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INTRODUCTION

This article focuses on the application of nonpara-
metric (or distribution-free) and parametric sub-

set selection procedures to analyze motor vehicle
traffic fatality rate (MVTFR) data for the years 1994
through 2012. As such, much of the data analysis
done in this study builds upon the work of Green
and McDonald1 analyzing MVTFR for the years
1982 through 2002 as well as several earlier studies.
In that study, the states selected to contain the worst
state consist primarily of the Southeastern states and
several states in the Northwest and Southwest. The
states selected to contain the best state mostly include
states along the East Coast, selected North Central
States, and the state of Washington.

In addition to applying the selection procedures
to an updated dataset, this article also presents and
applies a new Bayesian approach to the ranking of
states. With this approach, a probability distribution
is derived over all possible permutations of the popu-
lation means. Thus, the probability that any particu-
lar state is characterized by the largest (or smallest)
mean can be easily obtained by appropriate summing
of the permutation probabilities.

FORMULATION OF NONPARAMETRIC
SUBSET SELECTION RULES

The description of this selection rule will follow that
given by Green and McDonald.1 Let Π1,Π2,…,Πk be k
(≥2) independent populations. The associated random
variables, Xij, j = 1,…,n; i = 1,…,k, are assumed inde-
pendent and to have a continuous distribution Fj(x;θi)
where θi belong to some interval Θ on the real line.
The basic model assumption is that Fj(x;θ) is a stochas-
tically increasing family of distributions for each j. The
additive model of the following form is used:
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Xij = μ + θi + βj + εij ð1Þ
where βj indicates the particular block effect, θi indi-
cates the population effect, and εij is the random
error. The distribution of εij is any continuous distri-
bution function Fj(x) with mean 0. The distribution
of Xij will be stochastically ordered in θ as it is a
location parameter in Eq. (1). So, for example,
Fj(x) could be a normal distribution with mean 0 and
standard deviation σj. The assumption of negligible
interaction between population and block must be
satisfied. Let θ[i] denote the ith smallest unknown
parameter, then for all x

Fj x;θ 1½ �
� �

≥ Fj x;θ 2½ �
� �

≥ … ≥ Fj x;θ k½ �
� � ð2Þ

where θ[1] (θ[k]) characterizes the best (worst)
population.

Let Rij denote the rank of the observation Xij

among X1j,X2j,…,Xkj. The variables Rij take values
from 1 to k. The selection procedures considered here
are based on the rank sums, Ti =

P
jRij, associated

with Πi, i = 1,…,k. The structure for this process is
outlined in Table 1.

Any subset selection procedure based on the
rank sums should have the property that the proba-
bility that a correct selection (CS) occurs, i.e., the
worst population (or best population) is included in
the selected subset, is bounded below by P* (k−1 <
P* < 1). That is, for a given selection rule R, the
probability of a CS should satisfy the inequality,

inf P CSjRð Þ ≥ P*,
Ω

ð3Þ

where Ω = {θ = (θ1,…,θk): θi ε Θ, i = 1,…,k}. In some
cases, as noted later, this inequality may only hold
on a subspace Ω0 of Ω.

The two selection rules for choosing a subset
containing the worst population, as described in
McDonald,2 are given by:

R1: Select Πi iff Ti ≥ max(Tj) − b1
R2: Select Πi iff Ti > b2.
Similarly, the two selection rules for choosing a

subset containing the best population are given by:
R3: Select Πi iff Ti ≤ min(Tj) + b3
R4: Select Πi iff Ti < b4.
Note that the rules R1 and R2 could be written

in the form that select Πi iff Ti ≥ b, where b is a sto-
chastic quantity for R1 and a deterministic quantity
for R2. A similar statement can be made for the rules
R3 and R4.

As developed by McDonald,3–5 R1 and R3 are
justified over a slippage space, Ω0, where all para-
meters θi are equal with the possible exception of θ[k]
in case of rule R1 or θ[1] in case of rule R3; and R2

and R4 are applicable over the entire parameter
space. The constants b1, b3, and b4 are chosen as
small as possible and b2 is chosen as large as possible
preserving the probability goal. For large values of n,
the selection rules are determined by the asymptotic
formulae as described in McDonald4 and are com-
puted as:

b1 = b3 = h nk k + 1ð Þ=6½ �1=2; ð4Þ

b2 = n k2−1
� �

=12
h i1=2

Φ−1 1−P*
� �

+ n k + 1ð Þ=2; ð5Þ

b4 = n k + 1ð Þ – b2; ð6Þ

where the h-solution to be used in Eq. (4) is given by:

ð∞

−∞
Φk−1 x + h21=2

� �
ϕ xð Þdx = P*: ð7Þ

Here, Φ and ϕ represent the standard normal cumu-
lative distribution function (CDF) and probability
density function (PDF), respectively.

Taking P* to be a particular confidence level,
the h-solution is given in Table 1 of Gupta et al.6 and
can be used to determine the constants b1 and b3.
The above integral can also be calculated to

TABLE 1 | Structure for Determining Ranks and Rank Sums

Block/Π Π1 Π2 ∙∙∙ Πk SUM

Block 1 X11 ≈ R11 Xk1 ≈ Rk1 k(k + 1)/2

Block 2 X12 ≈ R12 Xk2 ≈ Rk2 k(k + 1)/2

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙

Block n X1n ≈ R1n Xkn ≈ Rkn k(k + 1)/2

RANK SUMS (Ti) T1 Tk nk(k + 1)/2
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determine P* for a given value of h, using a TI-83+
(or similar) calculator with numerical integration
capability as shown in Green and McDonald.1 The
integral can be shown to be the probability that the
maximum of Ui, i = 1,…,k, is less than h where the
Ui are normally distributed random variables with
zero means, unit variances, and covariance of 0.5.
With confidence level P*, it can be asserted (using
these selection rules) that the chosen subset of the
populations contains the one characterized by
θ[k] (θ[1]).

AN APPLICATION TO STATE MOTOR
VEHICLE TRAFFIC FATALITY RATES

The analysis of MVTFRs described in this
section follows the approach taken by Green and
McDonald.1 The database herein used has been
updated by 8 years from that used in 2009. This
analysis is included in this article to illustrate the use
of the nonparametric selection procedures, to update
a statistical analysis, and to set the framework for
the application of parametric rules and a new Bayes-
ian approach to this class of problems. The methods
herein applied to MVTFRs provide statistical ana-
lyses of the data yielding probabilistic guarantees of
inference for a specific class of ranking questions
complementing other descriptive techniques, e.g., see
Sivak.7

The scope of this study includes highway
MVTFR data for the 51 U.S. states (treating the Dis-
trict of Columbia as a state) from year 1994 through
2012. The National Highway Traffic Safety Admin-
istration (NHTSA) publishes the MVTFRs for all

U.S. states each year in the Fatality Analysis Report-
ing System (FARS). The data can be accessed through
the government website: www-fars.nhtsa.dot.gov.
The data are included here as Appendix A. The FARS
Encyclopedia provides extensive, detailed statistics
on injuries and deaths from vehicle accidents that
occurred within the 50 states and the District of
Columbia. The fatality rate per year for each state
is expressed as the number of fatalities per 100 mil-
lion vehicle miles of travel (VMT). It should be
noted that when new exposure data are released,
the previous years’ exposure data is updated.
Appendix A lists data posted in March, 2015. Cur-
rent listing (March, 2016) includes rates for 2013
and, hence, some changes in the 2012 rates shown
in Appendix A.

The model used is that of the additive form (1),
where θi is the state effect, βj is the year effect, and εij
is the random error term. This two-way model is
used in earlier studies of MVTFRs by McDonald,2

by Lorenzen and McDonald,8 by Green et al.,9 and
by Green and McDonald.1 It is discussed extensively
by Neter et al.,10 Kuehl,11 Winer,12 Christensen,13

and many others. The εij may have any (not necessar-
ily normal) continuous distribution. The observations
are taken in n blocks (time periods). The subscript
j indicates the particular block (year) to which the
observation Xij corresponds and i indicates the popu-
lation (state).

Figure 1 provides boxplots for the MVTFR
data indicating visually a substantial effect of the
variables year and state. The boxplots on the left side
of Figure 1 shows the distributions of the MVTFRs
of all states decreasing for the years 1994, 2003, and
2012. The median rates for 1994 and 2012 are

All states:boxplots of MVTFRs for 1994,2003,2012
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FIGURE 1 | Boxplots of MVTFRs. MVTFRs, motor vehicle traffic fatality rates.
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approximately 1.7 and 1.2, respectively, an almost
30% decrease. The scatter plot on the right side of
Figure 1 shows the MVTFRs of the states North
Dakota (ND), Michigan (MI), and Utah (UT) along
with the overall U.S. rates for the years 1994–2012.
While the overall trend is strongly decreasing, not all
states depict the same behavior as demonstrated by
that of ND.

Since there is only one observation for each
state for each year, there is no general test for addi-
tivity, i.e., lack of interaction between states and
years. Tukey14 developed a one degree-of-freedom
test for nonadditivity when there is a single observa-
tion per cell, as given here. Green et al.9 and Green
and McDonald1 use this test to establish the plausi-
bility of model (1) for a power transformation of the
MVTFRs. Table 2 shows the Tukey one degree-of-
freedom test for nonadditivity for the MVTFRs and
for these rates raised to the 0.3 power. The test indi-
cates significant evidence of interaction with the
untransformed rates, and no significant evidence of
interaction with the power transformation of the
rates. For the purpose of the nonparametric analyses
to follow, the original MVTFR data will be used
because ranks are invariant to monotone increasing
transformations.

NONPARAMETRIC SUBSET
SELECTION OF STATES

The goal is now to choose a subset of the 51 states
that can be asserted, with a specified confidence, to
contain the state with the highest MVTFR (worst
population), and similarly a state with the lowest
MVTFR (best population) using the nonparametric

ranking and selection procedures. Ranks k = 1, … ,
51 are assigned to states for each of n = 19 years,
with a rank of ‘1’ being the state with the lowest
MVTFR. Based on these ranks, the selection proce-
dure for choosing a subset of the 51 states asserts
that the best state (or worst state) is contained with a
specified confidence level P*.

Similar to the structure as outlined in the second
section, let Rij denote the rank of the observation Xij

within the jth block. The variables Rij take values from
1 to k and the selection procedure is based on the rank
sums, Ti = ΣjRij, associated with Πi, i = 1, … , k. For
the first year, 1994, Rhode Island has a rank of ‘1’
and the state of Mississippi has a rank of ‘51.’ In the
case of ties, each tied state receives an average of their
rank for that year. This is done for all 19 years. Ranks
are then summed for each state and the rank sums,
Ti’s, are ordered. Since the values of k and n are large
for our application (k = 51, n = 19), the selection rule
constants are determined by the asymptotic formulae
as described in the second section.

Taking P* = 0.90, the h-solution as given in
Table 1 of Gupta et al.6 is h = 2.5920. This can be
used to determine the constants b1 and b3. Using
n = 19, k = 51, and h = 2.5920, we obtain b1 = b3 =
237.532. The other two constants are calculated to
be b2 = 411.774 and b4 = 576.226. The data yields
max(Tj) = 930.5 and min(Tj) = 23.

With confidence level P* = 0.90, it can be
asserted that the following subsets of states contain
that one characterized by θ[k]:

Rule R1: Select the ith state iff Ti ≥ max(Tj)
−237.532 = 692.968. Sixteen are chosen for ‘worst.’

Rule R2: Select the ith state iff Ti > 411.774.
Thirty are chosen for ‘worst.’

With the same 0.90 confidence level, it can be
asserted that the following subset of states contain
that one characterized by θ[1]:

Rule R3: Select the ith state iff Ti ≤ min(Tj) +
237.532 = 260.532. Twelve are chosen for ‘best.’

Rule R4: Select the ith state iff Ti < 576.226.
Twenty nine are chosen for ‘best.’

The identification of the specific states chosen
with these four selection rules is given in Appendix
B. The states chosen by rules R1 and R3 are graphi-
cally displayed in Figure 2. The 16 states chosen by
R1 to contain the ‘worst’ state consist primarily of
the Southeastern states and some states in the
Northwest and Southwest. The 12 states chosen by
R3 to contain the ‘best’ state mostly include states
from the Northeast along with Minnesota (MN),
Washington (WA), Virginia (VA), and California
(CA). The inference conditions have been discussed
earlier.

TABLE 2 | Tukey’s One Degree-Of-Freedom Test

• Tukey’s 1 DF Test of
Nonadditivity—MVTFR

• Tukey’s 1 DF Test of
Nonadditivity—MVTFR0.3

• SS(Nonadditivity): 1.661 • SS(Nonadditivity): 0.004

• SS(Error): 17.482 • SS(Error): 0.931

• MS(Error): 0.019 • MS(Error): 0.001

• Significance level: 0.050 • Significance level: 0.050

• Test statistic: 85.419 • Test statistic: 3.384

• Critical value: 3.852 • Critical value: 3.852

• The test statistic is greater
than the critical value, so
there is significant evidence
of interaction.

• The test statistic is not
greater than the critical
value, so there is no
significant evidence of
interaction.

MVTFR, motor vehicle traffic fatality rates; SS, sum of squares; MS, mean
square.
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These results suggest that the particular separa-
tion of states is attributable to the differences among
states in the urban, rural, and interstate mileage mix.
This hypothesis is examined for earlier traffic fatality
data by Lorenzen and McDonald.8 The authors
apply these nonparametric selection rules to state
traffic fatality rates adjusted for the state urban/rural
mileages. Two adjustment methods commonly used
on census data and on mortality data, the direct
method and the indirect method, are discussed in
detail in this reference. With the direct method, the
actual rural and urban rates of each state are
weighted by the same urban/rural mix, typically the
national average mix.

The indirect method is slightly more complex.
With it the national fatality rate is multiplied by the
ratio of the state’s actual fatality rate divided by the
state’s expected fatality rate calculated with the
state’s actual urban/rural mix and some specified
(usually national) urban and rural fatality rates.
Detailed references on the direct and the indirect
method are Woolsey,15 Duffy and Carroll,16 and
Bishop et al.17 While the two adjustments, in prac-
tice, may give similar results, each method has spe-
cific properties. The Lorenzen and McDonald8 article
discusses extensively the data sources available for
adjusting rates for these two methods, applies the
nonparametric selection rules to the adjusted rates,
and summarizes extensive Monte Carlo simulations
quantifying the inference properties for the

nonparametric statistical procedures. Other plausible
causes for the observed separation of states are also
noted.

The choice of a fatality rate index can be
impactful. While not investigated in this article, a
somewhat related article by Gibbons and McDo-
nald18 examined the sensitivity of an air pollution
and health study to the choice of a mortality index.
In that study, the authors examined the sensitivity of
conclusions based on regression models to the mor-
tality index incorporated as the dependent variable.
Four indices were examined, including direct and
indirect adjusted rates.

The validity of the nonparametric analysis
herein used depends on the legitimacy of the additive
model (1). An argument, based on the Tukey test for
nonadditivity, has been given to justify the plausibil-
ity of it. However, other forms of interaction could
be present in such a manner that time impact differs
among states in a nonadditive fashion. To partially
address this issue, an additional analysis was con-
ducted on two time segments of the data. The first
segment included years from 1995 to 2003, and the
second segment from 2004 to 2012. The year 1994
was not included here so as to have equal sample
sizes (n = 9) for the two periods. Selection rules R1

and R3 were applied to these two datasets with P* =
0.90 and the selection rule constants b1 and b3 com-
puted from Eq. (4). The Pearson correlation coeffi-
cient for the state rank sums for these two time

Selected subsets using distribution free rules, p∗ = 0.90 
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FIGURE 2 | States selected using rules R1 and R3.
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periods is 0.922 indicating a rather close linear
relationship.

Applying R1 to the two datasets, 16 states are
included in the ‘worst’ subset for each of the two
time periods. These 16 states include 15 of the
16 states, noted in Appendix B, chosen when R1 was
applied to the complete dataset. Applying R3 to the
two datasets, 17 states are included in the ‘best’ sub-
set for each of the two time periods. These 17 states
include the 12 states, noted in Appendix B, chosen
when R3 was applied to the complete dataset. Nota-
bly, the analysis of the first time period fatality rates
placed ND in the ‘best’ subset. However, the analysis
of the second time period fatality rates placed ND in
the ‘worst’ subset. In the analysis of the combined
data, ND was not chosen by either rule R1 or R3.
A comprehensive detailed analysis of the ND crash
data is published by the North Dakota Department
of Transportation.19

As observed in the application of selection rules
R1 and R2, the rule R2 always selects more popula-
tions than R1. This appears natural as the inference
properties for R2 are more expansive than those
established for R1. However, Green and McDonald1

provide a counterexample showing that R1 can result
in a larger subset than R2. To further address this
property, note that R2 always selects at least as many
populations as R1 if b2 < max(Tj)−b1. With the
MVTFR data, b2 = 411.77 and max(Tj)
−b1 = 692.97, so that condition is met. Can b1 +
b2 > max(Tj)? In this analysis, b1 + b2 = 649.31.
Now max(Tj) must always be at least as large as the
average rank sum which is given by Tavg = n(k + 1)/
2 = 19(52)/2 = 494. So, if 494 ≤ max(Tj) < 649.31,
then b2 > max(Tj)−b1, and R2 would not select more
populations (states) than R1. The same argument
holds for the selection rules R3 and R4.

In the earlier study by Green and McDonald,
using MVTFRs from 1982 through 2004, rule R1

chose 13 states for the ‘worst’ subset. In this study,
rule R1 chose the same 13 states in addition to South
Dakota (SD), Wyoming (WY), and Kentucky (KY).
In the earlier study, rule R3 chose 10 states for the
‘best’ subset. In this study, 9 of those 10 states were
chosen (the exception being ND) and New York
(NY), Vermont (VT), and California (CA) were
added to this ‘best’ subset.

A PARAMETRIC SUBSET SELECTION
OF STATES

In this section, a normal means parametric selection
procedure will be used to contrast the inference with

that of the nonparametric approach. This approach
to subset selection was developed by Gupta.20 With
the additive model (1)

E Xij
� �

= μ + θi + βj: ð8Þ

Letting Xi = (
P

jXij)/n, then E(Xi) = μ + θi + (
P

jβj)/n.
Since the quantity μ + (

P
jβj)/n is constant for all i,

inference on the ordered θi can be efficiently based
on the ordering of the means, Xi.

The additive model (1) will be used with Xij

replaced with f(Xij) = Xij
0.3 based on the results given

in Table 2. (The optimal Box-Cox λ is 0.37). Here,
the εij are assumed independent identically distribu-
ted normal variates with mean 0 and standard devia-
tion σ. Residual displays from a two-way additive
analysis of variance (ANOVA) are given in Figure 3.
The residuals are symmetrically distributed with
some outliers on the lower and upper ends. The ‘raw’

data now will be the fatality rates raised to the 0.3
power. Since our interest is selection of ‘best’ and
‘worst’ subsets, we will retain the ‘outliers’ and con-
tinue with a normal means selection process using
the selection rule R5 for the ‘worst’ population subset
and R6 for the ‘best’ population defined as follows:

R5: Select the ith state iff Xi ≥ X[k] − d, d > 0
R6: Select the ith state iff Xi ≤ X[1] + c, c > 0.
The Xi’s are the respective sample means of the

‘raw’ data and the X[i]’s are the ordered sample
means. The positive constants d and c are chosen so
that the P(CS) ≥ P* for any configuration of the pop-
ulation (state) parameters, θi’s. It can be shown that
for a fixed P*, d = c, and

d = hσ 2=nð Þ1=2; ð9Þ

where h is defined by the integral equation (7).
For k = 51, n = 19, and P* = 0.90, the con-

stants d = c = 0.8436σ. The value of σ is chosen to
be 0.033 based on the two-way additive ANOVA of
the transformed MVTFRs (i.e., the square root of the
Mean Square for Error) as shown in Table 3. Then
d = c = 0.8436 � (0.033) = 0.027839. The means of
the transformed rates are given in Appendix C. The
maximum sample mean is 1.27436 (MS) and the
minimum sample mean is 0.93089 (MA).

For selecting the ‘worst’ subset,
R5: Select the ith state iff Xi ≥ X[k]−d = 1.27436

−0.027839 = 1.24652.
The three states South Carolina (SC), Montana

(MT), and Mississippi (MS) are chosen
For selecting the ‘best’ subset,
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R6: Select the ith state iff Xi ≤ X[1] +
c = 0.93089 + 0.027839 = 0.958729.

Only the state of MA is chosen for the selected
subset.

An advantage of the parametric approach over
the nonparametric approach is that the parametric
analysis explicitly utilizes the magnitudes of the data
rather than simply their rank values. Thus, in this
analysis, the normal means parametric approach
results in a dramatic reduction in the number of
states chosen for the selected subsets. If value of P* is
increased to 0.99, the chosen ‘worst’ subset would
increase to five states, adding Louisiana (LA) and
Arkansas (AR); and the chosen ‘best’ subset would
remain at one state, MA.

A closer examination of the residual plots in
Figure 3 (and listing of residuals not given here)
shows that the smallest two residuals belong to Dis-
trict of Columbia (DC) and ND for the years 2012
and 1995, respectively. Furthermore, four of the
smallest six residuals belong to DC and ND. At the
other extreme, the largest three residuals belong to
ND (2012, 2009, and 2011) and the next three lar-
gest belong to DC (2003, 2001, and 1994). Deleting
DC and ND and following the same parametric anal-
ysis as in this section, with k = 49, n = 19, h = 2.582

(for P* = 0.90), σ = 0.033, d = c = 0.02764, the
exact same selection of states is made as with the
inclusion of DC and ND. The residual plots of the
residuals appear more normal-like with the two
states deleted as shown in Appendix D. This exami-
nation of residuals and subsequent reanalysis of the
data is simply one form of sensitivity analysis. In this
case, the parametric selection of states is not affected
by the deletion of those two states (DC and ND)
which might be deemed outliers.

A BAYESIAN APPROACH TO THE
SELECTION PROBLEM

In this section, a Bayesian approach is adopted and
the population means are assumed to be stochastic.
The idea is quite straightforward. A posterior dis-
tribution on the population means is used to simu-
late a large number of random draws, or
realizations, of those means. With those draws,
ordering probabilities of the population means can
be estimated. And from these estimates, simple cal-
culations can provide estimates of, e.g., the proba-
bility that a specific population mean is greater
than all the other population means. There are
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FIGURE 3 | Residual plots for (MVTFRs)0.3 from a two-way additive ANOVA. ANOVA, analysis of variance; MVTFRs, motor vehicle traffic
fatality rates.

TABLE 3 | Two-Way ANOVA Table for the Transformed MVTFRs

Source Degrees-of-Freedom Sums of Squares Mean Squares F Ratios P Values

State 50 6.41456 0.12829 123.55 0.000

Year 18 2.28450 0.12692 122.22 0.000

Error 900 0.93455 0.00104

Total 968 9.63361

ANOVA, analysis of variance; MVTFRs, motor vehicle traffic fatality rates.
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many choices that can be made for the posterior
distributions. One such approach, utilizing flat
(or noninformative) prior distributions on the pop-
ulation means is illustrated here.

As shown in Gill21 and many other Bayesian
texts, the posterior distribution of the mean of the ith
population (state), μi, is normal with mean Xi and
standard deviation σ/

ffiffiffi
n

p
, i = 1,…,k. In this situation,

the Bayesian and frequentist results (via Central
Limit Theorem) are very similar in form.

The relevant calculations become

P μm1 ≤ μm2 ≤… ≤ μmkð Þ; ð10Þ

where (m1,m2,…,mk) is any of the k factorial
permutations of the integers (1,2,…,k). For exam-
ple, for k = 4, there would be 4! = 24 such prob-
abilities to calculate. This can be easily handled
with WinBugs (an MCMC simulator) or R. For
frequentists, these calculations are meaningless.
This approach is used in both of the following
subsections. In section Example with k = 4, all of
the permutation probabilities (10) can be esti-
mated with simulated draws of the posterior mean
as k is small. In section Bayesian Analysis of
MVTFR0.3 Using R, with large k, applicable to
the analysis of MVTFRs, a convenient function in
R is used to identify which population (state) rea-
lizes the largest and smallest posterior mean on
each simulation pass.

Example with k = 4
Suppose we have k = 4 populations with three obser-
vations from each of the populations yielding sample
means of 2, 3, 4, and 5. Assume a common known
standard deviation equal to 1 and a flat (noninforma-
tive) prior distribution on the population means.
Using, for example, WinBugs, all 24 values of the
probabilities given in Eq. (10) can be computed. By
appropriate summing, the estimated values of P[μi =
max(μj)], i = 1, 2, 3, 4, are obtained. Table 4 gives
the results of such computations for 6 of the

24 parameter permutations. The tabled values were
generated with WinBugs using the model code given
in Appendix E and specifying a large number (105)
draws on the posterior means. The probabilities of
the permutations, P(μm1 ≤ μm2 ≤ μm3 ≤ μm4), are
denoted by Pm1.m2.m3.m4 in Table 4.

Given the probabilities in Table 4, it now fol-
lows that P(μ4 is max) = 0.6844 + 0.1031 + … +
0.0012 = 0.8873, i.e., the sum of the six probabil-
ities in the Table. In a similar manner, the calcula-
tions yielded P(μ1 is max) = 0.00006, P(μ2 is
max) = 0.00364, and P(μ3 is max) = 0.10900.
A complete probability distribution over all possible
orderings of the population means is realized. This
approach of calculating all the permutation probabil-
ities is, from a practical vantage, limited to small
values of k (say k ≤ 5 or 6). In our application to
traffic fatality rates where k = 51, another Bayesian
approach is more useful as described in the next
subsection.

Bayesian Analysis of MVTFR0.3 Using R
The power transformation makes plausible the negli-
gible interaction assumption for the additive model.
The ‘state effects,’ assuming flat normal priors, have
a normal distribution centered at Xi and standard
deviation σ/

ffiffiffi
n

p
, i = 1,…,k. We now simulate in R a

draw from each state, rank the results (using ‘which.
max’ and ‘which.min’), and repeat a large number of
times (e.g., 106) to obtain P(MA is best) = 1.000;
and P(MS is worst) = 0.698, P(MT is worst) =
0.300, and P(the worst is any other than MS or
MT) = 0.002. The R code for these calculations is
given in Appendix F.

The results of the Bayesian analysis herein pre-
sented are in close agreement with the results given
in the fifth section with the parametric selection pro-
cedure. This is as expected since the choice of a non-
informative prior distribution results in an analysis
based on the likelihood function as is the parametric
selection procedure.

CONCLUDING REMARKS

The subset selection procedures, parametric or non-
parametric, select a random number of populations
to include in the subsets on which a confidence
statement can be attached. Subset size is a random
variable dependent on the observed data. Determin-
ing the constants required to implement the selection
rules does require determination of the Least Favor-
able Configuration (LFC), i.e., the configuration of
population parameters which minimize the

TABLE 4 | A Sampling of WinBugs Estimates for Selection from
Four Populations

P1.2.3.4 = 0.6844

P1.3.2.4 = 0.1031

P2.1.3.4 = 0.09304

P2.3.1.4 = 0.00274

P3.1.2.4 = 0.00278

P3.2.1.4 = 0.0012

WIREs Computational Statistics Applications of subset selection procedures and Bayesian ranking methods
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probability of a CS. With two of the procedures
used in this article, R1 and R3, that determination
has been made only in the situation where the
underlying parameter space is a ‘slippage’ space,
i.e., all population parameters equal with the possi-
ble exception of one. However, there have been lim-
ited simulation studies, e.g., see Lorenzen and
McDonald,8 suggesting that the inference is valid in
much more general settings. For all selection rules
herein used, the LFC is that for which all popula-
tion parameters are equal. The results for MVTFRs
for the years 1994–2012 were compared to those of
a similar analysis for the years 1982–2004.

The nonparametric selection rules choose a
much larger subset than do the parametric proce-
dures. And the conclusions from the Bayesian ana-
lyses are qualitatively closely aligned with those from
the parametric selection procedures. This is not sur-
prising as the nonparametric approach uses the ranks
of the data, not the magnitudes. And as seen in
Figure 3, there are outliers on the lower and upper
end of the residual probability plot.

Bayesian procedures can yield a complete prob-
ability distribution over all orderings of the popula-
tion parameters (e.g., means). There is a curse of
dimensionality--k! gets large very quickly. However,
using simulation capability in WinBugs and R, it is
straightforward to generate a probability distribution

over the populations as to which has the maximum
(minimum) parameter. This was illustrated with
MVTFRs from k = 51 states.

With respect to analyses of MVTFRs, there is
an important research and application literature deal-
ing with the identification of ‘black spots,’ or hazard-
ous locations, to which safety measures can be
applied to improve traffic safety. Hauer22 and Mon-
tella23 review statistical procedures for identification
of such road sections or intersections. A Bayesian
approach to investigate and evaluate ranking criteria
for black spot identification is given by Lan and Per-
saud.24 Bayesian multiple testing procedures for hot-
spot identification are given by Miranda-Moreno
et al.25 They use a dataset of highway-railway grade
crossings to illustrate procedures incorporating both
the posterior distribution of accident frequency and
the posterior distribution of ranks. Cheng and
Washington26 utilize five tests for conducting perfor-
mance assessments of hot spot identification methods
and conclude that, among the methods investigated,
an empirical Bayes method is superior. While these
important hot spot identification problems have not
been addressed in this article, the application of these
ranking and selection methods, or those more
broadly described by Gibbons et al.27 and Gupta and
Panchapakesan,28 might well be pursued for such
applications.

FURTHER READING
Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The BUGS Book: A Practical Introduction to Bayesian Analysis.
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APPENDIX B. State Rank Sums and
Subsets of States Chosen by Nonparametric
Rules

P* = 0.90

Worst
Selection
Rules

Best
Selection
Rules

STATE RANK SUM R1 R2 R3 R4

Massachusetts 23 X X

Connecticut 90.5 X X

Rhode Island 93.5 X X

New Jersey 105.5 X X

Minnesota 124.5 X X

New Hampshire 135.5 X X

Washington 170 X X

New York 180.5 X X

Maryland 218 X X

Vermont 227.5 X X

Virginia 231.5 X X

California 258.5 X X

Ohio 261 X

Michigan 303.5 X

Illinois 305.5 X

Indiana 311 X

District of Columbia 323.5 X

Wisconsin 325.5 X

Maine 333.5 X

Utah 350 X

Oregon 398 X

Colorado 433 X X

Hawaii 445.5 X X

North Dakota 452.5 X X

Delaware 457 X X

Nebraska 462 X X

Pennsylvania 489.5 X X

Iowa 489.5 X X

Georgia 500 X X

Missouri 606.5 X

Kansas 606.5 X

Texas 609.5 X

North Carolina 615.5 X

Oklahoma 649.5 X

Alaska 654.5 X

Florida 701 X X

Idaho 715.5 X X

Nevada 722.5 X X

Tennessee 745.5 X X

Alabama 760 X X

Kentucky 769 X X

Wyoming 773.5 X X

New Mexico 775.5 X X

South Dakota 787 X X

Arizona 822.5 X X

West Virginia 823.5 X X

Arkansas 888 X X

Louisiana 899 X X

South Carolina 911 X X

Montana 929 X X

Mississippi 930.5 X X

APPENDIX C. Ordered Means of State
MVTFR0.3

State Mean State Mean

Massachusetts 0.93089 Pennsylvania 1.11572

Rhode Island 0.98628 Georgia 1.11814

Connecticut 0.99251 Iowa 1.11848

New Jersey 1.00680 Kansas 1.14954

Minnesota 1.00698 Missouri 1.15028

New Hampshire 1.01171 Texas 1.15057

Washington 1.02839 North Carolina 1.15157

New York 1.03323 Oklahoma 1.16115

Vermont 1.03750 Alaska 1.16758

Maryland 1.04387 Florida 1.17696

Virginia 1.04642 Idaho 1.18068

Ohio 1.05361 Nevada 1.18609

California 1.05533 Tennessee 1.18959

District of Columbia 1.06438 Alabama 1.19343

Indiana 1.06527 New Mexico 1.19984

Michigan 1.06677 Kentucky 1.20055

Illinois 1.06683 Wyoming 1.20078

Wisconsin 1.06903 South Dakota 1.20568

Maine 1.07259 Arizona 1.21516

Utah 1.07988 West Virginia 1.22244

Oregon 1.09229 Arkansas 1.23954

Colorado 1.10110 Louisiana 1.24497

Hawaii 1.10266 South Carolina 1.24829

Delaware 1.10750 Montana 1.26889

North Dakota 1.10844 Mississippi 1.27436

Nebraska 1.10871
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APPENDIX D. Analysis of MVTFR0.3 with DC and ND Deleted

Table D1. Two-Way ANOVA Table for the Transformed MVTFRs with DC and ND Deleted

Source Degrees-of-Freedom Sums of Squares Mean Squares F Ratios P Values
State 48 6.35409 0.13238 162.51 0.000

Year 18 2.21012 0.12278 150.73 0.000

Error 864 0.70380 0.00081

Total 930 9.26801

ANOVA, analysis of variance; DC, District of Columbia; MVTFR, motor vehicle traffic fatality rates; ND, North Dakota.

APPENDIX E. WinBugs Code for Calculations Related to Table 4
# Ranking & Selection for k = 4 Populations

model {
for (i in 1:3) {

x1[i] ~ dnorm(m1,tau1)
x2[i] ~ dnorm(m2,tau2)
x3[i] ~ dnorm(m3,tau3)
x4[i] ~ dnorm(m4,tau4)

}
m1 ~ dnorm(a,b)
m2 ~ dnorm(a,b)
m3 ~ dnorm(a,b)
m4 ~ dnorm(a,b)
tau1 < − pow(sigma1,-2)
tau2 < − pow(sigma2,-2)
tau3 < − pow(sigma3,-2)
tau4 < − pow(sigma4,-2)
p1.2.3.4 < − step(m2-m1)*step(m3-m2)*step(m4-m3)
p1.2.4.3 < − step(m2-m1)*step(m4-m2)*step(m3-m4)
p1.3.2.4 < − step(m3-m1)*step(m2-m3)*step(m4-m2)
p1.3.4.2 < − step(m3-m1)*step(m4-m3)*step(m2-m4)
p1.4.2.3 < − step(m4-m1)*step(m2-m4)*step(m3-m2)
p1.4.3.2 < − step(m4-m1)*step(m3-m4)*step(m2-m3)
p2.1.3.4 < − step(m1-m2)*step(m3-m1)*step(m4-m3)
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p2.1.4.3 < − step(m1-m2)*step(m4-m1)*step(m3-m4)
p2.3.1.4 < − step(m3-m2)*step(m1-m3)*step(m4-m1)
p2.3.4.1 < − step(m3-m2)*step(m4-m3)*step(m1-m4)
p2.4.1.3 < − step(m4-m2)*step(m1-m4)*step(m3-m1)
p2.4.3.1 < − step(m4-m2)*step(m3-m4)*step(m1-m3)
p3.1.2.4 < − step(m1-m3)*step(m2-m1)*step(m4-m2)
p3.1.4.2 < − step(m1-m3)*step(m4-m1)*step(m2-m4)
p3.2.1.4 < − step(m2-m3)*step(m1-m2)*step(m4-m1)
p3.2.4.1 < − step(m2-m3)*step(m4-m2)*step(m1-m4)
p3.4.1.2 < − step(m4-m3)*step(m1-m4)*step(m2-m1)
p3.4.2.1 < − step(m4-m3)*step(m2-m4)*step(m1-m2)
p4.1.2.3 < − step(m1-m4)*step(m2-m1)*step(m3-m2)
p4.1.3.2 < − step(m1-m4)*step(m3-m1)*step(m2-m3)
p4.2.1.3 < − step(m2-m4)*step(m1-m2)*step(m3-m1)
p4.2.3.1 < − step(m2-m4)*step(m3-m2)*step(m1-m3)
p4.3.1.2 < − step(m3-m4)*step(m1-m3)*step(m2-m1)
p4.3.2.1 < − step(m3-m4)*step(m2-m3)*step(m1-m2)
P[1] < − p1.2.3.4
P[2] < − p1.2.4.3
p[3] < − p1.3.2.4
p[4] < − p1.3.4.2
p[5] < − p1.4.2.3
p[6] < − p1.4.3.2
p[7] < − p2.1.3.4
p[8] < − p2.1.4.3
p[9] < − p2.3.1.4
p[10] < − p2.3.4.1
p[11] < − p2.4.1.3
p[12] < − p2.4.3.1
p[13] < − p3.1.2.4
p[14] < − p3.1.4.2
p[15] < − p3.2.1.4
p[16] < − p3.2.4.1
p[17] < − p3.4.1.2
p[18] < − p3.4.2.1
p[19] < − p4.1.2.3
p[20] < − p4.1.3.2
p[21] < − p4.2.1.3
p[22] < − p4.2.3.1
p[23] < − p4.3.1.2
p[24] < − p4.3.2.1
p.sum < − sum(p[])

}
List(a = 0,b = 0.001,x1 = c(1,2,3),x2 = c(2,3,4),x3 = c(3,4,5),x4 = c(4,5,6),

sigma1 = 1,sigma2 = 1,sigma3 = 1,sigma4 = 1)
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APPENDIX F. R Code for Bayesian Simulations Described in the Bayesian Analysis of
MVTFR0.3 Section

#R-code for Bayesian simulations of MVTFRs^0.3
# k = number of populations; n = number of simulations
#sigma = model sd; m = number of years
k = 51; n = 1000000;sigma = 0.0322241; m = 19
#sigma value is estimate from two-way ANOVA of rate^0.3
#mu values are means of (rate^0.3)
x < −c(rep(0,k))
y < −c(rep(0,n))
z < −c(rep(0,n))
err < −sigma/sqrt(m)
mu < −c(1.19343,1.16758,1.21516,1.23954,1.05533,1.10110,0.99251,1.10750,
1.06438,1.17696,1.11814,1.10266,1.18068,1.06683,1.06527,1.11848,
1.14954,1.20055,1.24497,1.07259,1.04387,0.93089,1.06677,1.00698,
1.27436,1.15028,1.26889,1.10871,1.18609,1.01171,1.00680,1.19984,
1.03323,1.15157,1.10844,1.05361,1.16115,1.09229,1.11572,0.98628,
1.24829,1.20568,1.18959,1.15057,1.07988,1.03750,1.04642,1.02839,
1.22244,1.06903,1.20078)
for (i in 1:n) {
for (j in 1:k) {x[j] <−rnorm(1,mean = mu[j],sd = err)}
y[i] <−which.min(x)
z[i] <−which.max(x)

}
table(y)
table(z)
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