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DYNAMIC CONTACT WITH SIGNORINI’S CONDITION AND
SLIP RATE DEPENDENT FRICTION

KENNETH KUTTLER, MEIR SHILLOR

Abstract. Existence of a weak solution for the problem of dynamic frictional

contact between a viscoelastic body and a rigid foundation is established.

Contact is modelled with the Signorini condition. Friction is described by
a slip rate dependent friction coefficient and a nonlocal and regularized con-
tact stress. The existence in the case of a friction coefficient that is a graph,

which describes the jump from static to dynamic friction, is established, too.
The proofs employ the theory of set-valued pseudomonotone operators applied
to approximate problems and a priori estimates.

1. Introduction

This work considers frictional contact between a deformable body and a moving
rigid foundation. The main interest lies in the dynamic process of friction at the
contact area. We model contact with the Signorini condition and friction with a
general nonlocal law in which the friction coefficient depends on the slip velocity
between the surface and the foundation. We show that a weak solution to the
problem exists either when the friction coefficient is a Lipschitz function of the slip
rate, or when it is a graph with a jump from the static to the dynamic value at the
onset of sliding.

Dynamic contact problems have received considerable attention recently in the
mathematical literature. The existence of the unique weak solution of the problem
for a viscoelastic material with normal compliance was established in Martins and
Oden [23]. The existence of solutions for the frictional problem with normal com-
pliance for a thermoviscoelastic material can be found in Figueiredo and Trabucho
[9]; when the frictional heat generation is taken into account in Andrews et al. [2],
and when the wear of the contacting surfaces is allowed in Andrews et al. [3]. A
general normal compliance condition was dealt with in Kuttler [15] where the usual
restrictions on the normal compliance exponent were removed. The dynamic fric-
tionless problem with adhesion was investigated in Chau et al. [4] and in Fernández
et al. [8]. An important one-dimensional problem with slip rate dependent friction
coefficient was investigated in Ionescu and Paumier [11], and then in Paumier and
Renard [28]. Problems with normal compliance and slip rate dependent coefficient
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of friction were considered in Kuttler and Shillor [17] and a problem with a discon-
tinuous friction coefficient, which has a jump at the onset of sliding, in Kuttler and
Shillor [19]. The problem of bilateral frictional contact with discontinuous friction
coefficient can be found in Kuttler and Shillor [18]. A recent substantial regular-
ity result for dynamic frictionless contact problems with normal compliance was
obtained in Kuttler and Shillor [20], and a regularity result for the problem with
adhesion can be found in Kuttler et al. [21]. For additional publications we refer to
the references in these papers, and also to the recent monographs Han and Sofonea
[10] and Shillor et al. [30].

Dynamic contact problems with a unilateral contact condition for the normal
velocity were investigated in Jarusek [12], Eck and Jarusek [7] and the one with
the Signorini contact condition in Cocu [5], (see also references therein). In [5]
the existence of a weak solution for the problem for a viscoelastic material with
regularized contact stress and constant friction coefficient has been established,
using the normal compliance as regularization. After obtaining the necessary a
priori estimates, a solution was obtained by passing to the regularization limit.

The normal compliance contact condition was introduced in [23] to represent
real engineering surfaces with asperities that may deform elastically or plastically.
However, very often in mathematical and engineering publications it is used as a
regularization or approximation of the Signorini contact condition which is an ideal-
ization and describes a perfectly rigid surface. Since, physically speaking, there are
no perfectly rigid bodies and so the Signorini condition is necessarily an approxima-
tion, admittedly a very popular one. The Signorini condition is easy to write and
mathematically elegant, but seems not to describe well real contact. Indeed, there
is a low regularity ceiling on the solutions to models which include it and, generally,
there are no uniqueness results, unlike the situation with normal compliance. More-
over, it usually leads to numerical difficulties, and most numerical algorithms use
normal compliance anyway. Although there are some cases in quasistatic or static
contact problems where using it seems to be reasonable, in dynamic situations it
seems to be a poor approximation of the behavior of the contacting surfaces. We
believe that in dynamic processes the Signorini condition is an approximation of
the normal compliance, and not a very good one. On the other hand, there is
no rigorous derivation of the normal compliance condition either, so the choice of
which condition to use is, to a large extent, up to the researcher.

This work extends the recent result in [5] in a threefold way. We remove the
compatibility condition for the initial data, since it is an artifact of the mathematical
method and is unnecessary in dynamic problems. We allow for the dependence of
the friction coefficient on the sliding velocity, and we take into account a possible
jump from a static value, when the surfaces are in stick state, to a dynamic value
when they are in relative sliding. Such a jump is often assumed in engineering
publications. For the sake of mathematical completeness we employ the Signorini
condition together with a regularized non-local contact stress.

The rest of the paper is structured as follows. In Section 2 we describe the model,
its variational formulation, and the regularization of the contact stress. In Section 3
we describe approximate problems, based on the normal compliance condition. The
existence of solutions for these problems is obtained by using the theory of set-valued
pseudomonotone maps developed in [17]. A priori estimates on the approximate
solutions are derived in Section 4 and by passing to the limit we establish Theorem
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2.1 . In Section 5 we approximate the discontinuous friction coefficient, assumed
to be a graph at the origin, with a sequence of Lipschitz functions, obtain the
necessary estimates and by passing to the limit prove Theorem 5.2. We conclude
the paper in Section 6.

2. The model and variational formulation

First, we describe the classical model for the process and the assumptions on the
problem data. We use the isothermal version of the problem that was considered in
[2, 3] (see also [13, 23, 6, 27]) and refer the reader there for a detailed description
of the model. A similar setting, with constant friction coefficient, can be found in
[5].
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Figure 1. The physical setting; ΓC is the contact surface.

We consider a viscoelastic body which occupies the reference configuration Ω ⊂
RN (N = 2 or 3 in applications) which may come in contact with a rigid foundation
on the part ΓC of its boundary Γ = ∂Ω. We assume that Γ is Lipschitz, and is
partitioned into three mutually disjoint parts ΓD,ΓN and ΓC and has outward unit
normal n = (n1, . . . , nN ). The part ΓC is the potential contact surface, Dirichlet
boundary conditions are prescribed on ΓD and Neumann’s on ΓN . We set ΩT =
Ω× (0, T ) for 0 < T and denote by u = (u1, . . . , uN ) the displacements vector, by
v = (v1, . . . , vN ) the velocity vector and the stress tensor by σ = (σij), where here
and below i, j = 1, . . . , N , a comma separates the components of a vector or tensor
from partial derivatives, and “ ′ ” denotes partial time derivative, thus v = u′. The
velocity of the foundation is vF , and the setting is depicted in Fig. 1.

The dynamic equations of motion, in dimensionless form, are

v′i − σij,j(u,v) = fBi in ΩT , (2.1)

where fB represents the volume force acting on the body, all the variables are in
dimensionless form, for the sake of simplicity we set the material density to be
ρ = 1, and

u(t) = u0 +
∫ t

0

v(s) ds. (2.2)

The initial conditions are

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω, (2.3)

where u0 is the initial displacement and v0 the velocity, both prescribed functions.
The body is held fixed on ΓD and tractions fN act on ΓN . Thus,

u = 0 on ΓD, σn = fN on ΓN . (2.4)
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The foundation is assumed completely rigid, so we use the Signorini condition on
the potential contact surface,

un − g ≤ 0, σn ≤ 0, (un − g)σn = 0 on ΓC . (2.5)

Here, un = u · n is the normal component of u and σn = σijninj is the normal
component of the stress vector or the contact pressure on ΓC .

The material is assumed to be linearly viscoelastic with constitutive relation

σ(u,v) = Aε(u) +Bε(v), (2.6)

where ε(u) is the small strain tensor, A is the elasticity tensor, and B is the viscosity
tensor, both symmetric and linear operators satisfying

(Aξ, ξ) ≥ δ2 |ξ|2 , (Bξ, ξ) ≥ δ2 |ξ|2 ,

for some δ and all symmetric second order tensors ξ = {ξij}, i.e., both are coercive
or elliptic. In components, the Kelvin-Voigt constitutive relation is

σij = aijkluk,l + bijklu
′
k,l,

where aijkl and bijkl are the elastic moduli and viscosity coefficients, respectively.
To describe the friction process we need additional notation. We denote the

tangential components of the displacements by uT = u−(u · n)n and the tangential
tractions by σTi = σijnj −σnni. The general law of dry friction, a version of which
we employ, is

|σT | ≤ µ(|u′T − vF |) |σn| , (2.7)

σT = −µ(|u′T − vF |) |σn|
u′T − vF

|u′T − vF |
if u′T 6= vF . (2.8)

This condition creates major mathematical difficulties in the weak formulation of
the problem, since the stress σ does not have sufficient regularity for its boundary
values to be well-defined. Nevertheless, some progress has been made in using this
model in [7] and [12] (see also the references therein). However, there the contact
condition was that of normal damped response, i.e., the unilateral restriction was
on the normal velocity rather than on the normal displacement, as in (2.5). Such
a condition implies that once contact is lost, it is never regained, which in most
applied situations is not the case, and, moreover, the mathematical difficulties in
dealing with that model were considerable. These difficulties motivated [23] and
many followers to model the normal contact between the body and the foundation
by a normal compliance condition in which the normal stress is given as a function
of surface resistance to interpenetration. This is usually justified by modeling the
contact surface in terms of “surface asperities.”

To overcome the difficulties in giving meaning to the trace of the stress on the
contact surface we employ an averaged stress in the friction model. Thus, it is a
locally averaged stress which controls the friction and the onset of sliding on the
surface, however, we make no particular assumptions on the form of the averaging
process. It may be of interest to investigate and deduce them from homogeniza-
tion or experimental results (see [25] for a step in this direction). This procedure
of averaging the stress has been employed earlier by the authors in [18] (see also
references therein) and recently in [5] in a very interesting paper on the existence
of weak solutions for a linear viscoelastic model with the Signorini boundary con-
ditions (2.5) and an averaged Coulomb friction law. In this paper we consider a



EJDE-2004/83 DYNAMIC CONTACT WITH SIGNORINI’S CONDITION 5

similar situation, but with a slip rate dependent coefficient of friction, and without
the compatibility assumptions on the initial data which are assumed in [5]. The
averaged form of the friction which we will employ involves replacing the normal
stress σn with an averaged normal stress, (Rσ)n, where R is an averaging operator
to be described shortly. Thus, we employ the following law of dry friction,

|σT | ≤ µ(|u′T − vF |)|(Rσ)n|, (2.9)

σT = −µ(|u′T − vF |)|(Rσ)n|
u′T − vF

|u′T − vF |
if u′T 6= vF . (2.10)

Here, µ is the coefficient of friction, a positive bounded function assumed to depend
on the relative slip u′T −vF between the body and foundation. We could have let µ
depend on x ∈ ΓC as well, to model the local roughness of the contact surface, but
we will not consider it here to simplify the presentation; however, all the results
below hold when µ is a Lipschitz function of x.

We assume that vF ∈ L∞(0, T ; (L2(ΓC))N ), and refer to [1, 14] for standard
notation and concepts related to function spaces. The regularization (Rσ)n of the
normal contact force in (2.9) and (2.10) is such that R is linear and

vk → v in L2(0, T ;L2(Ω)N ) implies (Rσk)n → (Rσ)n in L2(0, T ;L2(Γc))
(2.11)

There are a number of ways to construct such a regularization. For example, if
v ∈ H1(Ω), one may extend it to RN in such a way that the extended function Ev
satisfies ‖Ev‖1,RN ≤ C‖v‖1,Ω, where C is a positive constant that is independent
of v, and define

Rσ ≡ Aε(Eu ∗ ψ) +Bε(Ev ∗ ψ), (2.12)

where ψ is a smooth function with compact support, and “ * ” denotes the convo-
lution operation. Thus, Rσ ∈ C∞(RN ) and (Rσ)n ≡ (Rσ)n · n is well defined on
ΓC . In this way we average the displacements and the velocity and consider the
stress determined by the averaged variables.

Another way to obtain an averaging operator satisfying (2.11) is as follows. Let
ψ : ΓC × RN → R be such that y → ψ(x,y) is in C∞c (Ω), ψ is uniformly bounded
and, for x ∈ ΓC ,

Rσn ≡ Rσn · n where Rσ(x) ≡
∫

Ω

σ(y)ψ(x,y)dy.

Then, the operator is linear and it is routine to verify that (2.11 ) holds. Physically,
this means that the normal component of stress, which controls the friction process,
is averaged over a part of Ω, and to be meaningful, we assume that the support
of ψ(x, ·) is centered at x ∈ ΓC and is small. Conditions (2.9) and (2.10) are the
model for friction which we employ in this work. The tangential part of the traction
is bounded by the so-called friction bound, µ(|u′T − vF |)|(Rσ)n|, which depends
on the sliding velocity via the friction coefficient, and on the regularized contact
stress. The surface point sticks to the foundation and no sliding takes place until
|σT | reaches the friction bound and then sliding commences and the tangential force
has a direction opposite to the relative tangential velocity. The contact surface ΓC

is divided at each time instant into three parts: separation zone, slip zone and stick
zone.

A new feature in the model is the dependence, which can be observed experi-
mentally, of the friction coefficient on the magnitude of the slip rate |u′T − vF |.
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We assume that the coefficient of friction is bounded, Lipschitz continuous and
satisfies

|µ(r1)− µ(r2)| ≤ Lipµ |r1 − r2| , ‖µ‖∞ ≤ Kµ. (2.13)

In Section 5 this assumption will be relaxed and we shall consider µ which is set-
valued and models the jump from a static value to a dynamic value when sliding
starts.

The classical formulation of the problem of dynamic contact between a viscoelastic
body and a rigid foundation is:
Find the displacements u and the velocity v = u′, such that

v′ −Div(σ(u,v)) = fB in ΩT , (2.14)

σ(u,v) = Aε(u) +Bε(v), (2.15)

u(t) = u0 +
∫ t

0

v(s)ds, (2.16)

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω, (2.17)

u = 0 on ΓD, σn = fN on ΓN , (2.18)

un − g ≤ 0, σn ≤ 0, (un − g)σn = 0 on ΓC , (2.19)

|σT | ≤ µ(|u′T − vF |) |(Rσ)n| , on ΓC , (2.20)

u′T 6= vF implies σT = −µ(|u′T − vF |)|(Rσ)n|
u′T − vF

|u′T − vF |
. (2.21)

We turn to the weak formulation of the problem, and to that end we need
additional notation. V denotes a closed subspace of (H1(Ω))N containing the test
functions (C∞c (Ω))N , and γ is the trace map from W 1,p(Ω) into Lp(∂Ω). We let
H = (L2(Ω))N and identify H and H ′, thus,

V ⊆ H = H ′ ⊆ V ′.

Also, we let V = L2(0, T ;V ) and H = L2(0, T ;H).
Next, we choose the subspace V as follows. If the body is clamped over ΓD,

with meas ΓD > 0, then we set V = {u ∈ H1(Ω))N : u = 0 on ΓD}. If the body
is not held fixed, so that meas ΓD = 0, then it is free to move in space, and we
set V = (H1(Ω))N . We note that the latter leads to a noncoercive problem for
the quasistatic model, the so-called punch problem, which in that context needs a
separate treatment. We let U be a Banach space in which V is compactly embedded,
V is also dense in U and the trace map from U to (L2(∂Ω))N is continuous. We
seek the solutions in the convex set

K ≡
{
w ∈ V : w′ ∈ V ′, (wn − g)+ = 0 in L2(0, T ;L2(ΓC))

}
. (2.22)

Here, (f)+ = max{0, f} is the positive part of f .
We shall need the following viscosity and elasticity operators, M and L, respec-

tively, defined as: M,L : V → V ′,

〈Mu,v〉 =
∫

Ω

Bε(u)ε(v)dx, (2.23)

〈Lu,v〉 =
∫

Ω

Aε(u)ε(v)dx. (2.24)
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It follows from the assumptions and Korn’s inequality ([24, 26]) that M and L
satisfy

〈Cu,u〉 ≥ δ2‖u‖2
V − λ|u|2H , 〈Cu,u〉 ≥ 0, 〈Cu,v〉 = 〈Cv,u〉, (2.25)

where C = M or L, for some δ > 0, λ ≥ 0. Next, we define f ∈ L2(0, T ;V ′) as

〈f , z〉V′,V =
∫ T

0

∫
Ω

fBz dx dt+
∫ T

0

∫
ΓN

fNzdΓdt, (2.26)

for z ∈ V. Here fB ∈ L2(0, T ;H) is the body force and fN ∈ L2(0, T ;L2(ΓN )N ) is
the surface traction. Finally, we let

γ∗T : L2(0, T ;L2(ΓC)N ) → V ′

be defined as

〈γ∗T ξ,w〉 ≡
∫ T

0

∫
ΓC

ξ ·wT dΓdt. (2.27)

The first of our two main results in this work is the existence of weak solutions
to the problem, under the above assumptions.

Theorem 2.1. Assume, in addition, that u0 ∈ V , u0n − g ≤ 0 a.e. on ΓC ,
v(0) = v0 ∈ H, and let u(t) = u0 +

∫ t

0
v(s)ds. Then, there exist u ∈ C([0, T ];U)∩

L∞(0, T ;V ), u ∈ K, v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), v′ ∈ L2(0, T ;H−1(Ω)N ), and
ξ ∈ L2(0, T ;L2(ΓC)N ) such that

− (v0,u0 −w(0))H +
∫ T

0

〈Mv,u−w〉dt+
∫ T

0

〈Lu,u−w〉dt

−
∫ T

0

(v,v −w′)Hdt+
∫ T

0

〈γ∗T ξ,u−w〉dt

≤
∫ T

0

〈f ,u−w〉dt,

(2.28)

for all w ∈ Ku, where

Ku ≡ {w ∈ V : w′ ∈ V, (wn − g)+ = 0 in L2(0, T ;L2(ΓC)), u(T ) = w(T )}.
(2.29)

Here, γ∗T ξ satisfies, for w ∈ Ku,

〈γ∗T ξ,w〉 ≤
∫ T

0

∫
ΓC

µ(|vT − vF |) |(Rσ)n| (|vT − vF + wT | − |vT − vF |) dΓdt.

(2.30)

The proof of this theorem will be given in Section 4. It is obtained by considering
a sequence of approximate problems, based on the normal compliance condition
studied in Section 3, where the relevant a priori estimates are derived.

3. Approximate Problems

The Signorini condition leads to considerable difficulties in the analysis of the
problem. Therefore, we first consider approximate problems based on the normal
compliance condition, which we believe is a more realistic model. We establish the
unique solvability of these problems and obtain the necessary a priori estimates
which will allow us to pass to the Signorini limit. These problems have merit in
and of themselves.
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We shall use the following two well known results, the first one can be found in
Lions [22] and the other one in Simon [31] or Seidman [29] see also [16]).

Theorem 3.1 ([22]). Let p ≥ 1, q > 1, W ⊆ U ⊆ Y , with compact inclusion map
W → U and continuous inclusion map U → Y , and let

S = {u ∈ Lp(0, T ;W ) : u′ ∈ Lq(0, T ;Y ), ‖u‖Lp(0,T ;W ) + ‖u′‖Lq(0,T ;Y ) < R}.

Then S is precompact in Lp(0, T ;U).

Theorem 3.2 ([29, 31]). Let W,U and Y be as above and for q > 1 let

ST = {u : ‖u(t)‖W + ‖u′‖Lq(0,T ;Y ) ≤ R, t ∈ [0, T ]}.

Then ST is precompact in C(0, T ;U).

We turn to an abstract formulation of problem (2.1)–(2.10). We define the
normal compliance operator u → P (u), which maps V to V ′, by

〈P (u),w〉 =
∫ T

0

∫
ΓC

(un − g)+wn dΓdt. (3.1)

It will be used to approximate the Signorini condition by penalizing it.
The abstract form of the approximate problem, with 0 < ε, is as follows.

Problem Pε: Find u,v ∈ V such that

v′ +Mv + Lu +
1
ε
P (u) + γ∗T ξ = f in V ′, (3.2)

v(0) = v0 ∈ H, (3.3)

u(t) = u0 +
∫ t

0

v(s)ds, u0 ∈ V (3.4)

and for all w ∈ V,

〈γ∗T ξ,w〉 ≤
∫ T

0

∫
ΓC

µ(|vT − vF |) |(Rσ)n| (|vT − vF + wT | − |vT − vF |)dΓdt.

(3.5)
The existence of solutions of the problem follows from a straightforward application
of the existence theorem in [17], therefore,

Theorem 3.3. There exists a solution to problem Pε.

We assume, as in Theorem 2.1, that initially

u0n − g ≤ 0 on ΓC . (3.6)

We turn to obtain estimates on the solutions of Problem Pε. In what follows
C will denote a generic constant which depends on the data but is independent of
t ∈ [0, T ] or ε, and whose value may change from line to line.

We multiply (3.2) by vχ[0,t], where

χ[0,t](s) =

{
1 if s ∈ [0, t] ,
0 if s /∈ [0, t] ,
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and integrate over (0, t). From (2.25) and (3.6) we obtain

1
2
|v(t)|2H − 1

2
|v0|2H +

∫ t

0

(δ2‖v‖2
V − λ|v|2H)ds+

1
2
〈Lu(t),u(t)〉

− 1
2
〈Lu0,u0〉+

1
2ε

∫
ΓC

((un(t)− g)+)2 dΓ +
∫ t

0

∫
ΓC

ξ · vT dΓds

≤
∫ t

0

〈f ,v〉ds.

(3.7)

Since µ is assumed to be bounded, it follows from (3.5) that

ξ ∈ [−Kµ |(Rσ)n| , Kµ |(Rσ)n| ] , (3.8)

a.e. on ΓC . Now, assumption (2.11) implies that there exists a constant C such
that

‖(Rσ)n‖L2(0,t;L2(Γc)) ≤ C‖v‖L2(0,t;H). (3.9)
Therefore, we find from (3.8) that∣∣∣∣∫ t

0

∫
ΓC

ξ · vT dΓds
∣∣∣∣ ≤ ‖ξ‖L2(0,t;L2(ΓC))‖vT ‖L2(0,t;(L2(ΓC))N )

≤ C‖v‖L2(0,t;H)‖v‖L2(0,t;U),

(3.10)

where U is the Banach space described above, such that V ⊂ U compactly, and
the trace into (L2(∂Ω)N ) is continuous. Now, the compactness of the embedding
implies that for each 0 < η

‖v‖L2(0,t;U) ≤ η‖v‖L2(0,t;V ) + Cη‖v‖L2(0,t;H). (3.11)

Therefore, (3.7) yields

|v(t)|2H − |v0|2H +
∫ t

0

(δ2‖v‖2
V − λ|v|2H)ds+ (δ2‖u(t)‖2

V − λ|u(t)|2H)

− 〈Lu0,u0〉+
1
ε

∫
ΓC

((un(t)− g)+)2dΓ− C‖v‖L2(0,t;H)‖v‖L2(0,t;U)

≤ Cη

∫ t

0

‖f‖2
V′ds+ η

∫ t

0

‖v‖2
V ds.

(3.12)

We obtain from (3.11) and (2.26),

|v(t)|2H + δ2
∫ t

0

‖v‖2
V ds+ δ2‖u(t)‖2

V +
1
ε

∫
ΓC

((un(t)− g)+)2dΓ

≤ C

∫ t

0

|v(s)|2H ds+ η

∫ t

0

‖v‖2
V ds+ λ|u(t)|2H + 〈Lu0,u0〉

+ |v0|2H + Cη

∫ t

0

‖f‖2
V′ds+ η

∫ t

0

‖v‖2
V ds.

(3.13)

Choosing η small enough and using the inequality |u(t)|2H ≤ |u0|H +
∫ t

0
|v(s)|2H ds,

yields

|v(t)|2H +
δ2

2

∫ t

0

‖v‖2
V ds+ δ2‖u(t)‖2

V +
1
ε

∫
ΓC

((un(t)− g)+)2dΓ

≤ C(u0,v0) + C

∫ t

0

‖f‖2
V′ds+ C

∫ t

0

|v(s)|2H ds.
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An application of Gronwall’s inequality gives

|v(t)|2H +
δ2

2

∫ t

0

‖v‖2
V ds+ δ2‖u(t)‖2

V +
1
ε

∫
ΓC

((un(t)− g)+)2dΓ

≤ C(u0,v0) + C

∫ T

0

‖f‖2
V′ds = C.

(3.14)

Now, let w ∈ L2(0, T ;H1
0 (Ω)N ) and apply ( 3.2) to it, thus,

〈v′,w〉+ 〈Mv,w〉+ 〈Lu,w〉 = (fB ,w)H. (3.15)

It follows from estimate (3.14) that v′ is bounded in L2(0, T ;H−1(Ω)N ), indepen-
dently of ε. We conclude that there exists a constant C , which is independent of
ε, such that

|v(t)|2H +
∫ t

0

‖v‖2
V ds+‖u(t)‖2

V +
1
ε

∫
ΓC

((un(t)−g)+)2dΓ+‖v′‖L2(0,T ;H−1(Ω)N ) ≤ C.

(3.16)
Next, recall that ΩT ≡ [0, T ]× Ω, and we have the following result.

Lemma 3.4. Let (u,v) be a solution of Problem Pε. Then, there exists a constant
C, independent of ε, such that

‖v′ −Div(Aε(u) +Bε(v))‖L2(ΩT ) ≤ C. (3.17)

In (3.17) measurable representatives are used whenever appropriate.
Proof. Let φ ∈ C∞c (ΩT ; RN ), then by (3.2 ),∫ T

0

∫
Ω

−v · φt + (Aε(u) +Bε(v)) · ε(φ) dx dt =
∫ T

0

∫
Ω

fB · φdx dt.

Therefore,

|(v′ −Div(Aε(u) +Bε(v)))(φ)| ≤ ‖fB‖L2(0,T ;H)‖φ‖L2(0,T ;H)

holds in the sense of distributions, which establishes (3.17).
Note that nothing is being said about v′ or Div(Aε(u)+Bε(v)) separately. This

estimate holds because the term that involves ε relates to the boundary and so is
irrelevant when we deal with φ ∈ C∞c (ΩT ; RN ) which vanishes near the boundary,
and such functions are dense in L2(ΩT ; RN ).

The proof of the following lemma is straightforward.

Lemma 3.5. If v,u ∈ V, v = u′ and v′−Div(Aε(u)+Bε(v)) ∈ L2(ΩT ), then for
φ ∈W 1,∞

0 (0, T ) and ψ ∈W 1,∞
0 (Ω),∫

ΩT

(vivi − (Aijklε(u)kl +Bijklε(v)kl)ε(u)ij)ψφdx dt

=
∫

ΩT

(−vi + (Aijlkε(u)kl +Bijklε(v)),j)uiψφdx dt

−
∫

ΩT

(uiviψφ
′ −Aijklε(u)kluiψ,jφ−Bijklε(v)kluiψ,jφ) dx dt.

(3.18)

We now denote the solution of Problem Pε by uε and let uε′ = vε. We deduce
from the estimates (3.14) and (3.17) and from Theorems 3.1 and 3.2 that there exists
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a subsequence, still indexed by ε, such that as ε → 0, the following convergences
take place:

uε → u weak ∗ in L∞(0, T ;V ), (3.19)

uε → u strongly in C([0, T ];U), (3.20)

vε → v weakly in V, (3.21)

vε → v weak ∗ in L∞(0, T ;H), (3.22)

uε(T ) → u(T ) weakly in V, (3.23)

vε → v strongly in L2(0, T ;U), (3.24)

vε(x, t) → v(x, t) pointwise a.e. on ΓC × [0, T ] , (3.25)

vε′ → v′ weak ∗ in L2(0, T ;H−1(Ω)N ), (3.26)

vε′ −Div(Aε(uε) +Bε(vε)) → v′ −Div(Aε(u) +Bε(v)) weakly in H, (3.27)

where a measurable representative is being used in (3.25). Moreover, we have

|vε(T )|H ≤ C. (3.28)

The following is a fundamental result which will, ultimately, make it possible to
pass to the limit in Problem Pε.

Lemma 3.6. Let {uε,vε} be the sequence, found above, of solutions of Problem
Pε. Then,

lim sup
ε→0

∫
ΩT

(vε
i v

ε
i − (Aijklε(uε)kl +Bijklε(vε)kl)ε(uε)ij) dx dt

≤
∫

ΩT

(vivi − (Aijklε(u)kl +Bijklε(v)kl)ε(u)ij) dx dt.

In terms of the abstract operators,

lim sup
ε→0

∫ T

0

−〈Mvε,uε〉dt+
∫ T

0

(vε,vε)Hdt−
∫ T

0

〈Luε,uε〉dt

≤
∫ T

0

−〈Mv,u〉dt+
∫ T

0

(v,v)Hdt−
∫ T

0

〈Lu,u〉dt.
(3.29)

Proof. Let η > 0 be given. Let φδ be a piecewise linear and continuous function
such that for small δ > 0, φδ(t) = 1 on [δ, T − δ], φδ(0) = 0 and φδ(T ) = 0. Also,
let ψδ ∈ C∞c (Ω) be such that ψδ(x) ∈ [0, 1] for all x, and also,

meas(Ω \ [ψδ = 1]) ≡ m(Qδ) < δ, (3.30)
1
2δ

∫
Ω

Bijklε(u0)klε(u0)ij(1− ψδ) < η, (3.31)∫ T

0

∫
Qδ

vivi < η,

∫ δ

0

∫
Ω

vivi < η,

∫ T

T−δ

∫
Ω

vivi < η. (3.32)
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Now by (3.19)-(3.27) and formula (3.18),

lim
ε→0

∫
ΩT

(vε
i v

ε
i − (Aijklε(uε)kl +Bijklε(vε)kl)ε(uε)ij)φδψδ dx dt

=
∫

ΩT

(−vi + (Aijlkε(u)kl +Bijklε(v)),j)uiψδφδ dx dt

−
∫

ΩT

(uiviψφ
′ −Aijklε(u)kluiψ,jφ−Bijklε(v)kluiψδ,jφδ) dx dt,

(3.33)

which equals ∫
ΩT

(vivi − (Aijklε(u)kl +Bijklε(v)kl)ε(u)ij)ψδφδ dx dt,

by Lemma 3.5. Since ψδ and φδ are not identically equal to one, we have to consider
the integrals

I1 ≡
∫

ΩT

vε
i v

ε
i (1− ψδφδ) dx dt,

I2 ≡ −
∫

ΩT

Bijklε(vε)klε(uε)ij(1− ψδφδ) dx dt,

I3 ≡ −
∫

ΩT

Aijklε(uε)klε(uε)ij(1− ψδφδ) dx dt.

(3.34)

It is clear that I3 ≤ 0. Next,

0 ≤ I1 ≤
∫ T

0

∫
Qδ

vε
i v

ε
i dx dt+

∫ δ

0

∫
Ω

vε
i v

ε
i dx dt+

∫ T

T−δ

∫
Ω

vε
i v

ε
i dx dt.

Now, vε
i v

ε
i → vivi in L1(ΩT ) by (3.22), and so it follows from ( 3.32), for ε small

enough,∫ T

0

∫
Qδ

vε
i v

ε
i dx dt < η,

∫ δ

0

∫
Ω

vε
i v

ε
i dx dt < η,

∫ T

T−δ

∫
Ω

vε
i v

ε
i dx dt < η.

Thus, I1 ≤ 3η when ε is small enough. It remains to consider I2 for small ε.
Integrating I2 by parts one obtains

I2 = −1
2

∫
Ω

Bijklε(uε(T ))klε(uε(T ))ij dx+
1
2

∫
Ω

Bijklε(u0)klε(u0)ij dx

− 1
2δ

∫
Ω

∫ δ

0

Bijklε(uε)klε(uε)ijψδ dtdx

+
1
2δ

∫
Ω

∫ T

T−δ

Bijklε(uε)klε(uε)ijψδ dtdx

≤ 1
2δ

∫
Ω

∫ T

T−δ

(Bijkl(ε(uε)klε(uε)ij − ε(uε(T ))klε(uε(T ))ij))dt dx

+
1
2δ

∫
Ω

∫ δ

0

(Bijkl(ε(u0)klε(u0)ij − ε(uε)klε(uε)ij))ψδdtdx

+
1
2δ

∫
Ω

Bijklε(u0)klε(u0)ij(1− ψδ) dx.

(3.35)
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It follows from (3.31) that (3.35) is less than η. Consider now the second term on
the right-hand side, we have∣∣∣ 1

2δ

∫
Ω

∫ δ

0

(Bijkl(ε(u0)klε(u0)ij − ε(uε)klε(uε)ij))ψδdtdx
∣∣∣

≤ 1
2δ

∫
Ω

∫ δ

0

|Bijkl(ε(u0)klε(u0)ij − ε(uε)klε(uε)ij)| dtdx

≤ 1
2δ

∫
Ω

∫ δ

0

∫ t

0

∣∣∣∣ ddt (Bijklε(uε)klε(uε)ij)
∣∣∣∣ dsdtdx

≤ 1
δ

∫
Ω

∫ δ

0

∫ t

0

|Bijklε(vε)klε(uε)ij | ds dt dx

=
1
δ

∫ δ

0

∫ t

0

∫
Ω

|Bijklε(vε)klε(uε)ij | dx ds dt

≤ C

δ

∫ δ

0

∫ δ

0

‖vε‖V ‖uε‖V dsdt ≤ C
√
δ < η,

whenever δ is sufficiently small. Formula (3.35) is estimated similarly and this
shows that, for the choice of a sufficiently small δ, we have I2 < 3η. Below, we
choose such a δ and then

lim sup
ε→0

∫
ΩT

(vε
i v

ε
i − (Aijklε(uε)kl +Bijklε(vε)kl)ε(uε)ij) dx dt

≤ lim sup
ε→0

∫
ΩT

(vε
i v

ε
i − (Aijklε(uε)kl +Bijklε(vsε)kl)ε(uε)ij)(1− ψδφδ) dx dt

+ lim sup
ε→0

∫
ΩT

(vε
i v

ε
i − (Aijklε(uε)kl +Bijklε(vε)kl)ε(uε)ij)ψδφδ dx dt

≤ 6η +
∫

ΩT

(vivi − (Aijklε(u)kl +Bijklε(v)kl)ε(u)ij) dx dt,

and since η was arbitrary, the conclusion of the lemma follows. �

4. Existence

We prove our first main result, Theorem 2.1, which guarantees the existence of
a weak solution for Problem (2.14) - (2.21). We recall Problem Pε and restate it
here for the sake of convenience.
Problem Pε: Find uε,vε ∈ V such that, for u0 ∈ V and vε(0) = v0 ∈ H, there
hold

vε′ +Mvε + Luε +
1
ε
P (uε) + γ∗T ξ

ε = f in V ′, (4.1)

uε(t) = u0 +
∫ t

0
vε(s)ds, and for all z ∈ V,

〈γ∗T ξε, z〉 ≤
∫ T

0

∫
ΓC

|(Rσε)n|µ(|vε
T − vF |)(|vε

T − vF + zT | − |vε
T − vF |)dΓdt.

(4.2)
We note that the boundedness of µ implies ξε ∈ [−K |(Rσε)n| ,K |(Rσε)n|] a.e. on
ΓC , (3.8). Also, assumption (2.11) implies that there exists a constant C such that

‖(Rσε)n‖L2(0,t;L2(Γc)) ≤ C‖vε‖L2(0,t;H). (4.3)
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Therefore, ξε is bounded in L2(0, T ;L2(ΓC)N ) and so we may take a further sub-
sequence and assume, in addition to the above convergences, that

ξε → ξ weakly in L2(0, T ;L2(ΓC)N ). (4.4)

In addition, we may assume, after taking a suitable subsequence and using the fact
that L and M are linear, that

Luε → Lu, Mvε →Mv in V ′. (4.5)

It follows from (3.14) and (3.20) that
∫
ΓC

((un(t)− g)+)2dΓ = 0 for each t ∈ [0, T ],
and so P (u) = 0. Now, we recall that K and Ku are given in (2.22) and (2.29),
respectively. We multiply (4.1) by uε −w, with w ∈ Ku and integrate over [0, T ].
Then,

1
ε

∫ T

0

〈P (uε),uε −w〉dt ≥ 0,

and thus

(vε(T ),uε(T )−w(T ))H − (v0,u0 −w(0))H +
∫ T

0

〈Mvε,uε −w〉dt

+
∫ T

0

〈Luε,uε −w〉dt+
∫ T

0

〈γ∗T ξε,uε −w〉dt

≤
∫ T

0

(vε,vε −w′)Hdt+
∫ T

0

〈f ,uε −w〉dt.

(4.6)

From (3.14), (3.28), and (3.20) we find,

lim
ε→0

(vε(T ),uε(T )−w(T ))H = 0, (4.7)

and also ∫ T

0

〈γ∗T ξε,uε −w〉dt =
∫ T

0

∫
ΓC

ξε(uε
T −wT )dΓdt.

Now, (3.20) and (4.4) show that this term converges to∫ T

0

〈γ∗T ξ,u−w〉dt =
∫ T

0

∫
ΓC

ξ(uT −wT )dΓdt. (4.8)

Together with inequality (4.6) these imply

(vε(T ),uε(T )−w(T ))H − (v0,u0 −w(0))H +
∫ T

0

〈Mvε,uε〉dt

−
∫ T

0

(vε,vε)Hdt+
∫ T

0

〈Luε,uε〉dt+
∫ T

0

〈γ∗T ξε,uε −w〉dt

≤
∫ T

0

〈Luε,w〉dt+
∫ T

0

〈Mvε,w〉dt+
∫ T

0

(vε,w′)Hdt+
∫ T

0

〈f ,uε −w〉dt.

(4.9)
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We take the lim inf of both sides of (4.9) as ε → 0 and use Lemma 3.6 with (4.8),
(4.5) and (4.7) to conclude

− (v0,u0 −w(0))H +
∫ T

0

〈Mv,u〉dt−
∫ T

0

(v,v)Hdt

+
∫ T

0

〈Lu,u〉dt+
∫ T

0

〈γ∗T ξ,u−w〉dt

≤
∫ T

0

〈Lu,w〉dt+
∫ T

0

〈Mv,w〉dt+
∫ T

0

(v,w′)Hdt+
∫ T

0

〈f ,u−w〉dt.

(4.10)

This, in turn, implies

− (v0,u0 −w(0))H +
∫ T

0

〈Mv,u−w〉dt−
∫ T

0

(v,v −w′)Hdt

+
∫ T

0

〈Lu,u−w〉dt+
∫ T

0

〈γ∗T ξ,u−w〉dt

≤
∫ T

0

〈f ,u−w〉dt.

(4.11)

It only remains to verify that for all z ∈ V,

〈γ∗T ξ, z〉 ≤
∫ T

0

∫
ΓC

|(Rσ)n|µ(|vT − vF |)(|vT − vF + zT |−|vT − vF |)dΓdt. (4.12)

It follows from (3.24), (3.25) and (2.11) that

|(Rσε)n| → |(Rσ)n| in L2(0, T ;L2(ΓC)),

and also vε
T → vT in L2(0, T ;L2(ΓC)N ), while µ(|vε

T − vF |) → µ(|vT − vF |) point-
wise in ΓC × [0, T ] , and is bounded uniformly. This allows us to pass to the limit
ε → 0 in the inequality (4.2) and obtain (4.12). The proof of Theorem 2.1 is now
complete.

5. Discontinuous friction coefficient

In this section we consider a discontinuous, set-valued friction coefficient µ, de-
picted in Fig. 2, which represents a sharp drop from the static value µ0 to a dynamic
value µs(0), when relative slip commences.

-

µ0

|v∗|

µs

ε

µε
µs(0)

Figure 2. The graph of µ vs. the slip rate |v∗|, and its approxi-
mation µε.
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The jump in the friction coefficient µ when slip begins is given by the vertical
segment [µs(0), µ0]. Thus,

µ(v) =

{
[µs(0), µ0] v = 0,
µs(v) v > 0,

where µs is a Lipschitz, bounded, and positive function which describes the de-
pendence of the coefficient on the slip rate. The function µε, shown in Fig. 2, is a
Lipschitz continuous approximation of the set-valued function for 0 ≤ v ≤ ε.

It follows from Theorem 2.1 that the problem obtained from (2.14)–(2.21) by
replacing µ with µε has a weak solution. For convenience we list the conclusion of
this theorem with appropriate modifications.

Theorem 5.1. There exist u in C([0, T ];U) ∩ L∞(0, T ;V ), u in K and v in
L2(0, T ;V ) ∩ L∞(0, T ;H), v(0) = v0 ∈ H, such that v′ ∈ L2(0, T ;H−1(Ω)N ),
u(t) = u0 +

∫ t

0
v(s)ds, and

− (v0,u0 −w(0))H +
∫ T

0

〈Mv,u−w〉dt−
∫ T

0

(v,v −w′)Hdt

+
∫ T

0

〈Lu,u−w〉dt+
∫ T

0

〈γ∗T ξ,u−w〉dt

≤
∫ T

0

〈f ,u−w〉dt,

(5.1)

which holds for all w ∈ Ku. Moreover, for all z ∈ V,

〈γ∗T ξ, z〉 ≤
∫ T

0

∫
ΓC

|(Rσ)n|µε(|vT − vF |)(|vT − vF + zT |−|vT − vF |)dΓdt. (5.2)

Here, K and Ku are given in (2.22) and (2.29), respectively. We refer to {uε,vε}
as a solution which is guaranteed by the theorem. We point out that here ε is not
related to the penalization parameter used earlier, but indicates the extent to which
µε approximates µ (Fig. 2). In the proof of Theorem 2.1 the Lipschitz constant for
µ was not used in the derivation of the estimates, therefore, there exists a constant
C, which is independent of ε, such that

|vε(t)|2H +
∫ t

0

‖vε‖2
V ds+ δ2‖uε(t)‖2

V + ‖v′ε‖L2(0,T ;H−1(Ω)N ) ≤ C. (5.3)

This estimate together with (4.3) and (3.8) yield

‖ξε‖L2(0,T ;L2(ΓC)N ) ≤ C, (5.4)
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where here and below C is a generic positive constant independent of ε. Therefore,
there exists a subsequence ε→ 0 for which

uε → u weak ∗ in L∞(0, T ;V ), (5.5)

uε → u strongly in C([0, T ];U), (5.6)

vε → v weakly in V, (5.7)

vε → v weak ∗ in L∞(0, T ;H), (5.8)

uε(T ) → u(T ) weakly in V, (5.9)

vε → v strongly in L2(0, T ;U), (5.10)

vε(x, t) → v(x, t) pointwise a.e. on ΓC × [0, T ] , (5.11)

v′ε → v′ weak ∗ in L2(0, T ;H−1(Ω)N ), (5.12)

|vε(T )|H ≤ C. (5.13)

The result of Lemma 3.4 still holds, and so there exists a further subsequence such
that

v′ε −Div(Aε(uε) +Bε(vε)) → v′ −Div(Aε(u) +Bε(v)) weakly in H, (5.14)

and, thus, the conclusion of Lemma 3.6 also holds,

lim sup
ε→0

∫ T

0

−〈Mvε,uε〉dt+
∫ T

0

(vε,vε)Hdt−
∫ T

0

〈Luε,uε〉dt

≤
∫ T

0

−〈Mv,u〉dt+
∫ T

0

(v,v)Hdt−
∫ T

0

〈Lu,u〉dt.
(5.15)

As above, (5.10) implies

|(Rσε)n| → |(Rσ)n| in L2(0, T ;L2(ΓC)), (5.16)

and we may take a further subsequence, if necessary, such that ξε → ξ weakly in
L2(0, T ;L2(ΓC)N ). Passing now to the limit we obtain

u(t) = u0 +
∫ t

0

v(s)ds, u0 ∈ V, v(0) = v0 ∈ H.

Letting w ∈ K, it follows from Theorem 5.1 that

(vε(T ),uε(T )−w(T ))H − (v0,u0 −w(0))H +
∫ T

0

〈Mvε,uε−w〉dt

−
∫ T

0

(vε,vε−w′)Hdt+
∫ T

0

〈Luε,uε−w〉dt+
∫ T

0

〈γ∗T ξε,uε −w〉dt

≤
∫ T

0

〈f ,uε −w〉dt.

(5.17)

The strong convergence in (5.6) allows us to pass to the limit

lim
ε→0

∫ T

0

〈γ∗T ξε,uε −w〉dt =
∫ T

0

〈γ∗T ξ,u−w〉dt.

It follows now from the boundedness of |vε(T )|H , the weak convergence of uε(T )
to u(T ) in V and the compactness of the embedding of V into H that

lim
ε→0

(vε(T ),uε(T )−w(T ))H = 0.
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Rewriting (5.17), taking the lim sup of both sides and using (5.15) yields

− (v0,u0 −w(0))H −
∫ T

0

〈Lu,w〉dt+
∫ T

0

(v,w′)Hdt

−
∫ T

0

〈Mv,w〉dt+
∫ T

0

〈γ∗T ξ,u−w〉dt

≤
∫ T

0

−〈Mv,u〉 dt+
∫ T

0

(v,v)Hdt−
∫ T

0

〈Lu,u〉dt+
∫ T

0

〈f ,u−w〉dt,

(5.18)

which implies

− (v0,u0 −w(0))H +
∫ T

0

〈Lu,u−w〉dt−
∫ T

0

(v,v −w′)Hdt

+
∫ T

0

〈Mv,u−w〉dt+
∫ T

0

〈γ∗T ξ,u−w〉dt

≤
∫ T

0

〈f ,u−w〉dt.

(5.19)

It only remains to examine (5.2), without ε. It follows from (5.10) that vε → v
strongly in L2(0, T ;U) and so vεT → vT strongly in L2(0, T ;L2(ΓC)N ). Taking a
measurable representative, we may assume vεT (x, t) → vT (x, t) pointwise a.e. and
in L2(ΓC × [0, T ]). Taking a further subsequence we may assume, in addition, that
µε(|vεT − vF |) → q weak* in L∞(E), where

E = {(x, t) : |vT (x, t)− vF (x, t)| = 0} .

Let ε0 > 0 be given. Then, for a.e (x, t) ∈ E, we have

µε(|vεT − vF | (x, t)) ∈ [µs(0+)− h(ε0), µ0] ,

whenever ε is small enough. Therefore, q(x, t) ∈ [µs(0+)− h(ε0), µ0], a.e., where
h(ε) = µs(0)−µs(ε) is the function measuring the approach to the graph. Since ε0 is
arbitrary, we obtain q(x, t) ∈ [µs(0+), µ0], a.e. on ΓC . If |vT (x, t)− vF (x, t)| > 0,
we find that for a.e. (x, t) and for ε small enough,

µε(|vεT − vF | (x, t)) = µs(|vεT − vF | (x, t)),

and this converges to µs(|vT − vF | (x, t)). From (5.2) we obtain

〈γ∗T ξε, z〉 ≤
∫ T

0

∫
ΓC

|(Rσε)n|µε(|vεT − vF |)(|vεT − vF + zT | − |vεT − vF |)dΓdt

=
∫

E

|(Rσε)n|µε(|vεT − vF |)(|vεT − vF + zT | − |vεT − vF |)dΓdt

+
∫

EC

|(Rσε)n|µε(|vεT − vF |)(|vεT − vF + zT | − |vεT − vF |)dΓdt,

and it follows from (5.10) and (5.16) that we may pass to the limit, thus,

〈γ∗T ξ, z〉 ≤
∫

E

|(Rσ)n| q(|vT − vF + zT | − |vT − vF |)dΓdt

+
∫

EC

|(Rσ)n|µs(|vT − vF |)(|vT − vF + zT | − |vT − vF |)dΓdt.
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Since q(x, t) ∈ [µs(0+), µ0] a.e., it shows that there exists a measurable function
kµ, with the property that kµ(x, t) ∈ µ(|vT − vF | (x, t)) a.e., such that

〈γ∗T ξ, z〉 ≤
∫ T

0

∫
ΓC

|(Rσ)n| kµ(|vεT − vF zT | − |vεT − vF |)dΓdt.

Thus, we have established the second main result in this work, an existence
theorem which extends Theorem 2.1 to the case when the friction coefficient is
discontinuous.

Theorem 5.2. There exist u ∈ C((0, T ];U)∩L∞(0, T ;V )∩K and v ∈ L2(0, T ;V )∩
L∞(0, T ;H), v′ ∈ L2(0, T ;H−1(Ω)N ), and

u(t) = u0 +
∫ t

0

v(s)ds, u0 ∈ V, v(0) = v0 ∈ H, (5.20)

such that

− (v0,u0 −w(0))H +
∫ T

0

〈Mv,u−w〉dt−
∫ T

0

(v,v −w′)Hdt

+
∫ T

0

〈Lu,u−w〉dt+
∫ T

0

〈γ∗T ξ,u−w〉dt

≤
∫ T

0

〈f ,u−w〉dt,

(5.21)

where

〈γ∗T ξ, z〉 ≤
∫ T

0

∫
ΓC

|(Rσ)n| kµ(|vT − vF + zT | − |vT − vF |)dΓdt, (5.22)

for all z ∈ V. Here, kµ is a function in L∞(ΓC × (0, T ]) with the property that
kµ(x, t) ∈ µ(|vT − vF |) for a.e. (x, t) ∈ ΓC × [0, T ].

6. Conclusions

We considered a model for dynamic frictional contact between a deformable
body and a moving rigid foundation. The contact was modelled with the Signorini
condition and friction with a general nonlocal law in which the friction coefficient
depended on the slip velocity between the surface and the foundation. We have
shown that there exists a weak solution to the problem when the friction coefficient
is a Lipschitz function of the slip rate, or when it is a graph with a jump from the
static to the dynamic value at the onset of sliding.

The existence of weak solutions for these problems was obtained by using the
theory of set-valued pseudomonotone maps of [17]. The regularization of the contact
stress was introduced in Section 2, and it remains an open problem either to justify
it from the surface microstructure considerations, or to eliminate it. Whereas the
uniqueness of the weak solutions for the problem with Lipschitz friction coefficient
is unknown, and seems unlikely, there are uniqueness results for problems with the
normal compliances condition. Moreover, the Signorini condition has a very low
regularity ceiling, since once the surface comes into contact with the rigid foundation
the velocity is discontinuous, which means that the acceleration is a measure or a
distribution. On the other hand, the normal compliance condition lead to a much
better regularity [20].
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The thermoviscoelastic contact problem with Signorini’s contact condition is of
some interest, and will be investigated in the future.
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