges imposed by the electric vehicle curb weight, increasing 

trend for the near future. The analysis focused on the safety lifecycle of the E/E components 

of the steering systems to ensure high availability of the steering systems and avoid any 

sudden loss of assistance (SLOA). Various safety mechanisms were evaluated and 

analyzed to improve the functional safety of the steering systems architecture and logic 

control paths. Based on the proposed controllability metrics performed in this dissertation, 

it was found that the hazard or malfunction of the steering systems shifted from the 

Automotive Safety Integrity Level (ASIL) B to ASIL C, the second most critical safety 

level. To comply with the ISO 26262 and to mitigate the residual risks of E/E systems 

failure, several solutions proposed in the concept for compliance with the standard such as 

redundant HW or SW in the controller path.  

The controllability classes or categories of the high automated vehicles based on 

the vehicle global position related to the lane marker lines were investigated and redefined 

to accommodate for the machine or system in the loop controlling the dynamic driving task 

(DDT) in autonomous vehicle maneuvering. A new wheel offset marker concept was 

introduced when the vehicle is approaching the lane marker lines. Also, it was found that 

the are human factors challenges in SAE level 4 and 5 and the interaction between the 

driver and the automated control systems of the vehicle that require human machine 

interface (HMI) modalities. The driver – automated control system engagement in the 

steering system of the vehicles is one of the crucial control complex scenarios that add 

uncertainties and potential risks when handing over the steering control between the driver 
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and-or the automated control system with the allotted time. This study highlights the need 

to define the driver intervention in high-automated vehicle of SAE level 4 and 5 in order 

to sustain the traffic safety and keep the vehicle in the intended trajectory or path. This can 

be addressed by deploying HMI and the human factor implementation in ISO 26262 to 

standardize the driver-machine relation with the DDT in real time and interactive 

environment. Both manual and automated driving modes demand the functional safety 

implementation of the steering system to mitigate any system malfunction or failure. 

An artificial neural network (ANN) model was developed to predict the steering 

torque commands and steering wheel angle (SWA) based on the steering system dataset 

and vehicle’s parameters. ANN model was developed using Neural Network Training 

(nntraintool) toolbox of MATLAB to evaluate the intelligent steering system performance. 

The trained ANN model delivered a regression value of ~ 98.5 % versus the measured 

SWA. The results showed that the ANN was effective in predicting the steering wheel 

angle patterns based on the input dataset,  considering the non-linearity and complexity of 

the steering system control. This finding helps to improve the functional safety of      

autonomous vehicles and introduce the concept of intelligent steering systems for path and 

trajectory planning. Therefore, ANN should be implemented as an abstraction layer in the 

control module and deployed in the control and actuation processes to support sensor data 

fusion and support the prediction and pattern recognition.  
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SUMMARY 

 

      The design, development and deployment of advanced functionalities of the highly 

automated steering systems is the key of highly automated and intelligent vehicles 

driving systems. These developments are enabled within the scope of the ISO 26262 –

functional safety of the road vehicles holistic standard. Inherently, safe steering systems 

design means “the absence of unreasonable risk due to hazard caused by malfunctioning 

behavior of the electrical/electronic systems). In this dissertation, the sudden loss of the 

assistance of the vehicle steering systems and its safety integrity were analyzed and a new 

design guideline was proposed based on the experiment and the model results findings. 

The sudden loss of assistance of steering systems at higher rack forces and more 

advanced driver assistant systems functions leads to the recommendation to change the 

ASIL rating from ASIL B to ASIL C based on HARA and ISO 26262 metrics for the 

sudden loss of assistance scenario. New solutions were analyzed and results showed that 

the steering systems architecture needs redundancy in the control path to meet these 

emerging challenges. It is possible to achieve ASIL C for electric power steering (EPS) 

systems using various types of architectures at the level of control logic paths utilizing 

the redundancy concepts. ASIL C mitigation or risk reduction was achieved by 

incorporating a dual core microcontroller (µc) integrated with a power management and 

safety-monitoring unit at the same board. The proper implementation of this logic control 

path of dual core microcontroller integrated with power management and safety 

monitoring makes the EPS system simpler, faster, reliable and more cost effective. This 
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allows steering system designers to easily and effectively add and retrofit functional 

safety to the EPS systems for higher levels of automated vehicles in the future. The 

combination of safe acquisitions, decision making and actuation along with the ASIL 

decomposition simplify the hardware architecture for the market of highly available EPS 

systems and reduce the time to deploy highly available EPS systems compliant with the 

ISO 26262 Standard.  

      The analysis of model-based fault injection for the steering system of high-automated 

vehicles has shown that the steering wheel angle is of high importance and classified as 

an ASIL D subsystem based on the risk assessment and control metrics that were 

developed in chapter four. The finding of the modeling of chapter four also redefined the 

controllability classes or categories of the high automated vehicles based on the vehicle 

global position related to the lane marker lines to accommodate for the machine or 

system in the loop controlling the dynamic driving task (DDT) in autonomous vehicle 

maneuvering. A new wheel offset marker concept was introduced when the vehicle is 

approaching the lane marker lines. Also, it was found that the are human factors 

challenges in SAE level 4 and 5 and the interaction between the driver and the automated 

control systems of the vehicle that require human machine interface (HMI) modalities as 

explained in table 4.6 in chapter 4. The driver – automated control system engagement in 

the steering system of the vehicles is one of the crucial control complex scenarios that 

add uncertainties and potential risks when handing over the steering control between the 

driver and-or the automated control system with the allotted time. Even when the driver 

is in full control of the steering system, the ESP is still responsible for approximately     
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(~ 80%) of the SWT required to steer the vehicle. Therefore, the steering system design 

and functional safety metric require specific architecture redundancies in SW, HW and 

system levels for high availability and risk mitigation mechanisms. Chapter four 

highlighted the need to define the driver intervention in high-automated vehicle of SAE 

level 4 and 5 in order to sustain the traffic safety and keep the vehicle in the intended 

trajectory or path. This can be addressed by deploying HMI and the human factor 

implementation in ISO 26262 to standardize the driver-machine relation with the DDT in 

real time and interactive environment. Both manual and automated driving modes 

demand the functional safety implementation of the steering system to mitigate any 

system malfunction or failure. Therefore, the fault injection concept supports the safety 

mechanisms implementation and correctness of the system architectural design with 

respect to faults and failures during the start-up and the runtime. This improves the test 

coverage of developing safe control system to operate as designed and meet the safety 

requirements in compliance with the OEMs and government regulations. Moving from 

the conventional control systems to the artificial intelligence (AI) and the machine 

learning (ML) is another key enabler for the highly automated driving systems. It was 

demonstrated that the developed artificial neural network (ANN) in this dissertation can 

achieve an acceptable level and of safety performance of the complex functions of the 

steering systems. In chapter five, the problem of predicting the steering wheel torque 

commands and the steering wheel angles scenarios for autonomous vehicles has been 

considered and explored. High fidelity dSPACE hardware-in-the-loop simulator bench 

dataset of steering system input and output parameters from vehicle were collected and 
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used to build the ANN model for training and validation of the steering column torque 

commands and the steering wheel angle. The performance of the ANN model to predict 

the steering command based on the dataset was validated with a regression value of ~ 

98.5 % versus the measured steering wheel angle. The results show that the ANN and 

ML can effectively predict the steering patterns accurately given the fact that the non-

linearity and complexity of the steering system control. This improves the safety highly 

automated driving system vehicles and confirm the feasibility of the concept of intelligent 

steering systems for path and trajectory planning based on the prediction patterns of the 

steering systems peripheral signals and parameters.  Artificial intelligence finds its way to 

the most critical safety systems of the automotive for higher reliability and performance. 

Therefore, the ANN should be implemented as an abstraction layer in the control module 

to support sensor data fusion and support the prediction, pattern recognition and the 

vehicle intended trajectory. 
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CHAPTER ONE 

 

  INTRODUCTION  

 

 

 

The vehicle traffic accidents and collisions still claim tens of lives on the roads in 

the United States and Worldwide despite the recent development and the automation 

evolutionary process of the automobiles and vehicular safety features over the past 

decade. In 2020, there were approximately 1.5 million deaths due to road accidents 

worldwide according to the National Highway Traffic Safety Administration (NHTSA) 

under the Fatality Analysis Reporting System (FARS) [1]. The Fatality Analysis 

ensus thaReporting System is a nationwide c t provides NHTSA, Congress and the 

American public yearly reports and data on fatal injuries suffered in motor vehicle traffic 

crashes  and accidents statistics [2]. motorists-Table 1.1 reports the motorists and non 

killed in traffic crash accidents in the United States each year from 2014 to 2020 posted 

by the NHTSA [3]. It is clear that the fatality crash rates increased constantly from 2017 

to 2019, however, the fatality rate decreased from 2017 to 2019. To exclude the effect of 

the vehicle mile travelled (VMT), which is used to calculate the fatality rates, the % 

change column in table 1.1 was calculated based on the fatality column to reflect the 

changes more accurately based on the causality statistics.  The decrease of the fatalities 

from 2017 to 2019 shown in table 1.1 was due to the deployment of driver assistance 

technologies and safety systems that increased drivers and pedestrian’s safety and 

reduced the human errors and the severity of crashes [3]. However, the fatality rate for 

2020 was 1.37 fatalities per 100 million VMT, up from 1.11 fatalities per 100 million 
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VMT in 2019. The projected fatality and fatality rate for 2020 would be the greatest since 

2007 and it is a 7.2 % increase compared with 2019. This shows a significant increase in 

deaths during 2020 despite the decline of VMT due to restrictions imposed in 2020 to 

curb the spread of COVID-19. 

 

Table 1.1. US Traffic Fatality Data Report [3].   

Year Fatality 

Crashes 

Fatality % Change  Fatality Rate  

2014 30,019 32,744 -0.5 % 1.08 

2015 30,855 35,484 + 8.4 % 1.15 

2016 31,770 37,806 +6.5 % 1.19 

2017 32,028 37,473 -0.9 % 1.17 

2018 32,353 36,560 -1.7 % 1.13 

2019 33,244 36,096 -2.0 % 1.11 

2020 34,866 38,680 +7.2 % 1.37 

 

The main behaviors driving an increase in deaths in 2020 include impaired 

driving, speeding and failure to wear which are related to the driver. To make the ground 

transportation driving system safer and more reliable, the ADAS equipped with active 

and passive safety systems are developed and deployed in modern vehicles with higher 

levels of automation. Consequently, ADAS and automated driving come with benefits 

and aim at assisting and improving the driver’s control over the vehicle by avoiding 

undesired situations, such the Anti-lock Brake System (ABS), Traction Control System 

(TCS), and the Electric Power Steering. The automated driving technology presents some 
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significant human-factors challenges that escalate OEMs, suppliers, and developers to 

work together to define the key concepts of driving taxonomy, human-machine interface 

technology and the driver information and notification systems (DINS) [4].  

The ground transportation ecosystem consists of three main elements: the driver,      

vehicle, and the environment or surrounding interaction with each other as shown in 

figure 1.1. Every element has its properties. 

 

 

 
 

Figure 1.1. Ground transportation ecosystem main elements interacting with each other.  

 

The characteristics are as followings: 

1- The driver has knowledge, skills, driver traits, states, and expectancy and reaction 

response to upcoming events in real-time. 

2- The vehicle has HMI, driver vehicle interface (DVI), support systems, connected 

and automated vehicle (CAV) systems that interact back and forth with the driver. 
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3- The environment has roads, traffic, weather, surrounding, and connected 

infrastructure and represent the domain that contains the driver and the vehicle 

together.  

According to a recent study that investigated critical reasons for crashes published 

by the National Motor Vehicle Crash Causation Survey (NMVCCS) that the drivers 

cause approximately ~94 % (±2.2%) of the crashes at the national level in the United 

States. The driver-related critical reasons are broadly classified into recognition errors, 

decision errors, performance errors, and non-performance errors [5].  The critical reason 

3 % respectively. To~2 % and ~was assigned to vehicles and the environment were  

advanced active safety“more recent developments in ” zero crash future,“achieve a  

systems” have introduced additional sensors such as onboard cameras, radars, LIDARS, 

infrared cameras, steering wheel angle and speed sensors, etc., and additional actuators 

such as active steering using electric motor assist, active suspensions and advanced 

emergency braking system [6]. The integration of these on-board sub-systems aims to 

drive the vehicle partially or fully autonomously by controlling the throttle of the 

propulsion system and the chassis (Steering and braking modules) [7, 8]. A new 

ambitious approach towards using drive by wire (DbW) where most mechanical 

components are replaced by E/E components.  This is the reason that the Road Vehicles – 

Functional Safety (Parts 1-11) ISO26262 Standard was developed to provide a standard 

for generic functional safety management in the 2nd edition of 2018 for automotive 

electrical and electronic applications and control systems as shown in figure 1.2 [9].  
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Figure 1.2. ISO 26262 road vehicle- functional safety automotive electrical and electronic 

systems and components. 

 

1.1 Motivation and Background 

Functional safety has become one of the most significant challenges for 

autonomous and connected vehicles (ACV) due to the advancement in the automotive 

industry and the complexity of implemented control systems. The automotive industry is 

transforming from conventional driving technology (where the driver’s functionalities; 

brain, eyes, feet and hands) are part of the control loop to partially or fully autonomous 

vehicle development, where the microcontrollers (µϲ) and systems on the chip (SoC) are 

in the control loop (also referred as self-driving vehicles). 

The Society of Automotive Engineers (SAE) - levels of autonomy defines SAE 

level 1 and 2 as partial autonomy, which requires the driver to execute or supervise the 

longitudinal and the lateral vehicle motion control at all times. The conditional driving 

automation of level 3 is where the driver and the system can exchange the vehicle control 
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with the fallback feature if the automated system fails. SAE level 4 is referred to as high 

driving automation, where the automated driving system performs all driving operations      

under specific driving modes and the fallback system is able to appropriately perform 

without any expectation of the driver to intervene. Full driving automation or SAE level 5 

is defined as sustained and unconditional performance by the automated driving system 

of the entire driving dynamic tasks. Thus, the driver, if presented in the vehicle, may 

perform other tasks while a dedicated control system controls the vehicle or even there is 

no need for the driver in the vehicle at all [10]. Table 1.2 shows SAE level 0 through 5.  

 

Table 1.2. SAE levels of automation [10].  

SAE 

level 

SAE name  Long., Lateral 

Control 

Monitor 
environment  

Backup  System capability  

0 Manual Driver Driver Driver - 

 

1 Assistance Driver + 

System 

 

Driver Driver Some driving modes 

2 Partial  System Driver Driver Some driving modes 

 

Automated Driving System Monitors Driving Environment  

3 Automation 

with 

conditions  

System System Driver  Some driving modes  

4 Advanced 

Automation  

System system system Some driving modes 

5 Complete 

automation  

system system system All driving mode 

 

The automated driving control system mainly consists of electrical and electronic (E/E) 

components linked to sensors, actuators, and other mechanical components such as gears, 

drivetrains, throttle valves, brake modules, steering rack and pitman arms. Thus, more 
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stringent safety methodologies are deployed in certain control systems of the vehicle such 

as the electronic control unit (ECU) of the brake, steering, and the propulsion systems. 

The quantity of these ECU modules are increasing in modern vehicles, numbering into 

the hundreds of units interacting with each other and with the surroundings.  As a result 

of more complexity of automated driving system architecture, software and hardware 

interaction and interfacing in the control systems which increases the risk of both 

systematic and random hardware failures. In order to reduce these risks and minimize any 

potential failure or loss of control, ISO 26262 guides the automotive original equipment 

manufacturers and suppliers (tier 1 and 2) to ensure adequate and acceptable levels of 

safety procedures are implemented. ISO 26262 consists of eleven parts as shown in figure 

1.3 [11].  

The main purpose of the ISO 26262 is to provide a standard for generic functional 

safety management for automotive electrical and electronic applications and systems. The 

ISO 26262 Standard provides guidelines and instructions throughout the product 

development process of the V model, from the conceptual development through 

decommissioning phase [11]. It explains in detail how to reduce the level of risk of a 

safety goals ing the component to acceptable level by sett-system, component or sub 

(SG) and developing suitable safety mechanisms (SM) to monitor, detect and mitigate 

any faults, errors, and failures in these E\E systems. It also provides an overview to 

manage the documentation flow of the product development processes, which consist of 

management, development which consist of management, development, production  
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Figure 1.3. Generic parts of ISO 26262 standard [11].  

 

operation, service and decommission. Therefore, complying with ISO 26262 will reduce 

the risk of systematic failures of the E/E and control the random hardware faults and 

failures to acceptable levels without any violation for the predetermined safety goals. The 

safety goals and measures are achieved and complied with through the implementation of 

safety plans, and later the safety mechanism to manage, process, and support technical 

requirements of the safety concepts. Part 3 of the ISO 26262 Standard deals with the 

ASIL computation and safety-oriented analysis. ASIL classification can be calculated and 

determined by the controllability (C), the severity (S) and the exposure (E) [11-13].  
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The ASIL rating specifies or identifies the item’s necessary safety requirements for 

achieving a tolerable level of residual risk in case of a system malfunction. In addition, it 

details the potential hazards, the safety goals, and the level of criticality if a specific 

component or algorithm fails under specific operational scenarios. One of the most 

critical safety systems in the autonomous and connected vehicle is the body control 

module (BCM), which consists of longitudinal control module e.g. adaptive cruise 

control (ACC), anti-lock brake system; and the lateral control module e.g. power steering 

and electronic stability controls. These chassis control modules are managed and 

controlled by dedicated electronic control units, which consist mainly of E/E components 

connected to sensors and actuators by the general purposes inputs and outputs (GPIOs).  

The highly automated driving of SAE levels 4 requires the control system to continue the 

driving task even with the failures presented in system components; hardware (HW), 

software (SW) or both to continue the vehicle control [14]. Therefore, a fail-operational 

system must control the vehicle so that no safety violations will occur, whether in regards 

to the driver, passengers and other road users. This includes any functions and features of 

the fallback level to ensure the safety goals are maintained and to prevent any violations 

of the safety goals. However, in SAE level 2 and 3, the backup is the driver (human) in 

case of system malfunction as shown in table 1.2. This means that the driver must 

compensate for the system assistance at any time during the maneuver, in case of a SLOA 

by putting the required steering wheel torque (SWT) to maneuver the vehicle. The SWT, 

which is the driver’s power to control the steering wheel, is transmitted to the torsion      

bar and rack & pinion gears. This power then is detected by a torque sensor and transmits 
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to the EPS ECU. The ECU then applies electric current (amount of power assist) 

according to the SWT and car speed and other predefined parameters. The National 

Highway Traffic Safety Administration published different values for the human driver 

steering capability under different driving conditions [15]. However, the maximum 

human SWT capability that can be applied on the steering wheel was not clear [15]. 

Different vehicles and/or vehicle configuration are capable of imposing different 

ut, which can reach up to 60 N.m. The amount oftorque inp’ demands on the drivers 

steering   assistance that the electric motor puts into the system is controlled so that the 

driver could steer the vehicle easily and comfortably. The EPS provides up to ~80% of 

the required steering torque to steer the vehicle under all speed and road conditions. 

Therefore, the driver is expected to provide the remaining ~20% [16]. There a lack of the 

human torque capability to steer or turn the steering wheel of the vehicle and this 

dissertation developed a framework to measure and report it in chapter three.  

With the deployment of the new technology of ADAS and autonomous vehicles 

controlling systems during the last decade, the concept of sensor fusion has been used in 

the higher autonomy level vehicles, in which multiple channels and sources information 

are connected and processed [17]. es the control module of the vehicle toIt enabl 

anticipate future events beforehand based on pattern recognition and dataset training 

(MPC) and the recurrent neural network (CNN) control s the model predictivesuch a .  

Consequently, it alerts the driver before performing any maneuver or action to avoid any 

potential danger or risk. In higher autonomy levels, the electronic control units make 

decisions based on the perception input and the programmed algorithm that reside in their 
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µc and systems on the chip. This is where artificial intelligence (AI) and machine 

learning (ML) have effectively played a key role in building a vehicular sensory platform 

with sensor fusion, decision maker, and actuation streams and pipelines.  

The parallel advancement and innovation in theory and hardware, High 

performance computer (HPC) systems in automotive applications have enabled the range 

of applications such as MPC and AI to be executed in real-time basis in automotive 

applications and controlling systems. Using the state-of-the-art math optimization solvers 

and rapid prototyping systems have enabled the control modules to perform complex 

calculations at a sufficient rate to meet the safety requirements of highly automated 

vehicles (HAV). This is the reason that the Ethernet and internet protocols (IPs) 

applications are recently used in the on-board communication and diagnostic such as 

diagnostic over internet protocol (DoIP) [18]. One solution that addresses the ecosystem 

of highly automated vehicles is what is now referred to as Vehicle-to-Everything (V2E) 

or (V2X) [19]. Horani et al studied the V2X communication for improved vision of 

ADAS function in challenging weather and proposed a vehicle-to-infrastructure (V2I) 

framework. The study explored the possibility of using a video data shared over V2I 

communication to detect the lane markers in adverse weather condition [19, 20].  They 

captured reference images in good visibility conditions in which lane marker lines were 

extracted and aligned to the sensed images using image registration technique over a 

dedicated short-range communication (DSRC) protocol. Another implementation of the 

V2E communication is when the vehicle is approaching a congested traffic or 

intersection. The vehicle ahead can send traffic data via vehicle-to-vehicle V2V 
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communication so that nearby vehicles use this as a priori and make decisions before 

arriving at that point [21]. The exchange of traffic data between vehicles and the 

sourroundings provide a unique opportunity to the ADAS applications and ground 

intelligent transportation systems (GITS).   

The integration of the vehicle on board and off board streams and data pipelines 

for vehicle positioning, traffic and surroundings information represent a promising 

solution for ADAS functions of autonomous vehicles (AV). Within that extent, the AI,      

ML, and communications are the essential components of this novel platform. This 

requires a new ecosystem where the cloud or the servers can be reached faster and with 

lower latency and delay. The intelligent traffic management (ITM) using multiple input- 

multiple output (MIMO) technology for AV was studied by Raiyn J. and shown to offer 

better results by reducing the delay than a sectored antenna in the field of 5G 

[22]. However, this increases the unreliability and vulnerability of the intelligent transport 

system (ITS) which must be able to handle not only the natural disturbance, but also 

attacks of malicious nature [23].  Cybersecurity is another crucial aspect that be carefully 

considered in V2X communication of the AV.   

The automation of the automobiles is an evolutionary process with the most 

recent advancement of AI, neural network processing (NSP) and deep machine learning 

(DML). Over the last decade, a significant progress has been made in the domain of the 

AI and DML pertaining to autonomous vehicles. This includes various fields such as 

perception, localization, mapping, trajectory planning, actuation and predictive control 

systems of the autonomous vehicles. Automated longitudinal and lateral control of the 
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vehicle require sensor data infusion, high available control architecture and monitoring 

system on the actuators to ensure the safety of the driver and other road users. There are 

several automation approaches for the lateral control of the vehicle in the literature. One 

recently proposed method is to use a camera based deep neural network (DNN) as an 

end-to-end self-driving system [24]. In order to predict the steering wheel angle, which 

controls the vehicle laterally, a neural network was created by NVIDIA to train images of 

the road ahead and predict the steering angles [25]. oach is thatThe drawback of this appr 

the network relies on the perception systems of the vehicle i.e. cameras and radars that 

are susceptible to the environment, weather conditions and signal noise and interfaces. In 

a related study, captured images of the highway maneuvers were trained using the ANN 

in the perception system [26]. Also, most of the published data and research utilizes the 

ANN, ML and AL in subsystems level such as perception or data fusion. It was reported 

that steering commands associated with road identical images were non-unique because 

images offsets the non-linear behavior of the yaw rate angle and not considering the 

vehicle speed in the input data. This dissertation develops a new framework to use the 

adaptive MPC and the ANN based on the end to end (ETE) automated control system 

rather than focusing in a specific subsystem level.  
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

 

 

Automated and intelligent transportation driving systems have attracted extensive 

attention and interest from academia, industry, and the public. Traffic safety and fuel 

efficiency is the main motivation for automated and connected vehicles. The connected 

automated vehicles are considered as mitigations of issues such as traffic congestion, 

road safety, and inefficient fuel consumption and pollutant emissions that the current      

road transportation system suffers from [27]. Some challenges reported by multi research 

groups can be summarized as the followings [27]: 

1. Ideal working conditions of the communication channel (e.g., no packet loss, 

communication failure, noise, etc.). 

2. Perfect knowledge of vehicle dynamics (vehicle parameters, road friction 

conditions, etc.). 

3. Perfect knowledge of the positions of the vehicles. Hence, additional 

investigation is required to understand how the aforementioned uncertainties 

affect cooperating driving scenarios.  

The society of automotive engineering standard SAE J3016 which is also known as 

(Surface Vehicle Recommended Practice) defines the dynamic driving task as: “all of the 

real-time operational and tactical functions required to operate a vehicle in on-road traffic 

[28]. In the context of driving automation systems, SAE J3016 provides detailed 

definitions for six levels of driving automotion, ranging from no driving automation 
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(level 0) to full driving automation (level 5) clarifying the role of the (human) driver 

and/or the automated control system. This leads to the definition of the automated driving 

system (ADS) that is defined as “the hardware and software that are collectively capable 

of performing the entire DDT on a sustained basis, regardless of whether it is limited to a 

specific operational design domain (ODD).” This is used to describe the higher driving 

automation system levels [28 ].  levels of 1. rding to the SAE J3016 Table 2.Acco 

driving automation, level 1 and 2 are defined as partial autonomy, which requires the 

driver to execute or supervise the longitudinal and the lateral vehicle motion control at all 

times. Table 2.1 shows SAE 0 through 2 DDT, OEDR and ODD detail.  

 

Table 2.1. Summary of levels 2 and below of driving automation [10]. 

L
ev

el
 

Name Narrative Definition 

DDT 

DDT Fall 

back 
ODD 

Sustained 

lateral and 

long. Vehicle 

motion control 

OEDR 

Driver performs part or all of the DDT     

0 No Driving Automation 

The performance by the driver of 

the entire DDT, even when 

enhanced by active safety systems. 

Driver Driver Driver n/a 

1 Driver Assistance 

The sustained and ODD-specific 

execution by a driving automation 

system of either the lateral or the 

longitudinal vehicle motion control 

subtask of the DDT (but not both 

simultaneously) with the 

expectation that the driver 

performs the remainder of the 

DDT. 

Driver and 

System 
Driver Driver Limited 

2 
Partial Driving 

Automation 

The sustained and ODD-specific 

execution by a driving automation 

system of both the lateral and 

longitudinal vehicle motion control 

subtasks of the DDT with the 

expectation that the driver 

completes the OEDR subtask and 

supervises the driving automation 

system. 

System Driver Driver Limited 



16 

 

The conditional driving automation of levels 3 and above are shown in table 2.2. 

is where the driver and the system can exchange the vehicle control with the fallback 

feature if the automated system fails. Level 4 is referred to as high driving automation, 

where the automated driving system performs all driving operations under specific 

driving modes and the fallback system is able to can appropriately perform without any 

expectation of the driver to intervene.  

Full driving automation or level 5 is defined as sustained and unconditional 

performance by the automated driving system of the entire DDT from point A to point B 

 

Table 2.2. Summary of levels 3 and above of driving automation [10, 28]. 

L
ev

el
 

Name Narrative Definition 

DDT 

DDT Fall 

back 
ODD 

Sustained 

lateral and 

long. 

Vehicle 

motion 

control 

OEDR 

ADS (“System”) performs the entire DDT (while engaged)     

3 
Conditional 

Driving Automation 

The sustained and ODD-specific 

performance by an ADS of the entire 

DDT with the expectation that the 

DDT fallback-ready user is receptive 

to ADS-issued requests to intervene, 

as well as to DDT performance-

relevant system failures in other 

vehicle systems, and will respond 

appropriately 

System System 

Fallback-

ready user 

(becomes 

the driver 

during 

fallback) 

Limited 

4 

High 

Driving 

Automation 

The sustained and ODD-specific 

performance by an ADS of the entire 

DDT and DDT fallback without any 

expectation that a user will respond 

to a request to intervene. 

System System System Limited 

5 
Full 

Driving Automation 

The sustained and unconditional 

(i.e., not ODD-specific) performance 

by an ADS of the entire DDT and 

DDT fallback without any 

expectation that a user will respond 

to a request to intervene. 

System System System Unlimited 
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 (Also known as door to door). Thus, the driver, if present, may perform other 

tasks while a dedicated control system controls the vehicle or even there is no need for 

the driver in the vehicle at all [29]. The control vehicle motion (CVM), which is the 

system operative part of the object event detection and response (OEDR), needs to be 

integrated in the ADS to provide status and capabilities of feasible maneuver and follow 

the planned trajectory. These subtasks are necessary in order to perform the DDT and to 

assure that the vehicle can be safely operated in higher automation mode such as SAE 

level 3, 4 or 5 [10 ,28]. The introduction of the on-board automated CVM increases the 

risks of hazards due to E/E malfunction, hence the complexity of vehicle control 

architecture increases as well. The deployment of the automated CVM requires the 

capability to be integrated with the sense vehicle motion (SVM) to detect the 

environment, locate its position, and operate the vehicle to get to the specified destination 

safely without human input. This includes the perception system sensors such as: camera, 

radars, LIDARs, GPS, and ultrasonic applications and additional actuators such as active 

steering, electronic braking and active suspensions systems. Vehicles equipped with these 

intelligent systems (SVM, CVM and actuation) are able to identify obstacles on the road 

such as pedestrians or other moving vehicles. Also, they can detect the lane markers and 

keep the vehicle in the center of the lane by applying steering actuation to avoid lane 

departures which is also known as lane keep assist (LKA). 

 Shih-Chieh Lin et al explained the architectural implications of autonomous 

driving systems in detail from the perception perspective. However, it lacked any 

controller information because the perception system was linked to a planner and an 
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action block [30].  based safety analysis-A model  (MBSA) was performed for the 

autonomous driving system for ACC controls longitudinal speed and LKA controls 

lateral trajectory [31]. l speedIt was concluded that the yaw rate and the longitudina  of the 

ego vehicle are critical elements (because they appear in order 1 cutsets) of the simulated 

sequence events. However, the main objective of the study was to study the traffic jam 

chauffeur using AltaRica language and Simfia software [31]. Figure 2.1 shows the 

dynamic driving task flow.  

 

 

Figure 2.1. Schematic view of the driving task (adapted from [29]). 

 

The Co-operative Systems are the most promising technology within the ITS framework. 

The word “co-operative” indicates that vehicles are collaborating with each other and 

with the infrastructure, exploiting wireless communications. The vehicle on-board active 

safety systems are integrated with the Co-operative Systems architecture to mitigate any 

potential risk or hazards due to mishap or malfunction of the control systems as shown in 

figure 2.2 [32].  
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Figure 2.2. Intelligent Transportation Systems consistent of cooperative systems and 

active safety systems integrated with each other to support the drivers in automated 

vehicles [32]. 

 

 The adaptive MPC technology is an effective control strategy that can be 

systematically taken into consideration the future prediction, patterns and the system 

operation constrain in design and operation stages [33]. The capabilities of the adaptive 

MPC for controlling multivariable plants (vehicle actuators) and parameters using the 

initial state of the plant within every application-imposed constraint i.e., minimum, and 

maximum values of speed, acceleration, steering positions, make it a suitable choice for 

autonomous driving applications, where the system faces dynamically changing 

environment and must satisfy crucial safety constraints. The current control action is 

obtained by solving on one at each sampling instant using an optimizer unit, starting with 

the initial state to generate a finite horizon open loop. The optimization yields an optimal 

control sequence and the first control in this sequence is applied to the plant. This is the 

main difference from the conventional control strategy, which utilizes a pre-computed 
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control law [34]. In classical controls, it is challenging to achieve closed-loop stability 

with (non-parametric) uncertainties. Since adaptive MPCs are online and real-time 

updated and are based on the long range but finite horizon concept, they establish the 

control sequence so as to guarantee the closed-loop stability. Figure 2.3 shows the 

adaptive MPC past and future attributes and control action within the length of the 

control horizon to solve the optimization problem at each time step.  

 

 

Figure 2.3. Adaptive MPC past and future attributes and control action [34]. 
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The first of such optimal moves is the control action applied to the plant at time 

At time t +1, a new optimization is solved over a predefined and shifted prediction 

horizon [35]. Therefore, it operates in a receding horizon fashion, meaning that at each 

new measurements of the system and new predictions into the future are made , time step 

by solving multi input datasets applied to the system which allows to predict the future 

system states based on the current states and control input [36].  

The controls strategy of the front wheel angle of steer by wire vehicles was 

researched by Jiang-Yun et al using a fuzzy neural network [37]. Their results showed 

shape with a certain degree’ S‘that the overall steering ratio curve is just similar to  of 

delay between the hand wheel angle and the front wheel angle. Ikbal Eski et al studied 

the active steering system design based on the neural network [38]. According to their 

approach gave the best(NNPC) r l network predictive controllestudy, the neura  results 

based on random signal input. However, no vehicle data was used in the evaluation 

process. Jie Duan et al have used a five layers neural network in agricultural tractors      

as shown in figure 2.4 [39].  

The first layer is the input layer of the magnitude and direction of the front wheel 

angle. The fifth layer is the output layer which predicts the angle of the target front 

wheel. The in between layers are explained in detail in [39, 40]. Seungjin, Park et al 

reported that the lane change recognition (LCR) accuracy was enhanced by 25% using 

the Support Vector Machine (SVM) and the Hidden Markov Model (HMM) [40]. They 

were able to reduce the sensor noise and uncertainty using covariance of Gaussian 

distrusted observation data. Another control approach of proportional–integral–derivative 
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controller (PID) based on radial basis function (RBF) neural network was used by Zeyu, 

Li et al [41]. 

 

 

Figure 2.4. Fuzzy neural network structure diagram [39]. 

 

The intelligent PID which combines PID controller  and neural network was run 

in MATLAB with reference data and it shows that a self-learning function of the neural 

network can reduce the impact of the external disturbance and adapt to the input of 

desired reference signal change. Their work can be applied to the ship’s automatic 

tracking course change. The adaptive neuro-fuzzy inference system (ANFIS) simulation 

result was studied by Ana Farhat et al. Levenberg-Marquart algorithm (LMA) and least 

square estimation (LSE) hybrid methods were used for training ANFIS using MATLAB 

to lower the cost function and increase the model accuracy [42].  A neural network 

ach was applied in the faultoptimized by adaptive particle swarm optimization appro  
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diagnostic of the automobile steering system by Yanan et al [43]. It showed that the 

neural network approach effectively improves the accuracy of the fault recognition. The 

introduction of the AI and ANN in the safety critical systems of the vehicle can 

effectively increase the performance in terms of the system reliability and durability such 

as steering and braking systems control of high automated vehicles. Yet, to the best 

knowledge of the researcher, no real sensors data connected to the ECU and the actuators 

and EPS of steering systems have been trained or studied in literature.  

2.1 Research Objectives 

The main research objective of the dissertation is to address the emerging technology 

challenges of the higher automated and electric and autonomous vehicles steering 

systems architecture integrated with the framework of functional safety of ISO 26262.   

Due to the increasing vehicle curb weight trend that will continue through 2030 that will 

put more load on the steering tires or wheels, there are  emerging challenges for       

steering systems with higher rack forces for steering needed to turn the road front wheels. 

Consequently, with any SLOA in the EPS system, the driver has to perform manual 

steering with suddenly significant and increasing wheel torque that can reach up to many 

times the maximum human capability to steer the steering wheel. This research studied 

the effect of the increasing vehicle curb weight on the driver manual torque in case of 

SLOA and performed experiments to measure the controllability of the steering wheel 

and related the findings to the ISO 26262 ASIL matrix computation parameters and 

framework. Whether the driver of the automated driving system control the vehicle, the 

EPS architecture design is very crucial to provide high availability to control the 
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 vehicle as it interacts with both the driver and the automated system as shown in figure 

2.5.  

 

 

Figure 2.5. EPS systems interaction with the driver and the automated driving system. 

 

The specific objectives of this dissertation are as follows: 

● Develop and compute a safe and highly available architecture for EPS systems      

in compliance with the ISO 26262 standard given the fact that more battery 

electric vehicles (BEV) are replacing conventional engine vehicles (CEV) and the 

continuous trend of the average vehicle curb weight increasing in the next 10 

years.   

● Develop an adaptive MPC model to simulate the longitudinal and the lateral 

motion of the vehicle and follow a predefined trajectory using the MPC optimizer 

and prediction capabilities. Due to the complexity level of the vehicle dynamic 
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system motion, the multi-input, multi-output (MIMO) control system represented 

by the adaptive MPC block was chosen in this study to satisfy the manipulated 

parameters out of the adaptive MPC controller such as: ego speed, steering wheel 

angle, and brake signal, etc. within the predefined constraints and limits that 

represent the traffic policy, the driving situation and trajectory and the minimum 

and maximum control parameters. The stability analysis of the vehicle dynamic is 

a major problem in automotive technology that requires sophisticated control 

systems, optimizers and tuning capabilities with efficient implementation scheme 

and formation. Therefore, the steering system of higher automated vehicles has 

more safety challenges as the role of the driver (human) in vehicle control has 

been decreasing. Figure 2.6 shows the developed model schematic that will 

explained in detail in chapter 4.  

 

 

Figure 2.6. Adaptive MPC MIMO control system. 

 

● Train and predict the steering wheel torque commands and pattern using dataset 

of steering system parameters such as: steering wheel angle (SWA), steering 
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wheel speed (SWS) or rate, yaw rate and vehicle velocity. The performance of the 

artificial neural network to predict the steering command based on the SWA, 

SWS and ego speed was validated with a regression value of ~ 98.5 % versus the 

measured SWA dataset. 

The deployment of higher automated and connected vehicles accompanied with active 

safety and ADAS systems in public roads aims to reduce the driver workload and fatigue. 

This enhances the driving experience and increases the traffic safety but at the same time 

transfers more tasks to the automated control system of the vehicles. Consequently, the 

driver and the automated control system are working interchangeably as a team as they 

intervene and escalate to each other to handle the driving tasks and subtasks. The driver 

can perform or undertake other activities while the system is controlling the vehicle 

which was previously impossible while driving SAE level 2 or below. The control 

systems are replacing the drivers by making the decision based on the perception of the 

surrounding and planning the trajectory based on the predefined algorithms reside in the 

controller units. Interestingly, the society and the public were supportive of the systems 

in which the driver supervises automated driving than of systems in which the driver has 

a lesser role and can do something else other than the driving tasks. Additionally, some 

participants wanted to have automation during long, boring drives (i.e., for increased 

comfort and reduce fatigue), while others wanted it to help cope with difficult driving 

situations (i.e., for increased safety) [44]. Thus, the society and drivers acceptance and 

autrust in the control system are necessary to support the tomated vehicles to take these 

advantages. The intelligent transportation associated with the e-mobility are developing 
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quickly due to the need for new, safe and sustainable technology for people and goods to 

move. The passenger or personal air vehicles (PAV) is advancing the future of on-

demand transportation and air vehicles that potentially will change humanity 

transportation systems. All these innovations and transportation ecosystems are all made 

possible by safe and reliable control systems that will reshape the future of propulsion 

systems within the functional safety of the ISO 26262 Standard.  

2.2 Thesis Layout  

The proceeding chapters of the dissertation are as follows: 

• Chapter three describes the new challenges of the increasing steering rack forces 

due to the continuous trend of curb weight increase of EV and AV in the 

upcoming ten years. It was found that new challenges have emerged recently for 

the EPS system such as higher forces at the steering rack and more ADAS 

functionalities; Consequently, The ASIL computation has shifted for the EPS 

system because any SLOA may lead to catastrophic accidents that the driver 

would not be able to steer the vehicle manually. Concludes were made that the 

definition of controllability in ISO 26262 is not fully mature and needs some 

modification in the light of the above given facts and findings of the functional 

safety of an EPS system. The study performed experiments on the human steering 

wheel torque capability and proposed a new metric to relate a range of torque 

magnitudes to the controllability class C0 – C3 in table B.6 part 3 ISO 26262 

Standard. Consequently, the EPS system architecture was analyzed and the new 

assigned ASIL C mitigation or risk reduction was achieved by incorporating a 
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dual core microcontroller integrated with a power management and safety-

monitoring unit. The proper implementation of this logic control path of dual core 

µc integrated with power management and safety monitoring makes the EPS 

system simpler, faster, reliable and more cost effective. 

• Chapter four describes the model-based development of the ADS using the 

adaptive MPC block deployed in MATLAB-Simulink environment. The 

automated driving system was validated in straight and lane change trajectories’ 

scenarios. The study also redefined the controllability classes or categories C0 – 

C3 of high automated vehicles based on the vehicle global position related to the 

lane marker lines to accommodate for the machine in the loop controlling the 

DDT in autonomous vehicle maneuvering. The findings of this model reveal that 

there are human factors challenges in SAE level 3, 4 and 5 and the interaction 

between the driver and the automated control system of the vehicle that require 

HMI modalities as explained in table 4.2 of chapter four. The driver – automated 

control system engagement in the steering system of the vehicles is one of the 

crucial control complex scenarios that add uncertainty and potential risk when 

handing over the steering control between the driver and-or the automated control 

system. Even when the driver is in full control of the steering system, the ESP is 

still responsible for approximately (~ 80%) of the SWT required to steer the 

vehicle. Therefore, the steering system design and functional safety metric require 

specific architecture redundancies in SW, HW and system level for high 

availability and risk mitigation mechanisms. This research highlighted the need to 
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define the driver intervention in high-automated vehicle of SAE level 3, 4 and 5 

in order to sustain the traffic safety and keep the vehicle in the intended trajectory. 

This can be addressed by HMI and the human factor implementation in ISO 

26262 to standardize the driver-machine relation with the DDT in real time and 

interactive environment. Both manual and automated driving modes demand the 

functional safety implementation of the steering system to mitigate any system 

malfunction or failure. Therefore, the fault injection concept supports the safety 

mechanism implementation and correctness of the system architectural design 

with respect to faults and failures during the runtime. This improves the test 

coverage of developing safe control system to operate as designed and meet the 

safety requirements in compliance with the OEMs and government regulations.  

Another aspect to consider in the future work is to utilize the HMI in ASIL D 

systems in ISO 26262 in more detail and include the HMI in the safety 

mechanisms of the vehicle’s control system. 

• Chapter five describes the use of the artificial neural network and machine 

learning in the steering wheel commands prediction pattern and recognition.      

Dataset of steering system from vehicle level hardware-in-the-loop simulator of 

the high fidelity dSPACE bench was collected and analyzed to build the ANN for 

training, validation and deployment of the steering column torque commands 

using the  MATLAB and Simulink environments. Then, the ANN results were 

compared against the bench data of the steering wheel column torque using 

regression analysis. 



30 

 

CHAPTER THREE 

 

COMPUTATION OF SAFETY ARCHITECTURE FOR ELECTRIC POWER  

STEERING SYSTEM AND COMPLIANCE WITH ISO 26262 

 

 

 

3.1 Abstract 

 

Technological advancement in the automotive industry necessitates a closer focus on the 

functional safety for higher automated driving levels. The automotive industry is 

transforming from conventional driving technology, where the driver or the human is a 

part of the control loop, to partially or fully autonomous development and self-driving 

mode. The Society of Automotive Engineers defines the level 4 of autonomy: 

“Automated driving feature will not require the driver to take over driving control.” Thus, 

more and more safety related electronic control units (ECUs) are deployed in the control 

module to support the vehicle. As a result, more complexity of system architecture, 

software, and hardware are interacting and interfacing in the control system, which 

increases the risk of both systematic and random hardware failures. In order to reduce 

these risks and minimize any potential failure or loss of control, ISO 26262 Standard 

provides guidance to the automotive OEMs and suppliers (tier 1 and 2) to ensure an 

adequate and acceptable level of safety procedures is implemented in the vehicle control 

modules. This chapter focuses on the electric power steering system and its ASILs 

assignment. It was found that new challenges have emerged recently for the EPS system 

such as higher forces at the steering rack and more ADAS functionalities; Consequently, 

The ASIL computation has shifted for the EPS system because any SLOA may lead to 

catastrophic accidents. The definition of controllability in ISO 26262 is not fully mature 
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and needs some modification in the light of the above given facts of the functional safety 

of an EPS system. The study proposed a new metric to relate a range of required torque 

magnitudes to the controllability classes C0 – C3 in table B.6 part 3 ISO 26262 Standard. 

3.2  Introduction 

begins with a brief description of the steering system and the architecture chapter This  

description he main components of the steering systems followed by a brief system of t  

of the safety goals and mechanisms implementation. After which, failure classification, 

ASIL decomposition of the steering system was explained by the failure classification, 

ASIL decomposition of the steering system, and the ASIL matrix were explained in 

detail. The challenges of the ADAS functions in the steering system were addressed and 

their impact on the ASIL calculation of the steering system in the case of SLOA in the 

EPS is investigated leading to an ASIL level C to be calculated based on the fault metric 

in compliance with ISO 26262. The study proposed logic control system paths for readily 

available EPS systems based on SW or HW redundancy to maintain safe calculation and 

decision making for the steering systems at a lower cost, higher reliability of simpler 

design with the focus of SLOA scenarios in the EPS and its ASIL calculations. 

3.3 Scope of Study 

This section developed and investigated a case study of the vehicle steering system 

control module functionalities. Development and analysis of the safety strategies and 

mechanisms were investigated based on the state of the art of the current ISO 26262 

guidelines and the levels of SAE autonomy. The steering system represents a standard 

functionality on every vehicle to control the lateral direction of the vehicle. Also, provide 
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enhanced stability for the vehicle [45]. e fuel efficiency and more userThe needs for mor 

friendly  steering wheel to reduce driver fatigue have increased the role of the E/E 

components in the steering systems, such as electric power steering, electro-hydraulic 

power steering (EHPS) and steer by wire (SbW) systems with dedicated steering ECUs 

and algorithms. Therefore, the steering system has more safety challenges due to the 

complex nature of the control module of the electrically driven motor or hydraulically 

assisted power steering systems and their critical role in the control of the vehicle’s 

lateral motion. In SAE level 2, the role of the driver in vehicle guidance is decreasing as 

the automated driving system has the longitudinal and lateral control. Therefore, this 

requires a smart or intelligent steering system linked and connected to the ADAS 

applications e.g. cameras, radars, LIDAR or GPS [46]. These integrated systems and 

edapplications require environmental perception or recognition based on the process 

data, communication protocols, and fusion processes of the data. Therefore, the steering 

control module or steering ECU, which represents the decision maker to activate or 

actuate motors that act on the rack, needs to perform complex calculations at a sufficient 

rate to meet the safety requirements of lateral control of the vehicle’s motion, sampled at 

1-20 msec [48, 49] Consequently, highly computational and intensive support of E/E 

components is needed in the steering system. This leads to more challenges in the 

icatioreliability and safety concepts of the E/E components and the ADAS appl ns of the 

steering systems. The block diagram of possible steering control architecture of SAE 

level 2 and the interface components is shown in figure 3.1. 
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Figure 3.1. Electric power steering basic interface components.  

 

From the generic hardware components schematic of figure 3.1, there are four main areas 

or interfaces of the system architecture of the steering control module described as 

following [50]:  

1- Input from sensors: vision or perception sub-system such as camera, radar, 

LIDAR, ultrasonic, steering wheel angle, vehicle speed and GPS, aka SVM.  

2- Electronic control unit or ECU: The decision maker unit or processing the 

received data of the ADAS, calculating how much assistance to add to support the 

driver and keep the vehicle in the planned trajectory; e.g. LKA in active steering 

systems where the system is designed to automatically keep the vehicle in the lane 

or lane departure warning (LDW) in passive steering systems to warn the driver to 

take action and correct the vehicle trajectory manually. 

3- Actuators: these sub-system devices translate the computational or processed data 

in the ECU and HMI into mechanical actions to act on the steering rack and front 

wheels as desired such as the electric motor of the EPS.  
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4- Monitoring system: Safe steering systems and ADAS applications require 

monitoring systems to perform real-time acceptance tests to validate the system 

behavior during the start-up and the running time. 

The steering system control module requires torque, position, steering wheel angle, yaw 

rate, speed, lateral and longitudinal acceleration, and electric motor angular position 

sensors data to calculate the amount of the appropriate duty cycle or the pulse width 

modulation (PWM) to actuate the electric motor based on predefined values and look-up 

tables. When actuating the steering system, it is of critical importance that the 

commanded assistance from the ECU should match the received assistance at the 

actuators input to make sure that the intended assistance is not violated during the 

computation and the communication. If the actuators misbehave, the monitor should turn 

the actuator off as a fail-safe or aka fail silent when the remedial action is to halt all the 

communications and serial data. In case of a fail-operational unit, the monitoring system 

will switch the control to the fallback system with degraded mode to reduce any risk of 

losing the vehicle control [51].  

3.4 Safety Mechanism of Steering System 

Due to the potential malfunction of the E/E components of the steering control 

module and linked ADAS applications such as cameras, sensors and actuators and other 

subsystems, a hazard could be presented due to unintended locking of the steering or 

unintended lateral steering while driving, which could lead to the loss of lateral vehicle 

control. Therefore, the ASIL classification of the steering system is very critical to 

prevent any intended path violation. Steering system designers spend extended time and 
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efforts to determine the proper ASIL for steering systems in different scenarios and 

maneuvers. This requires the OEMs and steering system suppliers to develop a rigorous 

safety mechanism and strategy to avoid any loss of vehicle control. Therefore, the safety 

goals of the steering system are: to avoid unintended locking, SLOA, and uncontrollable 

steering assistance while driving or parking the vehicle, which could drive the vehicle out 

of the intended driving lane or trajectory. With the advancement of the steering system 

functionalities that require position recognition, faster update rates, and environment 

perception added complexity and reliability issues are applied to the steering system. 

These advancements impose more of the functional safety goals and mechanisms and 

require the introduction of the concept of the fault tolerance according to ISO 26262 [52]. 

level for the design This is necessary to provide and guarantee an acceptable reliability 

of the E/E components. Part 4 of the ISO 26262 section 6.4.2.1 defines the safety 

mechanism that detects faults and prevents or mitigates the failure presented at the output 

of the system that violates the functional requirements. The functional safety 

requirements include five main concepts on the system level as shown in table 3.1 [53].  
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Table 3.1. Safety mechanism coverage of ISO 26262 Part 4 [53].  

 

No Safety Mechanism  Purpose 

1 

A safety mechanism related 

to the detection, indication 

and control of faults in the 

system itself. 

 

A- Self-monitoring to detect random HW faults 

and systematic faults. 

B- To detect and control of channel failures e.g. 

data interface and communication buses.  

C- Specific w.r.t. the appropriate level within the 

system architecture. 

 

2 

A safety mechanism related 

to the detection and control 

of faults in other external 

elements that interact with 

the system. 

 

ECUs, Power supply and communication 

devices. 

 

 

3  

A safety mechanism that 

contributes to the system 

achieving or maintaining the 

safe state   

 

 In case of multiple control requests from the 

safety mechanism  

4 

Define and implement the 

warning and degradation 

strategy  

 

To escalate to the driver via the HMI to control 

over the vehicle 

5 

A safety mechanism that 

prevents faults from being 

latent  

Self-test that occurs during power-up, operation 

mode, and during power down as a part of 

maintenance  
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3.5 Failure Classification and Hardware Random Failure Metrics 

ISO 26262-Part 5 classifies the malfunction of the E/E component into two main types of 

failures [54]: 

1-Systematic failures: Which can be caused by missing requirements during the 

design, development phases and can be addressed by change requests (CR) before 

releasing the product or the start of the production (SOP). System testers can 

capture it during the verification and validation (V&V) processes.  

2-Random Failures: Due to physical causes such as aging, wearing out and tearing 

down of the E/E hardware component during the system’s lifetime, different 

levels of random failures may appear in the E/E components.  Due to their 

random nature, statistical information can be produced from testing and historical 

data about this type of fault. Thus, the average probability, and hence the risk, 

associated with the occurrence of a random fault can be calculated. 

        The random faults can be further divided into two categories: permanent faults such 

as ‘stuck at’ faults, and transient faults, such as soft errors that can not violate the safety 

goals if it is presented in the system.  It is difficult to forecast the likelihood of random 

failure of the E/E components during the ‘lifetime’ of the hardware service. Therefore, 

the random faults require the system designer to include and develop a safety mechanism 

to continuously monitor, capture (detect) any random failure and react (control) the 

malfunction to reduce any risk or hazard by taking remedial actions. Hence, this 

minimizes any safety violation and maintains a safe state when random faults occur.  
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3.6 Methodology  

3.6.1 ASIL (Automotive Safety Integrity Level) Matrix 

ISO 26262 standard, part 3 defines automotive risk levels as QM, ASIL A, B, C and D 

with the consideration that ASIL D represents the highest degree of safety integrity and 

ASIL A represents the lowest one [54, 55]. The quality management (QM) represents any 

hazard that does not impose any safety requirements.  The QM classification indicates 

that the quality processes are sufficient to manage and handle the risk. The steps to 

determine the ASIL of the steering system, at the vehicle level, within hazard analysis 

and risk assessment (HARA) in ISO 26262 Standard is shown in figure 3.2. The 

objectives of HARA are to: 

1- Identify the hazard events of SLOA caused by the malfunction of an item, which 

is the steering system control module in this case. According to the NHTSA, EPS 

assist may be lost momentarily, followed by a sudden return of EPS assist or jitter 

assist. Therefore, the driver may have difficulty steering the vehicle especially at 

low speeds, increasing the risk of crash and lost the intended path. For examples, 

General Motors (GM) recalled more than 1 million trucks and sport utility 

vehicles (SUVs) in 2018 due to SLOA [56].  

2- To formulate the safety goals with their corresponding ASILs in order to mitigate 

any hazard events and avoid any unreasonable risks. 

3- The HARA and ASIL determination do not require the design details of the 

steering system because the purpose is to identify and evaluate the potential 

hazardous events, which relate to the functional behavior of the steering system. 
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Figure 3.2. ASIL determination steps of the steering systems. 

 

The ASIL is determined by considering severity, exposure and controllability  

[54, 55]. A brief definition of each is given below: 

1- Severity (S): Defines the severity or intensity of the damage or consequences to 

live persons (drivers, passengers, pedestrians and other road users) at risk of 

potential harm for each hazardous event. The severity order (class) description is 

given in table 3.2: 

 

Table 3.2. Severity classes and description [55]. 

 
Class 

S0 S1 S2 S3 

Description 

No injuries 

(Material 

damage)  

Light, 

moderate 

injuries 

Severe and life-

threatening 

injuries (Survival 

probable) 

Life-

threatening 

injuries (Fatal 

injuries)  
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2- Exposure (E): Measures the possibility or likelihood for being in a situation, e.g. 

Highway and urban driving, curve driving, parking, and road ramps, etc. The 

exposure levels are given in table 3.3. 

 

Table 3.3. Exposure classes and discerption [54].   

 

3- Controllability C: Measures the ability (Capacity) of the driver involved in the 

operational situation to control the hazardous event due to failure or malfunction. 

Various levels of Controllability are assigned as shown in table 3.4: 

 

Table 3.4. Controllability classes and description [54].  

 

 

 

 

The resulting hazards for the EPS system are evaluated based on the Severity (S), 

Exposure (E) and Controllability (C) scales that are provided by ISO 26262 to determine 

the ASIL level as shown in table 3.5. 

 
Class 

E0 E1 E2 E3 E4 

Description 
Incredible 

(Rare)  

Very low 

probability  

Low 

probability  

Medium 

probability  

High 

probability  

 Class 

C0 C1 C2 C3 

Description Controllable 

(Easy)   

Simply 

Controllable  

Normally 

controllable 

Uncontrollable 

(Difficult)   
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System designers and manufacturers employ a variety of techniques and safety 

mechanisms to reduce the risk and achieve a tolerable system for target numbers of 

faults, such as: ASIL decomposition, driver warning lamp fault detection mechanism, 

plausibility check, Built-In self-test (BIST), and redundancy. Consequently, the desired 

ASIL is achieved to mitigate undelaying safety risks. All these technologies are 

introduced in the system architecture at different levels of abstractions to detect and 

correct the malfunctions in order to ensure that the safety goals that were determined in 

the HARA phase are not violated. 

 

Table 3.5. ASIL matrix [54, 55].  

  C1 C2 C3 

S1 

E1 QM QM QM 

E2 QM QM QM 

E3 QM QM ASIL A 

E4 QM ASIL A ASIL B 

S2 

E1 QM QM QM 

E2 QM QM ASIL A 

E3 QM ASIL A ASIL B 

E4 ASIL A ASIL B ASIL C 

S3 

E1 QM QM ASIL A 

E2 QM ASIL A ASIL B 

E3 ASIL A ASIL B ASIL C 

E4 ASIL B ASIL C ASIL D 

No ASIL assignment is required for S0, E0 or C0.  
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3.6.2 Effectiveness of Safety Mechanisms 

ISO 26262 – Part 5 introduces the metrics used to detect and control random 

failures based on the hardware architectural design as the following [54]:  

A- Single Point Fault Metric (SPFM): Measures the effectiveness of the safety 

mechanism architecture to the single (Individual) point faults. It can be calculated 

according to equation (3.1) considering that the single point faults   𝜆𝑆𝑃𝐹 and the 

residual faults 𝜆𝑅𝐹 are directly violating the safety goals in case they are not 

covered (detected) by the safety mechanism of the system. 

 

𝑆𝑃𝐹𝑀 = 1 − 
∑(𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹)

∑𝜆
 (3.1) 

 

B- Latent Fault Metric (LFM): Measures the robustness of the safety mechanism 

architecture to latent faults either by design (safe faults), fault coverage via safety 

procedure or by the driver’s recognition via the HMI of the fault’s existence 

before the infraction of the safety goals. It can be calculated based on equation 

(3.2) considering that latent multi-point fault rate 𝜆𝑀𝑃𝐹,𝐿 is not directly violating 

that safety goal, if a subsequent fault occurs, it may be exacerbated by the first 

undetected fault to violate the safety requirements. As can be seen in equation 

(3.2), the single point fault and the residual fault rates are subtracted from the 

overall fault rate λ. 

 

𝐿𝐹𝑀 = 1 − 
∑(𝜆𝑀𝑃𝐹 𝐿 )

∑(𝜆 − 𝜆𝑆𝑃𝐹 − 𝜆𝑅𝐹)
 

 

(3.2) 



43 

 

The faults classification and their symbols are given in table 3.6: 

 

Table 3.6. Failure rates and description. 

Class 
Symbol 

(Rate) 
Explanation 

All faults  𝜆 

Total failure rate of a safety related hardware 

element. 𝜆 can be calculated according to equation 

3.3.  

Single Point 

Fault  
𝜆𝑆𝑃𝐹  

Single point faults directly cause a violation of the 

safety goal because the safety mechanism is not 

implemented to detect this fault.  

Residual 

Faults  
𝜆𝑅𝐹 

The residual faults are the faults that are not 

covered by any implemented safety mechanisms   

Latent Multi 

Point Fault  
𝜆𝑀𝑃𝐹,𝐿 

Latent multi point faults are faults that do not 

directly violate the safety goals but overlapping 

two independent faults will violate the safety goal.  

Perceived 

Multi Point 

Fault  

𝜆𝑀𝑃𝐹,𝐷𝑃 
There are multi-point faults that are perceived or 

detected by the driver.  

Safe Fault  𝜆𝑆 
Safe faults do not cause any violation to the safety 

goals.  

 

The overall fault rate λ can be calculated according to the following equation (3.3): 

𝜆 =  𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹 + 𝜆𝑀𝑃𝐹,𝐿 + 𝜆𝑀𝑃𝐹𝐷,𝑃 + 𝜆𝑆 (3.3) 

 

From (3.1), (3.2) and (3.3), the 𝑆𝑃𝐹𝑀 and the 𝐿𝐹𝑀 can be re written as:  

 

 

𝑆𝑃𝐹𝑀 =
∑(𝜆𝑀𝑃𝐹,𝐿 + 𝜆𝑆)

∑𝜆
 

(3.4) 

 

 

𝐿𝐹𝑀 = 
∑(𝜆𝑀𝑃𝐹,𝐷𝑃 + 𝜆𝑆)

∑(𝜆 − 𝜆𝑆𝑃𝐹 − 𝜆𝑅𝐹)
 

(3.5) 
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C- Probabilistic Metrics for Hardware Failures (PMHF): Provides the rational that the 

residual risk of the safety goal violation due to random hardware failures is 

sufficiently low and acceptable. Evidence that the hardware safety architecture 

adequately prevents/controls random failure in accordance to ISO 26262 section 

5-8 (evaluation of hardware architecture metrics should be fulfilled) [54, 55].  

ISO 26262 – Part 5 section 8.4.5 determines the requirements that apply for ASIL 

 B, C and D in terms of fault metrics as shown in table 3.7: 

 

Table 3.7. ASILs and failure rates. 

 

ASIL Failure Rate SPFM LFM 

A <1000 FIT (<10−6)  ℎ−1 Not Applicable  Not Applicable 

B <100 FIT (<10−7)  ℎ−1 ≥ 90% ≥ 60% 

C <100 FIT (<10−7)  ℎ−1 ≥ 97% ≥ 80% 

D < 10 FIT (<10−8)  ℎ−1 ≥ 99% ≥ 80% 

 

The Failure in Time (FIT) is defined as the number of failures in time of a 

component expected in one billion hours interval of operation and it is calculated 

accumulatively. FIT measures the reliability of the component of interest in 109  hours of 

operation. Therefore, a FIT of 1 means that the Mean Time to Failures (MTTF) is 1 

billion hours and can be written as (10-9 h-1) for E\E components.   

𝜆  is the failure rate in h-1 which represents the number of failures in one hour.  Proven in 

use concept of ISO 26262 requires real numbers of failures from the deployed HW in use 
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in the field [57]. Other common methods to calculate failure rates of semiconductor used 

in automotive applications ECU and printed circuited boards (PCB) include 

IEC/TR62380, SN29500 and FIDES guide. 

3.7. Steering Systems Analysis 

3.7.1 ADAS Functions on the Steering Systems 

The autonomy levels introduced by the SAE J3016 released in June 2020 and the 

NHTSA defined level 1 autonomy such that the driver is continuously exercising lateral 

control while the system controls the longitudinal control, such as adaptive cruise control 

[10]. However, in level 2 autonomy, the system controls both longitudinal and lateral 

motion of the vehicle. Level 2 is also called partial automation, with ADAS playing a 

crucial role in the chassis control of the vehicle i.e. brake and steering control modules 

for some driving modes. However, the driver always has to monitor and supervise the 

system. So even with feet and hands off, the driver’s eyes must be on the road and the 

machine interface i.e. steering wheel or the brake pedal. More ADAS functions pose new 

challenges for steering hazards, such as longer reaction time of the driver in case of 

sudden events. In addition, the different responsibilities shared between the driver and the 

controllers of the steering systems for some driving modes. Therefore, electronic back-up 

is crucial for vehicle controllability in driving autonomy level 2 and above. Any sudden 

failure in the electronic control module such as the µc of the EPS system will lead to 

SLOA if the architecture does not have a back-up control path. Consequently, this SLOA 

in the electric power steering systems will drastically increase the required torque to steer 

the vehicle by the driver, especially at lower speeds. The ASIL of electrical power-
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assisted steering system was given ASIL level B in table 3.3 for the loss of the direction 

commands [58]. This assignment is questionable and might not satisfy the new 

challenges emerging in the EPS system of modern vehicles, such as BEVs, SUVs and 

pick-up vehicles.  

3.7.2 Steering Systems Case Study and Data Collection  

The functional safety analysis of the vehicle steering systems was performed 

assuming that the steering system is an EPS assist system. The approach of the safety 

analysis was developed in complaint with the ISO 26262 standard and the ASIL 

classifications explained in the previous section. Under the assumption of use (AoU) that 

the driver will be presented in the vehicle all the time and can control the vehicle’s path 

even if the EPS system failed due to malfunction or failure. This means that in case of 

any SLOA of EPS assist in the steering system, the driver should be able to retain the full 

control and perform the required steering torque manually to claim the absent of the 

unreasonable risk of the EPS malfunction. The loss of the vehicle’s direction commands 

was assigned to ASIL B in the literature [59]. A safety analysis was conducted in this 

study case to investigate the severity, controllability and the exposure of the ASIL 

determination in the published literature.  

By definition, E3 is normal probability and C2 normally controllable and their 

combination with S3 (fatal injuries) was assigned ASIL B for the case of the SLOA of the 

EPS assistance that most the steering systems suppliers and developers claimed [58, 59]. 

The generic definition of normal controllability C2 explained in table B.6 part 3 ISO 

26262 states that between 90% and 99% of the average drivers or other road users are 
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able to avoid harm in case of malfunction [54]. section B.6The part 3 of the ISO 262626  

gives examples, scenarios, and their controllability assignment. However, given the fact 

that the vehicle torque demand could  be five times of the human maximum torque 

capability, the controllability section B.4 part 3 ISO 26262 should provide a scale or a 

range of the torque magnitudes or values for each controllability class rather than rely on 

the drivers percentages. Therefore, the human torque capability and torque magnitude is 

needed to determine the accurate controllability in the ASIL calculations for the SLOA.   

 In order to measure vehicle steering and human construability and torque 

capability, the Research Office at Oakland University was contacted by the researcher to 

get the institutional review board (IRB) approval (IRB-FY2021-183) to conduct the 

experiment at the Engineering Center (EC), School of Engineering and Computer Science 

(SECS). The purposes of the experiment were to measure the human controllability, 

capability and comfortability to steer the steering wheel with a range of torque values in 

both clockwise and anticlockwise directions. The steering wheel torque experiment was 

performed while the vehicle was stationary in at the neutral point of the steering wheel 

(Stationary steering torque). In order to have accurate steering torque measurement, the 

torsion bar was removed from the connected joint, and the steering column replaced with 

a rigid shift to measure the torque more accurately. First, the front axle wheels were lifted 

from the ground and secured so no friction between the tires and the ground can happen, 

which dissipates energy and causes error reading the torque applied to the steering wheel. 

Then, the torque cell was connected to the main shaft of the steering column to sense the 

torque that the participants perform in the steering wheel. The torque sensor used in the 
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experiment meets the American Society of Mechanical Engineers Standard ASME 

B107.14-2004, ISO 6789 standards with matching certificate of calibration traceable to 

the National Institute of Standards and Technology (NIST) as shown in figure 3.3. 

Twenty participants (ten male and ten females) aged between 28 and 44 years were asked 

sit comfortability in and hold the steering wheel while in neutral position and adjust the 

driver seat to feel more comfortable and mimic the driving scenario and look to the 

headway direction.  

 

 
Figure 3.3. Torque and steering wheel angle sensors and their interfaces hardware placed 

in the steering column below the steering wheel. 

 

The participation criteria of this experiment were published ahead of the time to 

make sure that the subjects have at least two years of driving experience and do not have 

any previous arm injury that effects their steering controllability or grip strength.  

Then the participant was asked to perform the maximum steering torque with the 

clockwise direction for three times and the steering torque magnitudes were recorded. 
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Then the participant was asked to rest for five minutes and the same procedure was 

repeated in the anticlockwise direction to reduce bias and give time to rest the 

participant’s muscles. Then, the collected steering results were analyzed and the average 

of the three readings were taken to represent the steering torque of the participant. No 

personal information was collected in the experiment in complaint with the IRB personal 

confidentiality for the participants and present any personal data exposure.  

3.8  Results and Discussion 

3.8.1 Human Controllability and torque measurement results 

The selection criteria of the subjects were published ahead of the experiment time 

to make sure that the participants read and understand the research procedure and 

objectives. The average age of the participants was 35.5 years for males and 35 for 

females. This participants sample was necessary to represent the licensed drivers in the 

United States that age of 35 years representing the highest percentage according to the 

US Department of Transportation (DoT) and the Federal Highway (FDHW) statistic as 

shown in figure 3.4 [60].  
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Figure 3.4. Licensed Drivers by Age and Sex reported by FDHW in 2020 [60]. 

 

NHTSA now recommends the technique known as "9 and 3"by placing the left 

hand of the driver on the left portion of the steering wheel in a location approximate to 

where the nine would be if the wheel was a clock and the right hand should be placed on 

the right portion of the wheel where the three would be located [61]. All participants 

performed the steering wheel torque measurement and hand placements following the “9 

and 3" position. All participants answered that they feel their arms are comfortably 

aligned with their shoulders in the nine and three position before the experiment starts.  

Interestingly, it was found that all participants performed a little bit higher 

steering torque in the ACW direction than the CW for both males and females. This is 

due to the fact that in the ACW direction, the right hand pushes up and the left hand 
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pushes down to rotate the steering in the ACW and 90% of the participants were right 

hand dominant. The turning of the steering wheel is a result of the hand push and the 

other hand pull method. Another remarkable finding was that all participants right’s hand 

grip strength was high than the left side except the one left hand dominant participant.    

Another interesting result of the experiment that the average steering torque that 

the male participants performed was ~18.775 N.m. However, the average steering torque 

that the female participants performed was ~17.925 N.m. these values represent the 

maximum steering wheel torque that the human can manually perform and put in the 

vehicle steering wheel system for the average age of ~35 years. Table 3.8. shows the 

participants breakdown and the average values recorded from the experiment.  

 

Table 3.8. Hand grip strength and steering wheel torque Experiment results.  

 Age 
Weight 

[KG] 

Height 

[cm] 

Dominant 

arm 

Driving 

years 

Hand 

Grip 

R [kg] 

Hand 

Grip 

L[kg] 

Steering 

torque  

CW 

[N.m] 

Steering 

torque  

ACW 

[N.m] 

Male  35.5 77.9 171.6 
90% R 

10% L 
10.8 36.64 33.16 18.44 19.11 

      (avg.) 34.9 (avg.) 18.775 

Female  

 
35 62.8 162.8 100% R 8.4 31.81 30.61 17.74 18.11 

      (avg.) 31.21 (avg.) 17.925 

 

 It is crucial to baseline the controllability classes’ calculation and categorization 

relative to these numbers and values that were experimentally found in this dissertation 
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and consider the gender at the same time for precisely calculation of the steering system 

ASIL. Consequently, this new criterion proposed in this research calculates the 

controllability class of the ASIL matrix of ISO 26262 based on the maximum torque that 

the human can perform in the vehicle steering wheel that was found in this study as 

shown in table 3.9. 

 

Table 3.9. Controllability class based on the human torque capability. 

Controllability C0 C1 C2 C3 

Description in 

table B.6 part 3 

ISO 26262   

Controllable 

in general  

More than 99% 

of the average 

drivers are able 

to control  

Between 90 and 

99% of the 

average drivers 

are able to control 

Less than 90% 

of the average 

drivers are able 

to control  

Steering wheel 

torque (N.m) 
All drivers   99% of drivers 90% of drivers  

Less than 90% 

of drivers  

Male  18.775 18.775+0.0187 18.775+0.187 < 18.775+0.187 

Female  17.925 17.925+0.0179 17.925+0.179 < 17.925+0.179 

 

The new challenges of more ADAS functionalities and higher forces in the 

steering rack of modern vehicles impose more stringent safety requirements in case of 

SLOA for EPS systems is in the next section.  
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3.8.2 New Challenges for the EPS Systems 

A comprehensive test and features comparison of electric versus hydraulic power 

steering assist was published in 2018 [62].  Currently 90 % of all new vehicles are being 

produced and manufactured with an EPS system to assist the driver and support the 

ADAS application and features [63]. In additional to higher automated driving system 

that requires EPS system, another motivation of switching from hydraulic power assist 

steering systems to electric power assist steering systems is to reduce parasitic losses and 

increase the fuel efficiency. This is due to the fact that EPS only has a significant draw of 

electrical current when the driver is turning the vehicle’ steering wheel, while the 

Hydraulic power Assisted Steering (HPAS) is always “on” whether the vehicle is turning 

or not. About 4 % of fuel efficiency was achieved by switching from HPAS to EPS 

systems [6364]. Additionally, the development of the electric motor technology, the 

control advancements and the hybrid and electric vehicles advancement are enabling the 

use of the EPS systems in heavier vehicles where it could not be applied previously, e.g., 

the Ford and GM sport utility vehicles and pickups. Also, the development of hybrid and 

battery electric vehicles (BEV) requires the EPS installation [65].  

The average curb weight (Net weight) of the new vehicles has increased in the last 

decade as shown in Figure 3.5 [66].  to 2021, there was a 13.6% increase inFrom 2004  

purpose-weight of SUVs and multithe   vehicles (MPV). This growth of the curb mass is 

expected to continue increasing given the fact that more BEV are replacing conventional 

engine vehicles. Battery electric vehicles are equipped with heavy batteries and electric 

engines that are placed in the front part of the chassis. 
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Figure 3.5. Vehicle Average Curb Weight Increase Trend [66]. 

 

The lateral force (𝐹𝑦) at the front axle, is the product of the proportional mass of 

the vehicle at the front axle (𝑚) and the lateral acceleration (𝑎𝑦) as shown in equation 

(3.6) [67].  

𝐹𝑦 = 𝑚 . 𝑎𝑦  (3.6) 

   

The vehicle weight can be calculated from equation (3.7). 

 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑊𝑒𝑖𝑔ℎ = 𝑚 . 𝑔  
 

(3.7) 

  

The steering torque around the steering axle (Mz) can be calculated using equation (3.8): 
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𝑀𝑧 =  𝐹𝑦  . ( 𝑟𝜏 + 𝑟𝑃) (3.8) 

 

Z is the perpendicular axis on the front steering axel as shown in Figure 3.6. To maintain 

the vehicle in the curved path,  𝑀𝑧  needs to cover the full range of rotating motion which 

can be measured as the steering wheel angle.  

 

 

Figure 3.6. Steering torque at the front axle rotation about the z axis. 

 

The driver has to apply a SWT reduced by the kinematic steering ratio and the 

steering assistance ratio see equation (3.9): 

 

𝑆𝑊𝑇 =
𝑀𝑧 

𝑖𝑠 . 𝐴𝑠
 =

𝐹𝑦 . ( 𝑟𝜏 + 𝑟𝑃)

𝑖𝑠 . 𝐴𝑠 
    

 
 

(3.9) 

is = the kinematic steering ratio and As = the steering assistance ratio. Equation 

(3.9) shows that the SWT is proportional with the weight of the vehicle at the front axle. 

The constructive trail r𝜏 and the pneumatic trail rp can be found from figure 3.7. 
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Figure 3.7. Steering torque at the front wheel (Vehicle turns to the left side).  

 

This trend of increased net vehicle weight has introduced a new challenge for the 

EPS system. A higher force at the steering rack is required to steer the vehicle and control 

the motion laterally to keep the vehicle in the intended trajectory.  

3.8.3 GT Model Vehicle Weights Case Study  

 A steering system was developed utilizing 3D vehicle model in Gamma 

Technologies (GT) Suite software in which the vehicle tires were simulated using the 

“Tireconn3D” objects available in GT Suite version 2021 representing the full 3D 

environment. The vehicle follows a series of real-world driving cycles based on data 

acquired from a GPS system available in the driving library of the GT model. A multi-

case parameterization study was created in the model to run the simulation with five 

vehicle weights of 1000, 1250, 1500, 1750 and 2000 kg respectively to study the impact 

of the vehicle weights increase in the front tires lateral forces and overturning torques 
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required to turn the front axle wheels. The GT Suite built-in tire maps and Pacejka high 

fidelity model were used for tire reaction loads [68]. All other vehicle operating 

conditions and roads were kept the same through the multi-case simulations except the 

vehicle weights parametrizations in which normal driving and road surface conditions 

were assumed. The front tire lateral forces were obtained from the GT Post results by 

selecting the respective object such as the front right and front left tires. The front tire 

lateral forces increase as the vehicle weights increase as shown in figure 3.8.   

 

 

Figure 3.8. Front tire lateral force for different vehicle weights.   
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It is clear that the front tire lateral force doubled in magnitude when the vehicle 

weights increased from 1000 to 2000 kg. However, the front tire overturning torque 

increased by 50% from ~133 to ~ 200 Nm for the same vehicle weights increase cases as 

shown in figure 3.9 due to the non-linear behavior change of the dimensions  𝑟𝜏 𝑎𝑛𝑑 𝑟𝑃 

with the vehicle weight increases as shown in (eq. 3.8).  

 

 

Figure 3.9. Front tire overturning torque for different vehicle weights. 

 

In addition, it is clear that the vehicle weight case of 2000 kg, it requires 200 

[N.m] overturning torque to turn the front tire and follow the desired trajectory and this is 

more than 10 times of the human capability of controlling and turning the steering wheel 

according to table 3.9. Therefore, in case of SLOA from the EPS systems, the driver has 
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to perform a fully manual (without electric motor assistance) steering with a sudden, 

significantly increased steering wheel torque of ~ 200 [N.m] required to compensate for 

the SLOA within a 1-20 msec time frame [69, 70].  

Another interesting finding of the vehicle weight increase is that the wheel 

camber or inclination angle (  ) increased during the vehicle curvature maneuver which 

means that the front wheel is tilted inward (Negative pointing inward) at the top of the 

wheel as shown in figure 3.10.  

 

Figure 3.10. Front tire camber angles for different vehicle weights. 

 

This explains the increase in the required overturning torque of the front axle wheels 
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dissipated torque for the lateral deformation with respect to the contact flat plane in the 

contact region of the tire and the surface.  

The controllability class C needs to be changed from C2 to C3 in case of SLOA 

for EPS systems and consequently the assigned ASIL has increased from B to C as 

shown in table 3.10. 

 

Table 3.10. New ASIL assignment for ADAS and higher forces on the steering 

racks. 

Proposed 

severity class 
Exposure Controllability 

 

S3 

 C1 C2 C3 

E1 QM QM A 

E2 QM A B 

E3 A B C 

E4 B C D 

 

ASIL D was already assigned for failure modes where the EPS loses the vehicle 

control such as self-steering (the steering wheel rotates without any input by the driver or 

the system) and steering-lock where the steering wheel freezes. In this case, the EPS 

system with the redundant control path complaint with ASIL D switches the state 

machine of the EPS to the fail-operational architecture with a degraded mode to maintain 

the steering system so the driver can take action manually. This is out of the study scope 

as the research here focuses more on the SLOA associated with the increased weight of 

the new vehicles, such as SUV and BEV, which puts more load in the front axle and this 

requires more force in the steering rack to apply the commands on the road wheels as 

shown in equations (3.7) and (3.9). In addition, the introduction of more ADAS functions 

for the steering systems has affected the ASIL classifications in the presence of more 
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sensors and actuators. For example, if the camera fails to perceive the road lane markers, 

a diagnostic trouble code (DTC) will be activated, which causes the ECU of the EPS 

system to enter error, reset, fail-silent mode that leads to SLOA and escalate to the driver 

to take immediate action and take the vehicle’s control by performing the required SWT 

manually.  

3.8.4 SPFM and LFM of the EPS Systems 

According to ISO 26262 and as shown in table 3.7, the SPFM and the LFM for 

ASIL B and ASIL C are very different. In addition, the probabilistic metric for random 

hardware failures requires more risk reduction for ASIL C than ASIL B. ASIL C requires 

mandatory reduction of the risk and higher-level matrices of safety concepts as shown in 

table 3.11: 

 

Table 3.11. Handling of safety matrices of ASILs [54-55].  

 QM ASIL A ASIL B ASIL C ASIL D 

Safety 

Handling 

Rigorous design and test to 

avoid potential failures   

Control potential failure  

SPFM No No ≥ 90% ≥ 97% ≥ 99% 

LFM No No ≥ 60% ≥ 80% ≥ 90% 

PMHF No No <100 FIT < 100 FIT < 10 FIT 

FTA No No No Yes  Yes 

DFA No No No Yes Yes 

FMEA No No Yes Yes Yes 
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It is clear from Table 3.11 that ASIL C requires higher safety measures or 

mechanisms to fulfill the SPFM ≥ 97% and the LFM ≥ 80%. ASIL B, however, requires 

lower measures of SPFM ≥ 90% and LFM ≥ 60%. Thus, ASIL C requires a change in the 

system architecture to satisfy these targets of SPFM and LFM. ASIL C is a mandatory 

assignment for the EPS system for modern vehicles to reduce any potential SLOA in the 

EPS or sudden return of assistance. This ensures high availability of the ADAS 

functionality and provides the required assistance of the EPS system for the driver of 

heavier vehicles. 

3.8.5 Architecture for Highly Available EPS Systems 

A single logic or control system for ASIL C is not enough to mitigate or reduce 

any potential risk of SLOA because ASIL C requires tolerance up to 3% of single point 

element failure and 20% of the latent failure as explained in the ISO 262626 standard [53 

- 55]. This forcefully introduces the concept of redundancy for the control and logic gates 

of the EPS system to ensure high availability in case of SLOA. The redundant systems 

can be classified to: 

1- Homogenous redundant systems: where multiple elements of a single type or 

component are used to achieve redundancy, such as the use of dual ECUs, 

multicore microcontrollers, two power supplies for the steering motor and dual 

sensors (multi channels). In general, it is simpler to implement and maintain, 

however, it is susceptible to systematic faults. 

2- Heterogeneous redundant systems:  also known as diverse redundancy; where 

multiple components of different types are used to back up the EPS system, such 
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as steering by differential brakes. The heterogeneous redundancy is more resistant 

to systematic faults that are caused by design or manufacture flaws [71]. 

The implantation of redundancy has introduced the concept of fault tolerance for 

random faults. If the system fails for any reason, it shall switch to a backup system to 

take over and at the same disable the failed system. Therefore, SLOA or any consequence 

of hazards can be avoided, which keeps and maintains the safety goals from being 

violated. This ensures high availability of the EPS system and reduces the risk of SLOA 

in the EPS. A higher level of autonomous vehicle requires redundant steering systems to 

fulfill much higher availability for the steering systems than previously.  

ISO 26262 standard- part 5 Annex E explains in detail an example of calculating 

the SPFM and the LFM for each safety goal of an item (EPS in this study) [5455]. In part 

11-section 5 specifies the use of  semiconductors such as microcontrollers, system on 

chip (SoC), and application specific integrated circuits (ASICs). These hardware 

elements. The functional safety requirements are applicable to both non-programmable 

and programmable elements, such as ASICs, field programmable gate array (FPGA), and 

programmable logic device (PLD). In addition, a microcontroller, an ASIC, a gate drive 

unit (GDU), or similar SoC can be treated as separate hardware parts [72].  .The FIT 

rates of the EPS logic gate elements are different based on the system architectures and 

the implemented safety mechanisms. The FIT contribution of the logic gate elements 

found in the literature showed that the main FIT contributor is the microcontroller with a 

range of PMHF from 41 % to 45% by considering the SPFM [73].  Therefore, if the main 

microcontroller fails with SPFM ~ 41 %, which is more than the safe allowance of the 
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3% of ASIL C, this will violate the safety goals of the EPS controller. To mitigate this 

potential risk of the SLOA due to microcontroller failure, redundant logic is the key 

solution for ASIL C assigned for the EPS systems for SLOA.   

3.8.6 Redundancy of the EPS Architecture 

 The newly proposed ASIL C assignment for the EPS systems requires ASIL 

decomposition to reduce the risk in case of SLOA. Redundancy is one of the successful 

techniques or measures contained in ISO 26262: 

1- Software diversified redundancy (One hardware channel): The aim of the SW 

redundancy is to detect as early as possible failure in the processing unit by 

dynamic software comparison [54, 72]. Either it uses the same or different 

In the case that the M, ROM memory ranges. hardware resources e.g RA 

deployed primary path fails, the second implementation ,  referred to as the 

redundant path, is responsible for verifying the primary path’s calculation and 

taking action if a failure is detected. This can be done using separate algorithm 

designs and code to provide software diversity. Figure 3.11 shows the redundant 

SW comparison in the same processing unit.  

2- Reciprocal comparison by software in separate processing units: The aim is to 

detect as early as possible failures in the processing unit by dynamic software 

comparison. Two processing units exchange data and compare the data using SW 

in each unit to detect differences which might cause failure on a real time basis. 

This approach allows for HW and SW diversity if different processor types are 

used as well as separate algorithm designs, code and compilers. Logic paths can 
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be implemented using separate cores of dual or tri core processors as shown in 

figure 3.12.  

 

 
Figure 3.11.  Redundant SW comparison in the same processing unit. 

 

 
Figure 3.12. Redundant SW comparison using different processing units.  

 

3.8.7 ASIL C Solutions and the Influence of Safety Architecture 

Depending on the combination of the hardware and the software interaction used 

to meet ASIL C requirements of the EPS systems, several approaches or system 

architectures developed in this dissertation are possible as the followings: 

1- The use of two separate microcontrollers to conduct an external comparison of 

safety outputs; main microcontroller and safety microcontroller. Each 

microcontroller has a single core. This approach relies on the physical or HW 
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duplication of safety and non-safety related functions and features. However, this 

increases the complexity of the configuration because more components are 

required on the printed circuit board assembly PCBA, which reduces reliability 

and increases costs [74]. This architecture configuration is shown in figure 3.13. 

 

 
Figure 3.13. EPS control logic path based on a single core and safety µc. 

 

2- The use of multi-core microcontroller (dual or tri-core) is a recent development in 

the EPS system. This design combines an internal built in self-test (BIST) and 

lock step mode central processing units (CPU) in the arithmetic logic unit (ALU). 

The power supply management also combined in one module to monitor the 

microcontroller and control the safety switch of the EPS motor as shown in figure 

3.14. 
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Figure 3.14. EPS control path based on a dual core µc integrated with power management 

and safety monitoring. 

 

The multicore system architecture provides a higher level of safety to control the 

EPS motor. It utilizes the backup channel in multicore microcontrollers, which reduces 

the complexity of the system and improves the availability of the control module. 

Therefore, the FIT decreases tremendously to the level that satisfies ASIL C assignment 

(PMHF < 100 FIT). In case of any sudden failure of the main logic path of the 

microcontroller, the redundant logic path can back-up the control module to mitigate or 

reduce any violation of the safety goals of the EPS systems. This architecture provides 

high availability and controllability for the EPS systems to decompose ASIL C 

determination of the EPS system in case of loss of assistance. Therefore, ASIL C 

mandates the use of multichannel logic control paths to fulfill the safety metrics. Table 

3.12 shows the ASIL target metrics and the logic path architecture of the EPS system. 
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Table 3.12. Safety and ASIL target metrics and logic requirements. 

 QM ASIL A ASIL B ASIL C ASIL D 

Safety Handling Rigorous design and test to 

avoid potential failures 

Control potential 

failure 

SPFM No No ≥ 90% ≥ 97% ≥ 99% 

LFM No No ≥ 60% ≥ 80% ≥ 90% 

PMHF No No <100 FIT < 100 FIT < 10 FIT 

FTA No No No Yes Yes 

DFA No No No Yes Yes 

FMEA No No Yes Yes Yes 

Path Architecture Single logic path is sufficient Dual-core or tri-core  

logic path satisfies and 

fulfils all above metrics 

 

3.9 Discussion 

There are three main key elements in the EPS system control module and ECU as 

the power supply unit, the microcontroller and the gate driver unit GDU. The functional 

safety requirements of these units are driven from the safety goals and the ASIL 

determination of the EPS systems. The use of more ADAS applications in the EPS and 

the continuous increase of the curb weight of modern vehicles have created new 

challenges for the EPS system. Any potential SLOA due to E/E failure of the EPS 

systems have introduced new challenges to the controllability (C) class of the steering 

systems due to the increase of the required force at the steering rack. This chapter  

evaluated the ASIL determination of SLOA of the EPS and developed a new 

methodology for the assessment of a highly available EPS system control logic path. The 
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safety architecture of the EPS systems can be made of four parts; safe acquisition, safe 

calculation and safe actuation and the serial data communications. The focus of this work 

was on the safe calculation of the decision logic to actuate the EPS motor by providing 

redundant logic paths to ensure that the microcontroller is working correctly. The 

proposed ASIL C for EPS systems requires dual logic paths, which can be achieved by 

redundant physical microcontrollers or by dual and tri-core microcontrollers integrated 

with a power supply management unit. The dual logic path is a mandatory requirement 

for ASIL C to fulfill the safety metrics according to the ISO 26262 standard as shown in 

table 3.12. Considering the safety of use and the controllability of the EPS systems, the 

results indicate that any potential SLOA for the steering torque with more ADAS 

deployment or higher forces required at the steering rack increases the risk of loss of 

vehicle trajectory control, which may endanger the driver and the surrounding traffic, if 

presented. Whereas the SLOA can be reduced by highly available architecture EPS 

systems logic control design and using redundant logic paths. Therefore, redundancy is 

critical and required for high availability EPS systems to avoid any loss of assistance or 

lose the lateral control of the vehicle. This enables the driver in the loop to manage the 

vehicle’s trajectory without any negative impact on the driver performance in case of 

SLOA. The highly available EPS system is operated under a failed-operational state 

when a fault or failure is present in the EPS system. Redundancy increases safety and 

availability, but at the same time has negative effects on the system complexity and the 

costs. A reliable EPS system means the ability of the EPS system to control the lateral 

direction of the vehicle under the assistance of the steering electric motor conditions 
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within a given time. Figure 3.15 shows the conflict zone of functional safety, the 

availability, and the costs. 

 

 
Figure 3.15. Conflict zones of safety, availability and costs. 

 

 

 

  



71 

 

CHAPTER FOUR 

 

FAULT INJECTION IN MODEL-BASED SYSTEM FAILURE ANALYSIS OF  

HIGHLY AUTOMATED VEHICLES 

 

 

 

4.1 Abstract 

 

The active safety control systems of highly automated vehicles for SAE level 3 and 

higher are still not fully developed and facing some unresolved issues. The deployment of 

automated driving systems and the functional safety development present challenges in 

driver – machine control relationship when there is a system failure or malfunction. The 

current definition of the product development and controllability classes of the road 

vehicles functional safety (ISO26262) are not feasible in highly automated vehicles. This 

chapter developed an overview of fault or disturbance injection on the EPS system of 

highly automated model to study the impact of steering system sensors malfunction. The 

approach was to study the fault propagation using a model-based engineering 

development in a virtual environment of MATLAB. Subsequently, the steering control 

system of automated vehicle was developed using an adaptive MPC structure to study the 

control system sensors failures on a system-feature level of the vehicle. It was concluded 

that the steering wheel angle sensor failure has a significant impact on the planned 

trajectory of the vehicle and thus it was classified as an ASIL D, which represents the 

highest critical safety component and requires comprehensive safety mechanisms to meet 

the safety goals of the system. The study also introduced a new criterion for 

controllability classes suitable for highly automated systems based on the global vehicle 

position relative of the lane marker lines, to deal with the active safety systems and risk 



72 

 

handling strategies. The drivers – vehicle control systems are changing significantly in 

SAE level 3 automated vehicle and above that driving functions are controlled by the 

vehicle control systems. This presents human factors challenge in this interactive system 

with moving to SAE levels 4 and 5. Hence, several human machine interfaces and 

scenario-based testing were introduced to mitigate any risk or safety uncertainty resulting 

from control handing-over between the driver and the vehicle control system.  

4.2 Introduction 

The main objective of this chapter is to address the emerging technology 

challenges of the higher automated and electric vehicles steering system architecture 

integrated with the framework of the road vehicles functional safety standard ISO 26262 

in the presence of the human machine interface. This requires special means in system 

design and validation during the run time of the automated vehicle control system. 

Therefore, the current work developed an adaptive MPC model to simulate the 

longitudinal and the lateral motion of the vehicle and follow a trajectory path using the 

adaptive MPC optimizer and prediction capabilities complaint with the ISO 26262 

standard- Part 4 (Product development at the system level) implementation of the safety 

related function and behavior.  

In this chapter, the research methodology was presented in this work and the high 

level of the adaptive MPC was explained. Two driving scenarios were generated and 

validated in a fully virtual environment and the model was deemed to be ready to perform 

the fault injection tests both in velocity and the steering wheel angle sensors. A new 

controllability criterion was introduced and defined based on the higher automated 
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driving systems when the driver might not be part of the control loop in section 4.5. In 

conclusion, the human machine interaction in the highly automated driving system 

represents new challenges in these interactive systems of the HAV.  

4.3 Methodology 

With the deployment of the new technology of the ADAS and AV controlling 

systems during the last decade, the concept of sensor infusion has been used in the higher 

automated vehicles, in which multiple channels and sources of surrounding information 

are connected and processed together to give more confidence in the SVM system that 

feeds other subsystems such as localization, planning and controlling subsystems [14, 

17]. It enables the vehicle control modules to anticipate future events beforehand based 

on pattern recognition and dataset training using the adaptive MPC block, fuzzy logic, 

and recurrent neural network (RNN) strategy [75, 76]. Consequently, it alerts the driver 

before performing any maneuver or action to avoid any potential danger or risk. In the 

higher automated driving level such as SAE level 3 or above, the electronic control units 

can make a controlling decision based on the perception input that feeds the programmed 

algorithm, which resides in their microcontrollers and systems on the chip to make a 

control decision and send it to the actuators. This is where AI and ML have effectively 

played a key role to build a vehicular sensory platform with sensor fusion, decision 

making and actuation streams and pipelines in real time basis. This requires super-fast 

data computing and processing systems, more memory resources, low latency 

communication to support the self-driving cars with zero tolerance for error in the driving 

control system.  
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The parallel advancement and innovation in theory and hardware computing 

systems (HCS) have enabled a range of applications such as adaptive MPC and AI to be 

executed in real-time basis in automotive applications such intelligent steering and 

electronic braking systems using Ethernet protocols in machine to machine 

communications. Using the state-of-the-art of math optimization solvers and rapid 

prototyping, systems have enabled the control modules to perform complex calculations 

at a sufficient rate to meet the safety requirements of highly automated vehicles with   

360 º surrounding coverage.  

To deal with the change of the vehicle dynamics in the HAV with SAE level 3 or 

above, the adaptive MPC provides a new linear planar model at each time step as the 

operating conditions change; therefore, it makes more accurate prediction for the new 

operating conditions of the vehicle trajectory maneuver. The adaptive MPC can then 

control: 

1- The longitudinal velocity as the driver sets it in the ACC automated system. 

2- The lateral position of the vehicle by following a predefined trajectory or LKA or 

lane centering systems. 

In figure 4.1, the adaptive MPC computes the longitudinal velocity and the 

steering angle position and rate and provides them as commands to the plant. Then, the 

real-time vehicle state parameters such as longitudinal velocity, lateral position and yaw 

rate are the real-time states representing the plant or the vehicle on the road while moving 

or maneuvering.  
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Another advantage of deploying the adaptive MPC in the controller is that the 

plant model connected to an embedded optimizer can be updated in each time step in the 

runtime for the current operation conditions.   

 

 

Figure 4.1. A high-level schematic of using the adaptive MPC in the automotive 

longitudinal velocity and lateral position in the real time simultaneously and it shows the 

plant model connected with an embedded optimizer to update the operation conditions for 

the current time step and predict the next time step. 

 

4.3.1 Adaptive MPC design in MATLAB control Toolbox 

The traditional or classical MPC control toolbox uses a constant internal plant 

model, which limits its capability for real time updating and optimization. However, the 

adaptive MPC that was used and deployed in the research work utilizes the new version 

of the MATLAB control toolbox (Version 2021) that has an embedded optimizer that 

linked to the internal plant model, which updates every time step when executed in real 

time basis. This makes the adaptive MPC effective and suitable for the HAV steering 

systems to change the lane and follow a planned trajectory by controlling the steering 

angle input to the plant. At each time step, the Adaptive MPC updates the internal plant 

model with the same structure of the optimization problem across different operating 
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points according to the programmed numbers of states and constraints. Therefore, the 

adaptive MPC is computationally complex because it solves an optimization problem at 

each time step in real-time basis of the vehicle maneuver. In addition, the adaptive MPC 

computation gets more complicated with the increase of states constraints and the length 

of the control horizon and prediction horizons.  

To build and simulate the virtual driving environment, the driving scenario 

designer of automotive application in MATLAB was used to generate roads, lanes and 

define maneuvers and the driving scenarios and other traffic predefined operating 

conditions. A passenger car was added to the driving scenario and two maneuvers were 

generated as follows. 

1- Straight trajectory in which the adaptive MPC was deployed to control the 

longitudinal trajectory and the vehicle velocity of the vehicle as shown in figure 

4.2 A.  This is represented by the X axis in the global Cartesian positioning 

system.  

2- Lane change trajectory in which the adaptive MPC was deployed to control the 

lateral global position or trajectory and velocity of the vehicle as shown in figure 

4.2 B. This is represented by the Y axis in the global Cartesian positioning 

system. 

 The passenger car was set as an ego vehicle in the model. The sub model of the 

driving scenarios with all the data of the straight and lane-change maneuvering was saved 

and converted to a MATLAB function and exported to the workspace of the main 

MATLAB command window in the form of .mat extension file. This is an effective 
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approach for utilizing vehicle dynamic models in a model based engineering, which has 

emerged recently in the automotive industry for the ADAS applications development, 

V&V demonstration purposes in the early phase of the vehicle development to confirm 

the feasibility and applicability of the design and reduce the change requests later. It 

moves the vehicle product development engineering towards the left side of the V model, 

which reduces time, cost, and utilizes control toolbox more efficiently. 

 

 

   A     B  

Figure 4.2. The driving environment, roads, lanes and maneuvers scenario were 

generated virtually using the Driving Scenario Designers in the automotive applications 

of MATLAB. A (left) is straight maneuver and B (right) is left lane change maneuver. 

 

The plant (ego vehicle) was developed as a state space model representing the 

lateral, longitudinal vehicle dynamic. The input to the plant is the vehicle longitudinal 

speed and the steering wheel angle. However, the plant outputs are the lateral position 

and the yaw angle. In figure 4.3, the horizontal axis denoted as X-axis [m] to represent 

the longitudinal distance of the headway of the ego vehicle while the vertical Y-axis 
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represents the driving lane width [m]. There are the referenced Xref and Yref that will be 

used in the model. In addition, 𝒙 (𝒕)  and 𝒚 (𝒕) are the global parameters that represent 

the real-time instantaneous vehicle position as the ego vehicle moves in the headway road 

based on the Xref and Yref. This predefined trajectory will be the referenced path that the 

vehicle shall follow with the deployed adaptive MPC in the time domain t. Which 

controls the vehicle longitudinally and laterally as will be explained in more detail in the 

next section. The referenced values of the lateral position and the yaw angle are 

calculated with respect to the referenced horizontal Xref axis as shown in figure 4.3.  

 

 

Figure 4.3. Left lane change reference trajectory and vehicle parameters and the reference 

axis (Longitudinal dimension to the vehicle motion direction). 

 

4.3.2 Adaptive MPC topology Integration 

MATLAB Simulink package library was utilized to create the adaptive MPC block and 

connected to the plant (ego vehicle) as shown in figure 4.4.  

 



79 

 

 

Figure 4.4. The adaptive MPC block and the vehicle model connected to the referenced 

library that generates the predefined trajectory. 

 

Two lanes with widths of 4 meter each were defined in the driving scenario designer. The 

plant (ego vehicle) was developed as a state space model representing the lateral vehicle 

dynamic using the bicycle model as the following equations 1 and 2 which are used in the 

first step to calculate the state space matrices of the vehicle velocity 𝑉𝑥 and the vehicle 

position 𝒚. Then it computes the discrete model to update the nominal conditions of the 

discrete time plant of the current operation conditions in the same order that was created 

inside the MATLAB function through the signals bus that was connected to the adaptive 

MPC block.  
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Global 𝒚 position 

 

Where;  

𝒚  is the global vehicle lateral position at a time t measured from the reference.  

𝑉𝑥 is the longitudinal velocity at center of gravity of vehicle  

𝑚 is the total mass of vehicle  

𝐼𝑧 is the yaw moment of the vehicle inertia  

𝑙𝑓 is the longitudinal distance from the center of the gravity to front tires  

𝑙𝑟 is the longitudinal distance from the center of the gravity to rear tires 

𝐶𝛼 is the cornering stiffness of tire 

𝞭 is the front steering angle  

𝜓 is the yaw angle 

𝛷 is the road banking angle  

𝛩 is the road grade angle 

𝐹𝑦,𝑓 + 𝐹𝑦,𝑟  Lateral forces of the front and the rear tires  

𝒚 = 𝑉𝑥 ψ + 𝑉𝑦 (4.2) 

𝑥̇ = 𝑉𝑥 cosψ − 𝑉𝑦 sinψ (4.3) 

 

𝑦̇ = 𝑉𝑥 sinψ + 𝑉𝑦 cosψ (4.4) 

𝑣̇𝑦 = −𝑉𝑥𝜓̇ +
𝐹𝑦,𝑓 + 𝐹𝑦,𝑟

𝑚
− 𝑔𝛷 

(4.5) 

 

𝑣̇𝑥 =  𝜓̇ ⋅ 𝑉𝑦 + 𝑎𝑥 + 𝑔𝛩 (4.6) 
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Both road banking and grades effects were added to the Adaptive MPC model to 

account for the uncertainties and instabilities effects of the road profile as shown in 

equations (4.5) and (4.6). The adaptive MPC block receives the predefined trajectory that 

was already defined in the driving scenario designer from the reference block that was 

embedded in the adaptive MPC block in figure 4.4. The predefined trajectory represents 

the lateral position of the vehicle maneuver. Another input is the current or the real 

position of the vehicle, which feedback from the plant (ego vehicle) as lateral position 

and yaw angle that will change as the vehicle dynamic changes so that the adaptive MPC 

controls the vehicle trajectory as close as the desired trajectory and at the same time, 

controls the longitudinal velocity as close as to the set point velocity that was already 

defined as an input to the model to represent the ACC. The advantage of the adaptive 

MPC is that it is a multivariable controller that controls the outputs simultaneously by 

considering all the interactions between system variables within the predefined constrains 

and ranges of these variables. Constrains such as steering wheel rate, velocity increase 

step, are important because constrain violations can lead to undesired consequences. 

Therefore, the adaptive MPC can handle multi-input multi-out (MIMO) systems and 

therefore, this makes it suitable for high-level automation and autonomous vehicle 

applications. In addition, another feature of the adaptive MPC is its preview capability, 

which is similar to feedforward control technique to control upcoming events accurately.        

Another output variable from the plant (ego vehicle) is the state of the vehicle, 

which represents the actual longitudinal velocity, and lateral position of the vehicle. The 
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state estimator is part of the feedback loop to the adaptive MPC to measure the vehicle 

velocity and position incrementally in each time step and adjust the output accordingly.  

The adaptive MPC updates the plant (ego vehicle) each time step T with the below 

operation conditions and parameters values used to design the adaptive MPC setting in this 

work are shown in table 4.1. The adaptive MPC uses an internal plant model to make 

predictions and optimization iterations to find the optimal control actions utilizing fixed 

and variable horizon optimizers. In order to calculate the next step decision, the controller 

operates in two phases: 

1- Estimate the current state which includes the true values of the controlled vehicle 

parameters such as the longitudinal vehicle speed and the steering wheel angle. This 

is very crucial to make an intelligent move in the future step based on the current 

and past measurements of the data buffers. The state estimator in this study was a 

default Kalman Filter.  

2- Optimize the values of the set points, measured disturbance and constraints 

specified over the finite horizon of the future sampling instants T+1, T+2, ….. The 

adaptive MPC control action at time T is obtained by solving the optimization 

problem and the cost function as explained in the MATLAB user guide of the 

adaptive MPC Toolbox [77].  
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Table 4.1. Adaptive MPC Parameters.  

Parameters Explanation  

Ts  Execution time step update = 0.1 sec  

T Simulation duration =15 sec  

Prediction Horizon   Controller prediction of the sample time = 1  

Constraints Represent the physical limitation of vehicle  

Steering wheel turns at of 15 degree/sec 

Weights Set the input and output parameters to value  

Such yaw angle to 0.1 and position to 1   

Response Ramp input  

Plant Input The long. speed 𝑉𝑥 and the front steering angle 𝞭  

Plant Measured output Lateral position 𝒚 

Yaw angle ψ  

State Estimator Default Kalman Filter 

Vehicle mass 1575 kg  

 

4.3.3 Adaptive MPC design parameters selection 

The selection of magnitudes and values of the adaptive MPC is important as they 

affect not only the controller performance but also the computational complexity of the 

adaptive MPC algorithm that solves an online optimization problem at each time step. In 

automotive applications, the sample time (Ts) of the adaptive MPC determines the rate at 

which the controller executes the control algorithm and commands the actuators based on 
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the predefined algorithm and calculation. In the same time, too small Ts requires 

excessive computational load on the system resources and memories that add more 

design complexity, constrains and cost. The adaptive MPC computations get more 

complex and resource demanded with the increasing number of vehicle states, 

constraints, length of control, and the prediction horizon. The vehicle dynamic 

optimization processes and solving the cost function need to be solved within small 

sampling intervals in the order of milliseconds (msec) execution time to converge results 

through iteration. 

4.3.4 ISO 26262 Active Safety Requirements 

This framework for the fault injection test methodology at the ego vehicle level 

for the vehicle motion controller was developed considering the ISO 26262 standard – 

Part 4 product development at the system level. It requires evidence for the correct 

implementation of the safety related functions and behavior on the system level (HW & 

SW) combination as shown in table 4.2. However, it does not specify whether the tests 

need to be done in virtual environment or real scenarios and maneuvers. ASILs B, C and 

D require fault injection test in the run time while the control system is deployed. It is 

considered one of the effective methods to test the robustness of the active safety control 

system after integrating the HW and the SW components of the system [53- 55]. 

Consequently, this provides an evidence that system elements interact correctly with an 

adequate level of confidence that unintended behaviors (that could violate a safety goal), 

are absent from the current integration design of the vehicle motion controller system.  
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Table 4.2. ISO 26262 Active safety implementation of fault injection. 

Methods ASIL 

 A B C D 

Requirements-Based Test + ++ ++ ++ 

Fault Injection Test + ++ ++ ++ 

Back-to-Back Test + + ++ ++ 

Note: ++ indicates that the method is highly recommended for the identified ASIL 

 + Indicates that the method is recommended for the identified ASIL 

 

A fault injection test uses corrupted, interrupted and false data and means to 

introduce faults into the steering system during the run time of the vehicle. The fault 

injection was performed on the developed MATLAB model. Most of the suppliers and 

testers are moving towards the virtual hardware in the loop (VHIL) technology for V&V 

of the ADAS applications and their active safety mechanisms to meet the designed safety 

goals under these conditions. Therefore, the fault injection test can be done in a fully 

virtual environment of a model based to study the behavior of the active safety system in 

the early development phase of the developed products and address any issues easily and 

costly effective before the prototype implementation and execution.  

Faults were generated in the model of the steering system and injected in the 

interface of the adaptive MPC. Following this new approach developed in this 

dissertation introduces the concept of the fault injection test coverage in a fully virtual 

environment of the steering sensors and adaptive MPC block. The injected faults in form 

of noise needs to cover the data corruption, timing, program flow and sequences. The SW 
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architecture design goal is to be able to monitor, detect, isolate and recover from the 

faults and maintain a safe and highly available architecture. Table 4.3 shows examples of 

fault models and types. 

 

Table 4.3. Fault Models. 

Type Examples  

Data errors  Data integrity, Data processing, Data exchange  

Timing errors  Violation of specific timing behavior of the executed SW  

Program flow errors  Erroneous sequence or execution order  

HW errors  Faulty hardware parts in the system  

 

 The error can be defined as the incorrect state of the subsystem that is caused by 

the fault can lead to failure mode. The failure is the termination of the ability of the 

system or the function unit. This loss of function can appear as abnormal behavior such 

as an unintended vehicle path and loss of assist. Consequently, hazardous events could 

lead to an accident with negative potential inherited from this set of conditions. Personal 

injuries and property damage can be caused and experienced which depend on the 

severity of the hazard and the environment of the drivers, passengers and other road users 

and surrounding infrastructures.  

4.4 Results  

4.4.1 Adaptive MPC model results 

The MATLAB-Simulink model was executed with two driving scenarios; the first 

scenario was a left lane change from the host lane and continues the maneuver in left 
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adjacent lane. The second scenario was driving the ego vehicle in same host lane 

straightforward both with longitudinal velocity of 35 m/sec, which was fed in the 

reference trajectory. The adaptive MPC of the ego vehicle followed the reference 

trajectory lane change very closely as shown in figure 4.5 orange dotted line. The 

implementation of the adaptive MPC in the ego vehicle integrated in the Simulink 

explains the combination of controlling of the longitudinal speed, which is known a full 

range speed adaptive cruise control (FRSACC) across a wide range of different speeds. In 

addition, following the lateral reference trajectory vehicle position, which fulfils the third 

level of the SAE automation level where the vehicle control system can drive the vehicle 

longitudinally and laterally simultaneously and follows a defined path from point A to 

point B. The deployment of the adaptive MPC model achieves level SAE 3 automation in 

this research work. Consequently, the adaptive MPC application can be considered as a 

suitable fit in HAV’s CVM integrated with other localization, positioning and mapping 

applications that can be optimized for the reference path utilizing artificial intelligence 

and machine learning platforms and constitute layers covering vehicle control [78]. The 

model was deemed fully validated against the driving scenarios that were generated 

virtually using the driving scenario designer of automotive application in MATLAB 
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Figure 4.5. The MATLAB-Simulink model of the adaptive MPC ego vehicle results 

following the reference trajectory of left lane change (Top) and stay in the same straight 

maneuver (Bottom). 
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4.4.2 Controllability of adaptive MPC and system failures 

After validating the adaptive MPC of the ego vehicle by matching the reference 

and vehicles paths as shown in figure 4.5, the longitudinal velocity and steering hand 

wheel angle sensors failures or degradation events were performed in the Simulink model 

by injecting a predefined percentage of noise or disturbance (faults) on the signals to 

evaluate the fault injection metric of the ISO26262 in a virtual environment. In addition, 

this represents an end-to-end (E2E) performance test coverage of the adaptive MPC block 

that represents the vehicle’s CVM. The chosen evaluation of the noise or disturbance 

impact considers the longitudinal and lateral vehicle motion and position. The ACC, 

LKA and the automatic lane change assist (LCA) are the features on the system level that 

can be impacted by any functional failure or signal disturbance in these sensors due to the 

injected faults. Two noise or disturbance blocks or sources were linked to the longitudinal 

velocity sensor and the steering hand wheel angle sensor as shown in figure 4.4. The 

band-limited white noise block generates normally distributed random numbers that are 

suitable for use in continuous or hybrid systems with sample time of 0.1 sec to represent 

malfunction or degradation of the sensors or the transmitted signal from the sensor to the 

adaptive MPC module block.   

The first case involved tracing the longitudinal velocity sensor output without any 

noise as shown in blue color in figure 4.6, which is clear that the longitudinal signal 

sensor is fully functional without any noise, and the signal is stable at 35 m/sec. The 

orange trace in the same figure shows manipulated velocity with a random noise of 10% 
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of the original longitudinal velocity, which represents a fault or sensor degradation that 

cause the transmitted velocity signal to be unstable as shown in figure 4.6.  

 

 

Figure 4.6. Longitudinal velocity sensor signal without any noise or disturbance (blue 

color) and with 10% noise (orange color). 

 

It was found that the injection of 10% of noise or disturbance on the vehicle 

velocity does not impact the adaptive MPC model following the reference trajectory 

because the velocity sensor path or trace in the model is totally separated from the lateral 

position control path. According to the ISO 26262, the functional safety of the road 

vehicles, the malfunction of the longitudinal velocity sensor due to faulty signals would 

not be considered as a high risk because the absence of the unreasonable risk when the 

velocity sensor fails. In addition, it is known as safe faults or latent faults, which is 

unable to violate the safety goal of the system because the safe faults cannot propagate to 

the relevant paths of the lateral control logic gates or the internal registers. Consequently, 
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it is unable to affect the design function so the system is tolerant for this type of faults. It 

might be still uncomfortable maneuver or experience for the driver or the road users, but 

still not a high-risk failure in the E/E system of the vehicle velocity sensor.  

The second case involved tracing the SWA sensor output signal with 1% noise or 

disturbance as shown in orange color with respect to the original steering hand wheel 

angle signal without noise as shown in blue color in figure 4.7. The steering wheel angle 

unit used in the model was chosen in radians (1 rad. = 57.29 degrees) and this is the 

reason that a noise magnitude of 1 % was selected in the research to investigate the small 

increment of the SWA failure in the order of 0.5729 degrees and evaluate its impact on 

the adaptive MPC model following the reference trajectory. Again, the orange trace 

shows a random noise distribution across the run time of the simulation of real time run 

of the ego vehicle.  

 

 

Figure 4.7. Steering wheel angle sensor signal without any noise or disturbance (blue 

color) and with 10% noise (orange color). 
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The added noise or disturbance representing faults was injected on the trace of the 

SWA sensor to study SWA failure scenario that can degrade the function of the sensor 

and sending faulty signals. Consequently, this faulty signal propagates through the plant 

or the vehicle CVM causing it to jitter in the right and left directions, which drives the 

ego vehicle out of the intended trajectory as shown in figure 4.8 even before the vehicle 

starts the lane change.  The ego vehicle in this scenario can be described as non-

controllable vehicle due to SWA sensor failure in the host lane, lane change and the 

target lane. This means that the ego vehicle needs the SWA input to keep the vehicle in 

the same lane for the straightforward scenario. This is the reason that the SWA sensor is 

categorized as a safety critical component with an ASIL D classification that ISO 26262 

highly recommends fault injection test as shown in table 4.2. This is an example of a 

single point or primary fault that can propagate through the CVM controller and violate  

 

 

Figure 4.8. Adaptive MPC model result with 1% noise added to the steering wheel angle 

sensor [rad.] 
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the safety goals such that the safety mechanism cannot observe, mitigate or remediate it. 

Therefore, ISO 26262 recommends to perform a fault propagation analysis (FPA) to test 

the safety mechanisms and the diagnostic coverage of single fault point metric to satisfy 

the SPFM and ASIL B, C and D targets as shown in table 4.4 [55] 

 

Table 4.4. ISO26262 Single point fault metric and ASIL B, C and D targets.   

Methods ASIL 

 A B C D 

Single-Point Fault Metric  − ≥ 90% ≥ 97% ≥ 99% 

 

   In addition, the highest spike of the noisy signal causes the vehicle to deviate 

further from the reference trajectory or path around the running time of 8 sec as shown in 

figures 4.7 and 4.8. This presents the evidence that the lateral vehicle motion was 

influenced by the quality of the SWA signals to keep the ego vehicle in the intended path. 

The SWA signal oscillation that is caused by the added noise maneuvers the ego vehicle 

out of the intended path and the host lane until it reaches to the furthest point of 15 m off 

the road.  

Then, the negative spike of the SWA signal drives the vehicle towards the 

intended path again and departs the intended path in the other side or direction. This 

requires developing a safety goal and safety mechanisms associated with a diagnostic 

coverage to monitor, detect and mitigate any potential faulty noise that causes failure in 

the SWA sensor. Examples of safety mechanisms are such as HW redundancy, fail safe 
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or silent, and cyclic redundancy check (CRC), checksum counters and alive rolling 

counters (ARC) in the serial data communication [79].   

4.4.3 Disturbance Rating Scale 

The SWA faults that were injected in the automated steering system by adding 

noise or disturbance on the sensor output signal can be rated by their impact on the 

vehicle intended trajectory deviation as shown in figure 4.8. The continuous injection 

process of faults causes the adaptive MPC vehicle to bounce in sinusoidal behavior, 

which can be seen as jitters or spikes anomalies from the intended path in both directions. 

Most of the ADAS and active safety applications sensors run in a synchronous mode with 

the CVM controllers. This means that the oscillators that generate the signals in a defined 

pattern and frequency in the sensors need to match the ECU input requirements to keep 

the synchronous operation mode running normally as designed. The system level scale 

that measures the SWA disturbance is characterized by a unique defined tolerance limit 

of the vehicle lateral position with respect to the lane marker lines. Rating on the vehicle 

lateral dynamic position is strongly influenced by the steering control system sensors, 

ECUs and actuators functionalities and safety goals in case of any malfunction while 

being deployed in the field. In addition, the vehicle lateral acceleration plays a key role in 

this scale. In order to give a common sense of the proposed scale in this dissertation, the 

concept of vehicle steering system controllability should be redefined, described and 

what is the threshold to say whether the vehicle is controllable or non-controllable with 

respect to the intended path in the host lane. This way, the vehicle is integrated with the 

environment through the global position of the vehicle in respect to the lane marker.  
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As explained in chapter three and based on the ISO 26262, the current 

controllability is categorized into four classes C0-C3 with the main difference in the 

probability from one C class to the next class in the order of magnitude, i.e., C1 is 

associated with 99%, C2 with 90-90%, C3 with less than 90% of the drivers can control 

the malfunction and avoid the accident or the crash. This definition does not hold true in 

case of complex automated driving system being deployed in controlling the vehicle 

maneuver due to the extreme difference between the human and the computer or machine 

systems nature such as response time and influence by other driving ecosystem 

components. This difference can be understood as the comparison between human 

machine interaction and computer machine interaction (CMI). The human or the driver 

can distinguish more clearly between controllable and non-controllable scales such as 

unnoticeable, noticeable, disturbing and even dangerous as shown in figure 4.9. 

 

 

Figure 4.9. Rating scale of controllability and uncontrollability and human feeling 

categorization and response to disturbance and steering system malfunction. 

 

 For the steering system and the lateral vehicle control that the driver or the human 

is in the control loop, the controllability is defined as the estimated probability of the 

driver to gain the lateral vehicle control by rotating the steering wheel to keep the vehicle 

in the intended path. The system allows the driver to steer the vehicle very easily and 
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comfortably under all driving conditions by providing up to 80% of the required SWT. 

So, the driver is expected to provide the remaining 20% of the required SWT [6]. 

Therefore, there are two scenarios:  

1- In case of SLOA due to EPS control unit malfunction or failure, the driver needs to 

compensate for the EPS assistance loss and perform the required SWT manually 

[6]. Otherwise, the vehicle will not be laterally controllable and lose the intended or 

safe trajectory and cause harm or accident. This is the reason that the vehicle 

steering control system is considered as a very critical safety component and 

requires a high availability system architecture design to mitigate any failure or 

malfunction. In addition, this includes avoiding risks and harm to other traffic 

participants such other vehicles’ drivers, passengers, and pedestrians. The solutions 

were proposed in chapter 3 in this dissertation [80 - 83].  

2- In case of the human driver who is in charge of the DDT does not perform the 

steering commands before the time to collision (TTC) in upcoming safety critical 

situation to maintain vehicle path and headway due to distraction, fatigue and 

alcohol impairment [84]. Even if the EPS functions normally and the steering assist 

is presented, the driver did not trigger or command the steering wheel to turn and 

keep the vehicle in the intended path so the malfunction here is because of the 

driver did not trigger the system to follow the intended path.  

When the vehicle is equipped with the automated control system that deploys the 

computer platform to take the lateral control of the vehicle and follow the intended 

trajectory, here is a special case that the current ISO 26262 standard controllability class 
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would not hold true anymore when it comes to controllability classification and 

categorization. The reason is that the human driver is not the active part of the control 

loop of the vehicle and therefore it is very difficult to measure the controllability of HAD 

systems based on the computer control system. In an alternative controllability class 

definition and categorization in the system level of HAD can be considered as shown in 

table 4.5. Figure 4.10 shows the controllability classes redefinition metric developed in 

this dissertation.   
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Figure 4.10. Controllability classes redefinition for the vehicle global position. 
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Table 4.5. Controllability class definition for SAE 3 with higher automation and 

deployment driving level. 

C0 (100%) C1(99%)  C2(90-99)% C3(< 90%) 

Controllable 

(Unnoticeable) 

Simply Controllable 

(Noticeable) 

Normally 

Controllable 

(Disturbing)  

Uncontrollable 

(Dangerous)  

Maintain the 

intended driving 

path at all times 

(Vehicle is in the 

center of the lane 

and does not 

cross the wheel 

offset marker) 

 

Vehicle is still inside 

the intended lane and 

the front wheel end 

does cross wheel 

offset marker line but 

does cross the inside 

end of the lane 

marker (Wheel offset 

marker is 10-15 cm) 

Vehicle front wheel 

crosses internal end 

of the lane marker 

but does cross out of 

the lane marker. 

 

Loss of lateral control of the 

vehicle (Vehicle is 

uncontrollable and lost driving 

path) and it is outside of the 

intended lane (Oncoming traffic 

lane) or road shoulder. The front 

wheel crosses the outside end of 

the lane marker. 

. 

No Accident or 

harm 

Avoidable accident 

and no harm 

Partially avoidable 

accident with minor 

harm 

Non avoidable accident and it 

causes severe harm 

No risk Minimal risk Reasonable risk Unreasonable risk 

Recoverable by 

the vehicle 

controller  

Recoverable by the 

vehicle controller 

Partially recoverable 

by the driver vehicle 

controller 

NON recoverable 

Intervention is 

not needed  

Intervention is 

partially needed 

Intervention is 

required  

Intervention is required  

Unnoticeable Noticeable Disturbing Dangerous 
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This is a new concept developed in this dissertation to accommodate for the HAD 

systems when the CMI controls the vehicle. Figure 4.9 and table 4.5 are in alignment for 

the highest level of uncontrollable steering system, which marks it as dangerous and life 

threating accident when the unreasonable risk is presented. Consequently, the control 

system is considered unrecoverable, and the accident is non-avoidable due to the fact that 

the non-return point was reached. In addition, it can be concluded from figures 4.9, 4.10 

and table 4.5 that from the controllability standpoint, the disturbing class failures whose 

effects are usually controllable by sensible human response and system reaction that 

could cause minor harm. It represents the conversion point where the system becomes out 

of control, which makes it dangerous because the system failure results in a safety critical 

situation. This represents the moment that the vehicle’s front axle wheel or tire departs 

the outside edge of the lane marker line and continues towards oncoming traffic or same 

direction traffic. If the driver or the control system cannot return the vehicle inside the 

host lane within 1-3 seconds. At this moment, the vehicle is C3 and out of control. Then, 

backup systems such as the braking and evasive steering are the two options that the 

driver can rely on to avoid collision or accidents. The development of evasion systems is 

a challenge when it comes to HMI and the time-critical scenarios that require highly 

dynamic steering action within 200 msec [85-87]. 

4.4.3 Human Machine Interface and Steering Safety Metrics 

The high system level hazard definition of steering system failure metric is the 

unintended steering motion or activation regardless of the vehicle propulsion system 

status (i.e., parked, neutral or any drive gear position). This happens when the steering 



100 

 

system provides unexpected assist in the form of torque due to failure in the electronic 

control unit of the steering system or the transmitted signals and commands. 

Consequently, the vehicle loses the intended lateral path due to uncontrollable or 

excessive assist from the steering system while driving the vehicle. The vehicle is unable 

to be steered due to the operator being unable to overcome the steering wheel forces 

necessary to rotate the steering wheel. Interestingly, in SAE level 3 when the vehicle 

control system is deployed to drive the vehicle, the driver must be able to take over the 

control at any time during the maneuver and be able to control the vehicle while the 

automated steering feature is active such as LKA, LCA and advanced parking assist. The 

loss of vehicle stability while moving due to steering malfunction may result in loss of 

control or vehicle roll over. Therefore, the below two metrics shall not be violated for the 

unintended steering wheel motion: 

1- The unintended steering wheel torque assistance that comes from the EPS shall 

not exceed more than 4 to 5 [N.m] at any time during the maneuver or parking 

scenarios.  

2- The unintended steering wheel movement rate shall not exceed a defined 

threshold by the manufacturers (depends on the vehicle weight, center of 

gravity height and dynamic properties) [88] 

The steering safety metrics are applicable for all vehicle-operating conditions with 

the vehicle speed ranges from zero to maximum speed. If the steering safety metrics are 

violated for any reason, the operator will experience difficulty controlling the vehicle and 

remaining in the intended path of the host lane. For example, if the unintended steering 
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wheel torque assist exceeds (4-5) [N.m], consequently, the operator might lose the 

steering control causing to the intended trajectory loss and vehicle can be described as 

uncontrollable. The steering torque assistance that the EPS provides is calculated based 

on the vehicle speeds in the predefined programmable look-up tables of the EPS 

controlling unit. With the higher vehicle speeds (i.e. 35 m/sec), the assist decreased due 

to the friction reduction between the front axle wheels and the road surface. This case of 

high importance and critical safety designation because even with minimal amount of 

unintended torque assistance with the high vehicle speed scenario, the vehicle is highly 

susceptible to lose the intended path faster due to the vehicle high lateral acceleration that 

deviated the vehicle quickly out of the intended lane. This is the reason that active safety 

systems in higher automation SAE level 3 and above use different intervention strategies 

in case of failure of the control system to trigger the driver’s response to take the vehicle 

control over from the automated control system. The interventions can be delivered to the 

driver via the HMI located in the cockpit such as displays, haptic devices, sound alert and 

flashing lights. The human drivers are still responsible for most of the road crashes even 

in SAE level 1 and 2 automated vehicles because these active safety-controlling systems 

are designed to hand the control over to the driver using the intervention HMI in case of 

malfunction or failure [89, 90]. This is the reason that the drivers – vehicle control 

systems are changing significantly in SAE level 3 automated vehicle and above that. 

Driving functions are controlled by the vehicle control systems and this presents human 

factors challenges in this interactive system with moving to level 4 and 5. HMI 

modalities can be divided into three main categories as shown in table 4.6. 



102 

 

Table 4.6. HMI Modalities.  

Visual Auditory Haptic 

Color Sound type (Speech, tone, auditory icon) Vibration –

Frequency  

Symbol Loudness (Absolute and relative to 

masking threshold)  

Location  

Text  Muting or partial muting of other sounds  Intensity  

Size  Onset of offset  Direction  

Brightness  Duration (pulse & interval) Rhythm  

Contrast Musicality  - 

Flashing  Frequency  - 

Duration  Spatial location  - 

 

The visual HMI warnings are appropriate for primary warning information and 

lower priority attention. However, the auditory HMI warnings are suitable for high 

priority alerts and indicate the onset of system malfunction or limitation. In addition, the 

haptic HMI can be used to provide information that the auditory HMI is unlikely to be 

effective. The driver can get a specific information from the HMI about the required 

action such as braking, swerving or acceleration rather than just getting warning alerts. 

The HMI can be integrated in the steering wheel itself such as light bar or haptic steering 

to get the driver’s attention quicker to maintain the vehicle’s control between the driver 

and the automated system interchangeably.  
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CHAPTER FIVE 

 

INTELLIGENT PERFORMANCE ANALYSIS OF AUTOMATED STEERING  

SYSTEMS FOR AUTONOMOUS VEHICLES 

 

 

 

5.1 Abstract 

 

Intelligent ground vehicles (IGV) require automated steering control systems. The 

complexity of the automated steering systems has increased as the concurrent data 

receiving, processing, decision-making and monitoring all happen simultaneously in 

super-fast sampling rates. This chapter focuses on the neural network training and 

machine learning approaches for an automated steering system of IGV. The essential 

information of the steering controller was trained using artificial neural network and 

pattern recognition algorithm approaches. The objective is to investigate the design of 

ANN training, deep machine learning and AI on collected data from sensors of steering 

wheel angular position, speed, steering column torque, and ego vehicle speed and 

generating acceptable steering commands for the vehicle. The results of the research 

showed that the proposed ANN control system had trained and validated more than 

~96.4% steering system behavior patterns and adapted large random disturbances of the 

steering controller commands. It is, therefore, necessary to develop ANN and AI 

methodologies in automated steering systems of autonomous vehicles with neural 

networks representing the main topology blocks of the control system architecture and 

utilize ANN abstraction in the control system of autonomous vehicle steering control 

systems.  
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5.2 Introduction 

In this chapter, the concept of ANN and ML in the intelligent steering system was 

introduced and discussed in section 5.3. Then, the dataset methodology used to obtain the 

steering system input and output signals was explained in section 5.4. Also, the artificial 

neural network model building, training and validation processes are discussed. Results 

are presented in section 5.5. Finally, section 5.6. presented the safety of ANN and ML 

algorithms and its relation to the V model and the ISO 262626 standard.   

5.3  Machine Learning in Steering System  

5.3.1 Electric Power Steering System 

The need for safer and high reliable steering systems to meet the government 

regulations and comply with standards associated with the development of ADAS have 

increased the complexity of the steering system architecture. More sensors, actuators, 

safety monitors which are purely electrical and electronic E/E components have enabled 

the steering systems to be smarter and more intelligent. Consequently, ASIL rating of the 

critical control systems have increased due to potential SLOA or loss of features (LOF) 

[6, 91]. us vehiclese correct behavior of autonomoTh  is only possible if a complex 

connected subsystems of perception, localization, planning, CVM, actuation and 

monitoring are accurately made on the correct time, magnitude and direction. This 

requires a proper tuning of pertaining parameters and receiving the correct data from 

connected sensors to infuse them in the control module. Then, producing commands to 

the actuators to achieve the required action of the controller module leading to feature 

service level such as LKA or trajectory follow up etc. The challenge is to collect all the 
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required data from the sensors in real time and monitor the actuators whether the correct 

action has been performed or not. This is the reason that intelligent steering systems are 

fault tolerant systems as the complexity and multi-dimensions levels and layers topology 

involve the steering systems. Therefore, manual efforts and conventional control 

approaches are unlikely to yield the desired level of execution and robust performance in 

such complex steering systems [92]. -This has introduced the concept of forward

, ANN, ML, and the artificial intellegence models, in whichbackward control systems 

training examples are used to control the system and derive the model. 

5.3.2 Artificial neural network (ANN) 

The dynamic and kinematic behaviors of the steering systems make it non-linear 

and non-unique steering commands with higher number of degrees of freedom (DoF) on 

the vehicle level. Therefore, the ANN approach is preferable for steering systems due to 

the ability to learn with high-speed performance, parallel input and output data topology, 

and generalize the nonlinearity behavior. ANN has been shown to be a good classifier for 

unrelated data which is the case of the intelligent steering system in this study. The input 

data to the steering controller such as steering wheel angle, steering wheel speed (SWS), 

ego vehicle speed, and driver torque applied to the steering wheel are different categories 

encoded data. The representations of these data are fed to the electric power steering 

control module as either analog signal i.e. 0 – 5 direct current (DC) volts or on the 

controller area network (CAN) bus as entire frame message with end to end cyclic 

redundancy check and checksum protection. 
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Figure 5.1 left side shows the conventional or traditional control systems 

architecture and topology. The microcontroller is the central decision maker which 

receives, processes, computes and actuates outputs. Currently, the critical safety control 

systems use tri-core CPUs with higher computational capabilities and memories to 

provide sufficient puffer and signal processing. Whether it is consisted of application 

specific integrated circuits or field programmable gate array the main functions of the 

microcontroller relies on the operating software or algorithm in which a programmable 

math model controls the logic gates of the output based on the input signals. The right 

side of figure 5.1 shows the artificial neural network where the topology consists of input 

layer, hidden layers and output layer. The board support package (BSP) and system on 

the chip hosts these layers in which the training and predicting processes are performed. 

The machine learning algorithm hosted by the SoC and neural network processors 

(NSP) offers the diversity of architectural implementation and redundancy because of the 

training and predictability with the feed forward or forward-backward control systems. 

This can be used in highly automated control systems of autonomous vehicles when 

higher architecture complexity and non-linearity models are deployed supported by 

system accelerators to process the payload data of the intelligent steering system.  
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Figure 5.1. Conventional (traditional) control system (left) VS Artificial Neural Network 

System (right). 

 

5.4 Methodology  

5.4.1 Model Build and Simulation Tool Suite 

In order to test and ANN in the EPS system, the driving environment and 

ecosystems along driving scenarios and vehicle maneuvers were identified and created in 

the model of the Simulink. Then, the model was run in the Simulink itself to make sure it 

is bug-free model. Upon successfully running the model, the code was compiled using 

the target link and the source code and generated S-functions were imported in the high 

fidelity dSPACE model desk. Interestingly, the dSPACE motion desk generates 3 

dimensions model which runs in real time during the vehicle maneuvering and can be 

looked at from the driver and aerial views. All the simulations and tool suite that were 

running in this experiment are real time to mimic the real driving and maneuvering 

interactions and capture the vehicle dynamics parameters. The simulation is a realistic 

representation of the real-life events of the vehicle maneuvering. Consequently, this 
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method is very efficient to develop and validate vehicle models and collect data for 

analysis and post processing especially in the early vehicle and engineering product 

development processes.   

5.4.2 Dataset and logs Collection 

The experiment and maneuvers were performed on the high fidelity dSPACE 

SCALEXIO hardware-in-the-loop (HIL) bench and the vehicle dynamic model of the 

automotive simulation model (ASM) from the built-in Simulink model open source 

available in the library of the MATLAB. First, the Simulink model was compiled, and C 

code was generated and flashed in the dSAPCE built-in controller units to run the vehicle 

and create the virtual environment and mock-up functions. Then, the ego vehicle 

maneuver, traffic and road definition were defined and saved in the Model desk package 

of the dSPACE application which runs by python script. After that, the Model desk was 

downloaded in the Motion Desk and the graphical user interface (GUI) was ready to be 

used in the Control Desk package to drive the ego vehicle in a fully virtual environment. 

Figure 5.2 shows the layout of the dSPACE bench topology and application connections 

of this experiment. The ASM tool suite supports virtual test drives in complex traffic 

environments with high degree of fidelity so that sensor data can be generated for 

development in the early design phases of ADAS features and control units. The 

dSPACE manuals were used to set up the fully virtual environment and the virtual 

electronic control units [92].  
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Figure 5.2. The generic layout of the dSPACE bench topology. 

 

The real-time interface CAN multimessage blockset was used to generate and 

collect data from the CAN bus network. The bench setup allows to control the vehicle 

manually via external steering wheel joystick in real-time basis response as shown in 

figure 5.3. 

 
Figure 5.3. The hardware-in-the-loop bench setup with the steering wheel to manually 

drive the ego vehicle on real time basis. 

 

The dataset was collected in extensions of binary log file (BLF) from the bus 

logger and measurement data format (MDF). Then, the selected signals related to the 
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steering system were exported and stored in tabular data as csv extension to be used later 

to create the artificial neural network and post process data purposes. Table 5.1 shows the 

collected data, sampling rate and sources according to IEEE754 standard. 

As a result of dataset recording and exporting, a log was formed and saved with 

the above parameters from the model. In total, about 11,100 time synchronized data 

points for the above parameters were obtained. Using the global cruiser of the CAN bus 

logger, the synchronization of all parameters was executed in the same updated time step.  

 

Table 5.1. Dataset collected from the HIL bench. 

Data [unit] 
Sample 

rate 
Data Type Source 

Time [sec]  2 msec Int32 Simulink model 

Vehicle speed [m/sec] 50 msec Float32  
Front wheels speed 

sensor  

Steering wheel angle 

[deg] 

2 msec Float32 Simulated steering 

wheel sensor  

Steering wheel speed 

[deg/sec] 

2 msec Float32 Simulated steering 

wheel sensor 

Steering column torque 

[N.m] 
10 msec Float32 

Torque sensor in the 

Logitech joystick 

steering wheel 

 

5.4.3  Data Post Processing and Analysis 

Using MATLAB R2021a version that supports all automotive toolboxes and sets, 

the collected dataset was imported to the workspace of MATLAB and the extension was 
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converted to .mat file to be compatible with the workspace of the neural network toolbox. 

Then, the artificial neural network was constructed using the Neural Network Training 

(nntraintool) toolbox of MATLAB. The input was four parameters as (time, SWA, SWS, 

and the ego vehicle velocity). The output or the target was loaded with the steering 

column torque dataset. The number of hidden neurons was adjusted to 20 to increase the 

training performance and decrease the mean square error (MSE). The MSE represents the 

average square difference between the outputs and the targets. Figure 5.4. shows the 

interfaces and the boundary layers of the neural network constructed in the work.  

 

 

Figure 5.4. Neural network structure toolbox. 

 

 

The ANN concept of work is that it is ultimately trying to mimic the human brain 

to solve different tasks. The artificial neuron gets several input data as a vector as shown 

in equation (5.1): 

     𝑥 =  (𝑥1 , 𝑥2, …… . , 𝑥𝑚 ) (5.1) 

Where m is the number of inputs. It weights each input  𝑥𝑖 with a pre-determined weight 

𝑤𝑖 and sums up all the weighted input. A bias b is added to the sum and the result is 
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provided to an activation function λ, which is non-linear [94]. The output of the artificial 

neuron can be written as: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑁𝑒𝑢𝑟𝑜𝑛 = 𝜆 (∑𝑤𝑖 

𝑚

𝑖=1

𝑥𝑖 +  𝑏 ) (5.2) 

 

The training algorithm was chosen as Levenberg-Marquardt (LM) following the 

work of Farhat, A. et al approach [95]. This algorithm requires more memory, but less 

time as reported in the MATLAB toolbox guideline [96]. The MSE is the average 

squared difference between the output and the trained target: lower values of the MSE are 

better     . The regression (R) measures the correlation between outputs and the trained 

target. A value of R of 1 means a close relationship between the outputs and the targets. 

However, a value of 0 means a random relationship [97].  The neural fitting tool 

automatically divides the ANN samples to 70 % training, 15% validation and the rest of 

15 % to testing [98]. The validation portion is used to validate the network and stop the 

sed as a completely independentverfitting. However, the test part is utraining before o  

becasue the test part does use the labeled data that had test of the network generalization 

This means that the test yields the data .been already used in the training and validation 

imilar to the input data formats. Then, the ANN was trained to predict the steering 

column torque based on four input dataset of time, SWA, SWS and ego vehicle speed. 

The neural network toolbox runs 138 iterations and stops automatically to give as less as 

possible of MSE and as high as possible of R. 
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5.5  Results  

5.5.1  Model Performance and Validation  

In order to evaluate the performance of the validation and training of the proposed 

ANN of the steering system dataset, the trained ANN output was validated against the 

dataset of the input dataset parameter based on the steering column torque and the SWA. 

Two methods were developed in this dissertation based on the trained dataset used for the 

training and the target dataset as the followings: 

1- The target data is the steering column torque based on all other trained 

dataset.  

2- The target data is the SWA based on all other trained dataset.  

5.5.1.1  Steering Column Torque Dataset as Target 

The first method was to train all the dataset and set the steering column torque 

dataset as the target. The steering column torque values from the torque sensor was in the 

input dataset of the ANN for training. Then, it was set as a target in the ANN output in 

which it will be validated against the input dataset using the regression method. Plots of 

training, validation, test and all are generated from the ANN. The training output is 

shown in figure 5.5. 
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Figure 5.5. Training of the steering wheel torque output vs. the input dataset. 

 

The x-axis in the plot represents the original steering column torque measure from 

the torque sensor in the experiments which is the target of the ANN training. However, 

the y-axis represents the predicted or trained torque output from the trained ANN based 

on other input parameters (time, vehicle speed, SWA and SWS). This output compared 

with the original steering column torque as shown in figure 5.5. It’s clear that the 

deviation between the measured and predicted steering column torque values increase 

toward right and the left extremes because the non-linearity correlations between the 

inputs and steering torque commands and vehicle dynamic nature are associated with 

three degree of freedom systems or more.   
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The validation and the test of the output vs the input is shown in figure 5.6 and 

figure 5.7. 

 

 

Figure 5.6. Validation of the steering wheel torque output vs. the input dataset. 

 

The built ANN in this study is a two-layer feedforward network with tansigmoid 

transfer function in both the hidden and the output layer with 20 input neurons and 1 

output neuron which is equal to the number of parameters in the target vector of the 

steering column torque. The regression of 96.25% was achieved for all, which means that  
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Figure 5.7. Overall test regression (R) of the steering wheel torque output vs. the input 

dataset. 

 

there is ~ 3.75 % of deviation between the input and the trained output steering column 

torque. The shows that built ANN considering the main parameters of SWA, SWS and 

ego vehicle speed with their temporal rate was successfully trained towards predicting the 

steering column torque with ~ 3.75 % deviation mostly at the extreme edge of the 

steering torque commands. A calibration or correction factor can be added to the physical 

component of coil driver to address this deviation. The best validation performance was 

computed by the neural fitting tools to be 0.19717 at epoch 132 with the MSE and R as 

shown in table 5.2. 
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Table 5.2. Training, validation and test results for the SWT target. 

Results  Samples MSE[-] R[-] 

Training  7775 2.13399e-1 9.58652e-1 

Validation 1666 2.32399e-1 9.53627e-1 

Testing  1666 2.45282e-1 9.52188e-1 

 

This requires 138 iteration cycles that last for almost 1 minute. Since the output dataset 

that has been trained, validated and tested with ~ 3.75 % deviation as shown in figure 5.8. 

 

 
Figure 5.8. Best training, validation and test performance and MSE. 

 

5.5.1.2  Steering Wheel Angle Dataset as Target 

 The second method developed in this dissertation was following the same 

approach of the previous section and switching the steering column torque with the 
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steering wheel angle dataset in the target so the ANN model will train and validate to 

predict the SWA dataset using the same dataset input of the previous section.  

 Interestingly, the training of the steering wheel angle dataset yields better results 

for all aspects of training, validation and test as shown in figures 5.9 through 5.11. with      

 

 

   Figure 5.9. Training of the steering wheel angle output vs. the input dataset. 
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Figure 5.10. Validation of the steering wheel angle output vs. the input dataset. 

 

R= ~ 98.36% vs. the previous section R = ~ 96.25%. The reason that the SWA yields 

better training results is that the steering wheel speed dataset is directly related to the 

SWA in the same time domain and using the same sensor of the steering wheel angle 

sensor. Also, another reason is that the steering wheel angle dataset samples increments 

were lower than the steering torque dataset due to the SWA sensor capacities to update 

that data every 2 msec as shown in table 5.1. for both SWA and SWS. Therefore, more 

SWA dataset means the ANN can better train and fit the output data with the input 

dataset. Another remarkable finding is that the SWA magnitudes range from 50 to -300 º 
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because the data acquisitions captures the SWA in degrees. The increase in the range and 

the difference between the min. and the max values with lower sampling increments 

provide the ANN model and layers with abundant data to train and  

 

 

Figure 5.11. Overall test regression (R) of the steering wheel angle output vs. the input 

dataset. 

 

reach the best fit in 47 epochs with the best validation performance of 81.8. This means 

that the training processes in the hidden layers took less time to converge the data and 

reach a pattern for the SWA target.  Therefore, EPS systems should be developed to work 
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and response based on the SWA associated with the ANN and ML for better resolution, 

higher accuracy and pattern recognition. This feasible approach allows for autonomous 

vehicles designers to use ANN for a better prediction for path and trajectories planning of 

destination before starting the maneuver. This requires the use of ANN abstraction as an 

independent layer in the control module of the intelligent steering system for self-driving 

and pattern recognition for the steering commands. Table 5.3. shows the MSE and the R 

results with the SWA dataset as target.  

 

Table 5.3. Training, validation and test results for the SWA target. 

Results  Samples MSE[-] R[-] 

Training  7775 1.31399e-1 4.58652e-1 

Validation 1666 1.33399e-1 4.53627e-1 

Testing  1666 1.47282e-1 4.52188e-1 

 

One of the automotive applications’ stringent requirements is the EUC sampling 

frequency when the vehicle is moving or maneuvering in the road. The critical safety 

controllers such as steering and braking actuation need to be executed every 2 msec 

which requires 500 Hz computation capabilities. Therefore, it is essential that the real-

time ANN training yields the target dataset and samples the updated data in 2 msec. Let 

us assume a highway driving scenario when the ego vehicle is moving with the speed of 

70 mph (equivalent to  112.65 kph or 31.5 m/sec), the vehicle will move a distance of 

0.315 m every 1 msec. Therefore, the ANN deployment is ADAS applications require 
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using NSP and accelerators to boost the computational performance of the controllers and 

execute in real-time of 1 to 2 msec.  

5.5.2  Model Error Analysis 

The error histogram with 20 bins was generated for training, validation and 

testing as shown in figure 5.12. The error was calculated as shown in Equation (5.3). 

 

𝐸𝑟𝑟𝑜𝑟 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑠 − 𝐴𝑁𝑁 𝑜𝑢𝑡𝑝𝑢𝑡𝑠  (5.3) 

 

The error histogram figure shows that the data fitting errors distributed within a 

reasonably good range around zero denoted as orange vertical line for the training (blue), 

validation (green) and test (red) data. The number of bins of 20 represents the vertical 

bars observed in the error histogram ranging from -2.908 (leftmost bin) to 2.489 

(rightmost bin). This error range is then divided into 20 smaller bins so each bin has a 

width of 0.269 as shown in Equation (5.4). 

 

2.489 − (−2.908)

20 
 = 0.269 

 

(5.4) 

 

The vertical bar represents the number of samples from the dataset, which lies in a 

particular bin and their corresponding error. As can be seen that the higher number of the 

dataset plugged in ANN, the lower the error associated with it. As the number of 

instances (dataset combinations) decreases, the associated errors increase (positive and 

negative errors) which directly affects the ANN prediction performance.   
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Figure 5.12. Error histogram of the ANN created with the simulation data. 

 

The Simulink model was generated from the neural network toolbox as shown in 

figure 5.13. The block of NNET represents a model library that contains the hidden layer 

of the ANN. 

 

 
Figure 5.13. Artificial neural network Simulink model and interfaces input and output 

(IO).  
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A closer look inside the NNET block of the above Simulink model enables us to 

see the input and the output layers of the neural network as shown in figure 5.14. There is 

no feedback from the output of the ANN to the input and this is the reason this is call a 

feedforward type of control system. 

 

 
Figure 5.14. The topology of input and output layers of the neural network. 

 

The Simulink model can be compiled and implemented in the embedded base 

software of the intelligent steering control module to enable the artificial neural network. 

This enables the automakers increasing the safety of the critical system controls module 

of the vehicle with the option to enable- disable the artificial neural network learning and 

training as desired. 

5.5.3 Safety of the Artificial Neural Networks and Machine learning algorithms 

Artificial neural network and machine learning algorithms, especially those using 

Deep Neural Networks, have demonstrated their excellent capabilities to resolve many 

critical control systems of autonomous vehicles control systems. They improved the 

quality of several non-safety related products in the past years and deployed in critical 

safety applications recently such as steering and braking systems. Their design and 
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development are so complicated that a number of hardly detectable systematic errors may 

occur, which may result in unintentional operation of the whole system. Therefore, 

functional safety standards or norms should be developed to allow for the safe 

implementation of these algorithms. ISO 26262 standard for functional safety in the 

automotive industry does not address the use of ANN and ML algorithms at all. A recent 

work analyzed safety lifecycle defined in ISO 26262 standard and proposed how 

currently defined work products can be adopted to cover specific aspects of ANN and 

ML algorithms. The proposed approach was presented in [99, 100] and proposed 

adaptation of ISO 26262 V-model workflow applied for ANN and ML algorithms to 

trace any potential failure before a dedicated standard for ANN and ML algorithms can 

be developed in the near future. 

 

 

  



126 

 

 CHAPTER SIX  

 

CONCLUSIONS 

 

 

 

6.1     Research Summary 

 

The new design guidelines proposed in this study serve to design a highly 

available EPS system architecture and accurately determine the ASIL for the sudden 

SLOA failure mode. The implementation of the control logic path for the EPS system 

that is compliant with the ISO 26262 Standard and PMHF metrics at the decision maker 

or microcontroller level. The recent market development of SUVs, BEVs and pickups 

showed increasing vehicles curb weight and more ADAS functionalities in the EPS 

system resulting in new challenges for potential SLOA of steering systems. The SLOA of 

steering system at higher rack forces and more ADAS functions leads to the 

recommendation to change the ASIL rating from ASIL B to ASIL C based on HARA and 

ISO 26262 metrics for the SLOA scenario. The proposed ASIL C mandates that the FIT 

to be less than 100 h-1 and the SPFM to be more than 97% as shown in table 3.11. It is 

possible to achieve ASIL C for EPS systems using various types of architectures at the 

level of control logic paths utilizing the redundancy concepts. ASIL C mitigation or risk 

reduction was achieved by incorporating a dual core microcontroller integrated with a 

power management and safety-monitoring unit at the same board. The proper 

implementation of this logic control path of dual core µc integrated with power 

management and safety monitoring makes the EPS system simpler, faster, reliable and 

more cost effective. This allows steering system designers to easily and effectively add 



127 

 

functional safety to EPS systems for higher levels of automated vehicles in the future. 

The combination of safe acquisitions, decision making and actuation along with ASIL 

decomposition simplify the hardware architecture for the market of highly available EPS 

systems and reduce the time to market highly available EPS systems compliant with the 

ISO 26262 Standard. Chapter three mainly covers the architecture design and hardware 

evaluation of the highly available EPS system. The model-based software design and 

implementation of highly automated driving systems was explained in chapter 4.  

In chapter four, the analysis of model-based fault injection for the steering system 

of high-automated vehicles has shown that the steering wheel angle is of high importance 

and classified as ASIL D based on the risk assessment and control metrics that were 

developed in this study. The finding of chapter four modeling also redefined the 

controllability classes or categories of high automated vehicles based on the vehicle 

global position related to the lane marker lines to accommodate for the machine in the 

loop controlling the DDT in autonomous vehicle maneuvering. There are however, 

human factors challenge in SAE level 4 and 5 and the interaction between the driver and 

the automated control system of the vehicle that require HMI modalities as explained in 

table 4.6. The driver – automated control system engagement in the steering system of the 

vehicles is one of the crucial control complex scenario that add uncertainty and potential 

risk when handing over the steering control between the driver and-or the automated 

control system. Even when the driver is in full control of the steering system, the ESP is 

still responsible for approximately (~ 80%) of the SWT required to steer the vehicle. 

Therefore, the steering system design and functional safety metric requires specific 
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architecture redundancies in SW, HW and system level for high availability and risk 

mitigation mechanisms. Chapter four highlighted the need to define the driver 

intervention in high-automated vehicle of SAE level 4 and 5 in order to sustain the traffic 

safety and keep the vehicle in the intended trajectory. This can be addressed by HMI and 

the human factor implementation in ISO 26262 to standardize the driver-machine relation 

with the DDT in real time and interactive environment. Both manual and automated 

driving modes demand the functional safety implementation of the steering system to 

mitigate any system malfunction or failure. Therefore, the fault injection concept 

supports the safety mechanism implementation and correctness of the system 

architectural design with respect to faults and failures during the runtime. This improves 

the test coverage of developing safe control system to operate as designed and meet the 

safety requirements in compliance with the OEMs and government regulations.  Another 

aspect to consider in the future work is to utilize the HMI in ASIL D systems in ISO 

26262 in more detail and include the HMI in the safety mechanism of the vehicle control 

system. 

The highly automated driving systems heavily rely on the artificial intelligence 

and the artificial neural network as the backbone of the control system. In chapter five, 

the problem of predicting the steering wheel torque commands for autonomous vehicles 

has been considered. This chapter research methodology used a collected dataset of 

steering system input and output parameters from vehicle level hardware-in-the-loop 

simulator of the high fidelity dSPACE bench to build the ANN for training and validation 

of the steering column torque commands. The performance of the artificial neural 
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network to predict the steering command based on the SWA, SWS and ego speed was 

validated with a regression value of ~ 96.5 % versus the measured steering torque 

commands. The results show that the artificial neural network can effectively predict the 

steering commands accurately given the fact that the non-linearity and complexity of the 

steering system control. This improves the safety highly automated driving system 

vehicles and confirm the feasibility of the concept of intelligent steering systems for path 

and trajectory planning based on the prediction patterns of the steering systems peripheral 

signals and parameters.  Artificial intelligence finds its way to the most critical safety 

systems of the automotive for higher reliability and performance. Therefore, the ANN 

should be implemented as an abstraction layer in the control module to support sensor 

data fusion and support the prediction and pattern recognition. 

6.2 Contributions 

This dissertation demonstrated a significant contribution to the state of the art of the 

automated driving systems focusing on the steering systems and the human capabilities in 

the light of the emerging challenges of EV and AV. It provided an experimental 

assessment of utilizing an adaptive MPC for intended path follow and evaluated the 

failures in same model to improve the test coverage and assess the developed products in 

the early phase of the life cycle. The followings are the Contributions of this dissertation:   

• Contribution to the understanding of the highly automated driving EPS systems 

and the design guide of the ASIL determination for the SLOA and LOF EPS 

systems.  
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• The second important contribution of this research and the hands-on experiment is 

to measure the human capability and controllability of the vehicle steering 

systems and define a new criteria for the controllability classes of the ASIL 

matrix because ISO 262626 uses a generic criteria that does not fit the highly 

automated driving systems. Based on the results of this research, the EPS systems 

developers can design the steering systems considering the human capability of 

steering wheel torque. The sudden loss of assistance of the EPS systems requires 

developing a highly available control system based on the new ASIL determined 

in this research given the fact that the vehicle curb weight is increasing in the EV 

and AV. The findings of the new ASIL determination and steering systems human 

controllability in the real product development of EV and AV will hopefully make 

the driving systems more reliable, safer and more comfortable. There is a strong 

need to address the human factors and the HMI of the highly automated driving 

systems and standardize the driver – machine with the DDT in real time and 

interactive environment.   

• Also the controllability classes were redefined in chapter five based on the global 

position of the vehicle and related to the lane marker lines with the introduction of 

the wheel offset markers concept. The driving ecosystem of the vehicle position 

and the road environment were related to keep the vehicle in the intended path 

and defined the safety integrity of the highly automated driving vehicles of the 

SAE level 4 and 5.  
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• The ANN model developed in this dissertation with 98.5% performance results is 

a great success that the ML and ANN can be deployed in a critical safety systems 

of the AV. This will increase public trust and encourage OEMs and suppliers to 

adapt this technology in the automotive safety applications. This would save lives 

and reduce fatalities and make the driving experience more comfortable.  

•  Open the door for intelligent transportation systems development with EV, AV 

and PAV technologies to forge zero crashes, zero emissions and zero congestion.  

6.3 Future Work 

The future work should concentrate on the following aspects of the highly automated 

driving systems: 

• Focus on the highly automated EPS signals and parameters optimization in 

different driving scenarios and maneuver environment such as intersections and 

roundabout and other complex driving scenarios. Consequently, this will cover a 

variety of situations and scenarios which increase the public trust towards hands-

free driving systems across different ecosystems. These driving scenarios are very 

critical for the highly automated driving systems and the future of this technology 

to claim that the hands-free driving mode is safe and trustworthy with 100% 

coverage of the roads and scenarios.  

• Another promising area is to focus on in the future is bridging the gap between 

ISO 26262 functional safety of the road vehicle and the artificial intelligence and 

the machine learning deployment in the automotive industry especially in the 

safety critical systems in the vehicle. The applicability of the V-model and the 
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required confidence in these new technologies in the safety critical systems and 

ASIL determination are still challenging in the absence of industrial 

standardization. These new technologies create lots of questions and concerns for 

meeting the functional safety requirements. For example, the validation process of 

the object detection systems uncertainties and probabilistic outcomes, which are 

hard to model and validate. In general, there is no formal specifications for these 

new technologies in the automotive industry.  

• The implementation of the artificial intelligence and machine learning in the 

safety critical driving system will introduce the neural signal processing (NSP) 

which is different from the current analogue and digital signal processing. The 

deployment of the NSP and its interfaces with other signals need to be carefully 

studied and analyzed because the data layers and the time stamping are different 

from the analogue and digital types. The processing of the NSP requires 

accelerators and boosting the computational units and this creates more functional 

safety requirements and requires dedicated safety mechanisms to detect, mitigate 

and react for any malfunction in these signals and their serial data interfaces.   
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