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Abstract
An algorithm is presented that uses a mostly combinatorial ap-

proach to solve a family of convex quadratic programs over box con-
straints. It is proved that for convex programs with the required
structure, the algorithm converges in a finite number of iterations.
Moreover, each iteration requires, at most, one function evaluation.
On synthetic problems with thousands of variables, our implementa-
tion determines the optimal solution in seconds.

1 Context and previous work.
Quadratic programming problems play a unique role in optimization the-
ory [38]. The general quadratic problem consists of a quadratic objective
function and a set of linear inequality constraints. This paper will focus on
a quadratic programming problem with n variables subject to a set of box
constraints:

min{1

2
xtQx+ ctx | l ≤ x ≤ u}, (1)

where x is a vector of decision variables, Q ∈ Rn×n is a symmetric matrix
of quadratic costs (not necessarily positive definite), c ∈ Rn is a column
vector of linear costs, and l ∈ Rn and u ∈ Rn are the vectors of lower
and upper bounds, respectively [3, 7]. If matrix Q is positive definite or
positive semidefinite, then (1) becomes a convex programming problem, [6,
20] making the local optimum equivalent to the global optimum. Therefore,
(1) can be solved in polynomial time by using a wide array of optimization
algorithms [2, 6, 7, 8, 12, 13, 17, 20, 22, 24, 27, 28, 29, 32, 38]. For indefinite
Q, (1) is NP-hard [3, 7, 21].

Quadratic programming problems with box constraints arise frequently
in both applications [1, 4, 19, 23, 26, 30, 31, 33] and mathematical practice
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[5, 6, 7, 9, 11, 13, 14, 17, 18, 22, 24, 28, 29, 34, 35]. Quadratic program-
ming problems are usually solved with one of three approaches: active sets,
conjugate gradients, or interior points [7, 11, 13, 28, 31, 38]. Active set ap-
proaches usually terminate in a finite number of iterations [3, 7, 8, 28, 29]
but at each step they modify only two variables imposing a lower bound
on the number of iterations required for convergence. Thus, the number of
iterations can be large [28, 29]. Moreover, they must avoid cycling, espe-
cially in the case of degenerate problems. The gradient-related approaches
typically converge fast, [25] but require a number of function and gradient
evaluations at each step [7, 28, 31]. The interior-point methods are gener-
ally very efficient and have good convergence bounds [12, 15, 16, 36, 39] but
must take care, at termination, to jump to a boundary as all iterations were
interior to the feasible region and approximated by floating point numbers.

In contrast, the algorithm presented here only applies to convex prob-
lems with a special structure, but in those cases, it suffers from none on the
previously mentioned shortcomings. It is combinatorial in nature and can
be implemented over the rationals, eliminating any floating point inaccu-
racies. It converges in a finite number of iterations, typically much smaller
than active set methods, because multiple variables can be modified per
iterations. Finally, the iterations do not require any function evaluation.

1.1 Motivational example.
Before generalizing, we illustrate the type of problems under consideration
and the solution technique. Consider a data set of stock prices with the
lowest and highest values of the day read over a period of N + 1 days:
[l1, h1], [l2, h2], . . . , [lN+1, hN+1]. We wish to find most representative prices
as well as the ”best” mean and variance to summarize the data. We will
define ”best” as the solution to

min

{
Πi=N
i=1

1√
2πσ

e
−(pi+1−pi−ν)

2

σ2 | pi ∈ [li, hi]

}
. (2)

We do not care about the optimal value, but only about the optimal so-
lution. By taking the log, and considering each box constraint, we can
transform (2) into

min

{
ρ(x, ν, σ) := N log σ −

∑
i(xi − ν)2

2σ2
| xi ∈ [ai, bi]

}
(3)

where

ai = li+1 − hi,
bi = hi+1 − li.

2



Under this form (3), it is clear that the problem is ill-posed if the inter-
section of the box constraints is non-empty. For then, we can take xi = ν
and σ → 0 to drive the program to −∞. We will therefore make an im-
portant assumption throughout the paper: This is equivalent to restricting
the original form (2) not to have a solution with exponential increase.

Assumption 1. The box constraints have empty intersection or,

∩i [ai, bi] = ∅. (4)

We note that the problem is not convex. To see this, let us consider a
small-dimensional case.

(x1 − ν)
2

2σ2
+

(x2 − ν)
2

2σ2
+ 2 log σ

with gradient[
x1−ν
σ2

x2−ν
σ2 −x2−ν

σ2 − x1−ν
σ2 − (x2−ν)2

σ3 − (x1−ν)2

σ3 + 2
σ

]t
and Hessian

1
σ2 0 − 1

σ2 − 2 (x1−ν)
σ3

0 1
σ2 − 1

σ2 − 2 (x2−ν)
σ3

− 1
σ2 − 1

σ2
2
σ2

2 (x2−ν)
σ3 + 2 (x1−ν)

σ3

− 2 (x1−ν)
σ3 − 2 (x2−ν)

σ3

2 (x2−ν)
σ3 + 2 (x1−ν)

σ3

3 (x2−ν)2

σ4 + 3 (x1−ν)2

σ4 − 2
σ2


The 3× 3 upper-left sub-block has eigenvalues { 1

σ2 ,
3
σ2 , 0}, and is therefore

positive semi-definite. The bottom-right block can be positive or negative
in general, indicating an indefinite Hessian.

1.2 Optimality conditions.
Let us consider necessary conditions for optimal solutions.

Theorem 1. If x∗, ν∗, σ∗ are optimal for (3), then

1. If x∗i = ai then x∗i ≥ ν∗.

2. If x∗i = bi then x∗i ≤ ν∗.

3. If x∗i ∈ (ai, bi) then x∗i = ν∗.

4. ν∗ = 1
N

∑N
i=1 x

∗
i .

5. (σ∗)2 = 1
N

∑N
i=1 (x∗i − ν∗)2
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Proof. The proof follows from the fact that the feasible region is convex.
The tangent cone of feasible directions, T , is generated by

di = [0, . . . , 0, αi, 0, . . . , 0]

where

• αi > 0 for all i where x∗i = ai,

• αi < 0 for all i where x∗i = bi,

• αi is free for all i where x∗i ∈ (ai, bi), i = N + 1 and i = N + 2.

Since x∗, ν∗, σ∗ is optimal,

∇ρ(x∗, ν∗, σ∗)td ≥ 0 ,∀d ∈ T.

By considering each generator, di,

∇ρtdi =

[
x1 − ν
σ2

, . . . ,
xN − ν
σ2

, . . . ,−
∑

(xi − ν)

σ2
,
N

σ
−
∑

(xi − ν)2

σ3

]
di ≥ 0.

The result follows.

We can now transform the problem by constraining ν and σ to obtain

min

{
N log σ −

∑
i(xi − ν)2

2σ2
| xi ∈ [ai, bi], ν =

∑
i xi
N

, σ2 =

∑
( xi − ν)2

N

}
.

After substitution of ν and σ, we obtain

min

N2 +
N

2
log

N − 1

N2

∑
i

x2
i −

1

N2

∑
i

∑
j 6=j

xixj

 1
2

| xi ∈ [ai, bi]

 .

Since log and √ are monotone increasing we discard them as well as the
constants to obtain our final formulation

min

ρ̄(x) = (N − 1)
∑
i

x2
i −

∑
i

∑
j 6=i

xixj | xi ∈ [ai, bi]

 . (5)

2 Laplacian quadratic program.
Problem (5) does not have the same optimal value as (2). In fact, we
have transformed a seemingly non-convex problem into a convex one. Both
problems share the same optimal solution for the xi. From these, we can
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retrieve the ν and σ of the original problem. In passing, we note that
problem (5) is a constrained least-squares problem:

min{1

2
‖H 1

2x‖2 | xi ∈ [ai, bi]} (6)

where

H =


(N − 1) −1 −1 . . . −1
−1 (N − 1) −1 . . . −1
−1 −1 (N − 1) . . . −1
...

. . .
−1 −1 −1 . . . (N − 1)

 . (7)

Theorem 2. The optimal solution for problem (5) is unique and is an
optimal solution for problem (2).

Proof. First, we note that problem (5) is convex. The hessian ∇2ρ̄(x) =
2H, where H is defined at (7). The Hessian has eigenvalues 0 and 2N ,
the latter with multiplicity N − 1. Therefore, the necessary conditions for
optimality are sufficient. The gradient is

∇ρ̄(x) =

2(N − 1)x1 − 2
∑
j 6=1

xj , . . . , 2(N − 1)xN − 2
∑
j 6=N

xj

t .
An optimal x∗ satisfies exactly the same conditions as in Theorem 1, that
is

• If x∗i = ai then x∗i ≥
∑
i x

∗
i

N .

• If x∗i = bi then x∗i ≤
∑
i x

∗
i

N .

• If x∗i ∈ (ai, bi) then x∗i =
∑
i x

∗
i

N .

Therefore, an optimal solution for (5) is optimal for (2). It remains to show
uniqueness.

If there were multiple optimal solutions, they would be along the
eigenspace corresponding to the zero eigenvector of the Hessian. This space
has basis

v = [1, 1, 1, . . . , 1]t.

If a move along this space is feasible, it means that each component of x∗ is
strictly inside the feasible region, and they are all equal to each other and
equal to ν, which is precluded by Assumption 1.
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2.1 A combinatorial algorithm.
The key observation to motivate the algorithm is to recognize the Hessian
of (5) as the Laplacian of the complete graphKN . In general, the Laplacian
of a graph is

xt(D −A)x,

where D is a diagonal matrix of the degrees. In the case of KN , it is
(N − 1)I. Finally, A is the adjacency matrix where Ai,j = 1 if and only if
there is an edge between i and j (all pairs in the case of KN ).

With this observation, we can interpret Problem (5) (or, more appro-
priately, Problem (6)) as the problem of partitioning the graph under un-
certainty of the node weights. Each box constraint is an indication of the
possible weight of the node. We will therefore adapt well-known approaches
to this situation.

The general idea is the following. Create a vector of all boundary val-
ues [a1, b1, a2, b2, . . . , aN , bN ], then sort uniquely. We call these values the
potentials. Choose an estimate ν̄ from these potentials, possibly the value
closest to the median of all mid-points of the box constraints, but any mea-
sure of centrality would work. Assign to each xi the value in [ai, bi] closest
to ν̄. This will be the lower bound if ν̄ is smaller, or the upper bound if ν̄
is larger, or ν̄ if it falls within the bounds. Then, as long as the objective
value improves, move ν̄ to the next boundary value and repeat. In detail,
Algorithm 1.

Data: The box: r = ((a1, b1), (a2, b2), . . . , (aN , bN )).
Result: The optimal x∗.
p = sort(flatten(r)) /* The list of potentials. */;
i = b len(p)

2 c /* Index of initial estimate. */;
s = False;
repeat

ν̄ = p[i] /* Next estimate. */ ;
Compute x as Equation (8) ;
ν = 1

N

∑
i xi /* True mean. */;

if s = False then
s = sign(ν − ν̄) /* Direction of movement. */;

end
i = i+ s /* Index of adjacent boundary value. */;

until s = 0 ∨ s 6= sgn(ν − ν̄);
Compute d as Equation (9);
α = N(ν̄−ν)

N−|I+| ;
x∗ = x+ αd ;

Algorithm 1: Solver for Problem (6)
The details and the proof of correctness will follow after some prelim-
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inaries. First, given an estimate ν̄ ∈ [mini{ai},maxi{bi}], we define a
feasible solution x̄ as

x̄i :=


ai ν̄ ≤ ai,
bi bi ≤ ν̄,
ν̄ ν̄ ∈ (ai, bi).

(8)

Intuitively, we set the solution to be as close to the estimate ν̄ as possible.
We also define the true mean ν :=

∑
i xi
N and a feasible direction d as

di :=


1 ν̄ < ν

∧
ai ≤ ν̄ = xi < bi,

−1 ν < ν̄
∧
ai < xi = ν̄ ≤ bi,

0 otherwise.
(9)

Note that d is either composed of {0, 1} or {−1, 0}. Let us name the index
sets I+ := {i | di = 1} and I− := {i | di = −1}; note that they are disjoint.
We are now equipped to show decrease of the objective function if we move
in the direction d.

Theorem 3. Given an estimate ν̄, a feasible solution x, a true mean ν
and a direction of movement d defined as above, then, if ν̄ 6= ν,

ρ(x+ αd) < ρ(x)

for α sufficiently small.

Proof. Since ρ is quadratic, decrease is assured if ∇ρ(x)td < 0. Let us
consider the case ν̄ < ν.

∇ρ(x)td =
∑
i

di[(N − 1)xi −
∑
j 6=i

xj ]

=
∑
i∈I+

[(N − 1)xi −
∑
j 6=i

xj ]

=
∑
i∈I+

[Nxi −
∑
j

xj ]

=
∑
i∈I+

[Nxi −Nν]

= N
∑
i∈I+

[xi − ν]

= N
∑
i∈I+

[ν̄ − ν]

< 0

The case ν < ν̄ is symmetric with the signs reversed.
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Theorem 3 allows us to increase the estimate ν̄ by jumping from one
box boundary value to the next, usually modifying multiple components
of the feasible solution x at each step. We note that this differs from the
behavior of active sets methods which will only modify two components at
each step, the so-called entering and leaving variables. This is also different
from gradient projection type methods which require multiple function and
gradient evaluations at each step. We require only the computation of the
estimate ν̄, which is a linear time computation. Moreover, our approach is
immune to any degeneracy of the problem. In fact, the more degenerate
the problem, the more variables will be updated at each step, reducing the
number of steps. The termination criteria will depend on the final position
of the true mean with respect to the boundary values.

Theorem 4. The estimate ν̄ either increases or decreases monotonically
at each step until the true mean ν lies exactly on a boundary or between
two adjacent boundary values. In the former case, the current iterate is
optimal. In the latter case, the final step to the optimal solution is given by

x∗ = x+ αd, where α =
N(ν̄ − ν)

N − |I+|
(10)

Proof. First note that, if ν̄ = ν the current iterate is optimal by Theorem
2.

Consider the case ν̄ < ν; the other case is similar. Then, by the defi-
nition of d (9), the components of x that are modified are all modified by
increasing. The next estimate ν̄ is therefore the adjacent and larger bound-
ary value and the true mean increased. If this true mean is larger than the
current estimate, the argument is repeated. If not, then it lies between the
last two estimates.

Note that given a direction d, then f(α) = ρ(x+ αd) is quadratic in α
with minimizer at

−d
tHx

dtHd
= −N(ν̄ − ν)

N − |I+|
.

Therefore, the components of the solution that have changed have done so
by

x+
i = xi −

N(ν̄ − ν)

N − |I+|
di = ν̄ − N(ν̄ − ν)

N − |I+|
while the mean has changed by

ν+ =
1

N

∑
i

x+
i =

1

N

[∑
i

xi +
∑
i∈I+
−N(ν̄ − ν)

N − |I+|

]
= ν − |I

+|(ν̄ − ν)

N − |I+|
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It remains to show that the components that have changed are now all
equal to the mean.

ν+ = ν − |I
+|(ν̄ − ν)

N − |I+|

= ν̄ − ν̄ + ν − |I
+|(ν̄ − ν)

N − |I+|

= ν̄ − (N − |I+|)(ν̄ − ν)

N − |I+|
− |I

+|(ν̄ − ν)

N − |I+|

= ν̄ − N(ν̄ − ν)

N − |I+|
.

The last step therefore reaches the optimal solution.

We are now equipped to show that the algorithm will terminate in a
small number of iterations.

Theorem 5. Algorithm 1 solves Problem (5) in a finite number of itera-
tions and the time complexity is O(N2).

Proof. The algorithm terminates because, at each iteration, the estimate ν̄
either increases or decreases monotonically from one boundary value to the
next. At most, the number of iterations is the number of boundary values,
therefore, N . The loop terminates because either ν = ν̄ or the mean ν lies
between two boundary values. In the former case, the solution is optimal
by Theorem 2. In the latter case, the final step computation is the optimal
by Theorem 4. At each iteration, the dominant cost is the computation of
the mean, hence linear in N , therefore the total cost is bounded by N2.

2.2 Numerical experiment.
To validate the algorithm we ran it on synthetic data. At each trial,
the ranges were generated randomly from a uniform distribution. We
ran trials of increasing sizes, repeating multiple times and averaging
the number of iterations. The experimental code is available online at
github.com/sgkruk/Laplacian-QP. The complete experiment runs in a
few seconds and is displayed in Table 1.

3 Conclusions and future work.
The original motivation for the work is a non-convex non-linear stock track-
ing problem, usually handled by classical continuous techniques. After a
sequence of transformations, we obtained a convex quadratic program where
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Table 1: Number of variables and average number of iterations.
Dimension Iterations

10 1
20 3
30 3
50 5

100 10
200 21
300 31
500 54
1000 108
5000 513
10000 1047

the Hessian is recognized as the Laplacian of a graph, suggesting a com-
binatorial solution technique. The resulting interpretation of the problem
is that of bi-partitioning under uncertainty of the node weights. The pre-
sented algorithm is combinatorial and theoretically more efficient than a
general purpose quadratic algorithm, whether active set, gradient-descent,
or interior-point based. It terminates in a finite number of iterations, a
number much smaller than active sets. It requires no function evaluation,
as gradient-based approaches do. It is immune to degeneracy and our im-
plementation is rational-based therefore not subject to floating point inac-
curacies. We are current extending this approach to the solution of more
general quadratic programs.
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