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Abstract. In this paper we study the automorphism groups of real curves
admitting a regular meromorphic function f of degree p, so called real

cyclic p-gonal curves. When p = 2 the automorphism groups of real

hyperelliptic curves where given by Bujalance et al. in [4].
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1. Introduction

Let p be a prime number. A closed Riemann surface X that can be realised as a
p-sheeted covering of the Riemann sphere (i.e the projective line) is called p-gonal,
and such a covering is called a p-gonal morphism. If the p-gonal morphism is a
regular cyclic covering the Riemann surface is called a cyclic p-gonal surface. For
p = 2 these surfaces are called hyperelliptic and the covering is induced by the
hyperelliptic involution. A p-gonal Riemann surface is called real p-gonal if there
is an anticonformal involution σ of X commuting with the p-gonal morphism.
p-gonal and real p-gonal Riemann surfaces have been extensively studied (see
[1,17,4,16,12,6,8,19,18,21,22,2,3]), specially hyperelliptic surfaces because of their
applications to codes and cryptography, see [11].

A Riemann surface X is cyclic p-gonal if and only if it is represented by an
algebraic curve given by an equation of the form

yp =
∏

(x− ai)...
∏

(x−mj)
p−1.

The projection (x, y) → x is the p-gonal morphism. Let ω = exp 2 iπ
p . The au-

tomorphism of X defined by (x, y) → (x, ωy) generates the deck-transformation
group of p-gonal morphism.

Let X be a Riemann surface of genus g ≥ 2. A symmetry σ of X is an
anticonformal involution of X. The topological type of the symmetry σ is given
by the number of connected components, ovals, in the fixed-point set Fix(σ) and
the orientability of the Klein surface X/〈σ〉. We say that a symmetry σ of a
Riemann surface X has species 0,+k or −k (we denote sp(σ) = 0, sp(σ) = +k,



respectively sp(σ) = +k) if σ has no fixed points, the fixed-point set of σ consists
of k separating ovals or the fixed-point set consists of k non-separating ovals
respectively. The quotient Klein surface X/〈σ〉 can be represented by a real curve
where each oval corresponds to a componet of the real curve. Each real curve is a
quotient X/〈σ〉 and two real curves are birationally equivalent (isomorphic) if and
only if they are quotients of a real Riemann surface X by conjugate symmetries in
Aut±(X). A Riemann surface equipped with a symmetry σ is called a symmetric
or real Riemann surface. A Riemann surface is a real Riemann surface if and
only if it is represented by an algebraic curve with real equation. The complex
conjugation induces a symmetry on the real Riemann surface.

The aim of this article is to give the automorphism groups of cyclic p-gonal
real curves for p an odd prime number. The case of hyperelliptic real curves was
done by Bujalance et al. [4]. First of all, a real curve C is the quotient a real
Riemann surface X by a symmetry σ in a determined conjugacy class of sym-
metries; real curves are in bijection with pairs (X,σ). To calculate the automor-
phism groups of real curves we use the extended automorphism groups Aut±(X)
of Riemann surfaces obtained by Bartolini-Costa-Izquierdo ([8]). Now, we shall
consider a representative σ of the conjugacy class of symmetries of X yielding C.
The automorphism group of the real curve is the normalizer of 〈σ〉 in Aut±(X).

2. Trigonal Real Riemann surfaces and Fuchsian and NEC groups

Let Xg be a compact Riemann surface of genus g ≥ 2. The surface Xg can be
represented as a quotient Xg = H/Γ+ of the hyperbolic plane H under the action
of a Fuchsian group Γ+, that is, a cocompact orientation-preserving subgroup
of the group G = Aut(H) of conformal and anticonformal automorphisms of H.
A discrete, cocompact subgroup Γ of Aut(D) is called an NEC (non-euclidean
crystallographic) group. The subgroup of Γ consisting of the orientation-preserving
elements is called the canonical Fuchsian subgroup of Γ. The algebraic structure
of an NEC group and the geometric and topological structure of its quotient
orbifold are given by the signature of Γ:

s(Γ) = (h;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}). (1)

The orbifold H/Γ has underlying surface of genus h, having r cone points and k
boundary components, each with sj ≥ 0 corner points, j = 1, . . . , k. The signs
′′+′′ and ′′−′′ correspond to orientable and non-orientable orbifolds respectively.
The integers mi are called the proper periods of Γ and they are the orders of the
cone points of H/Γ. The brackets (ni1, . . . , nisi) are the period cycles of Γ. The
integers nij are the link periods of Γ and the orders of the corner points of H/Γ.
The group Γ is called the (orbifold-) fundamental group of H/Γ.

A group Γ with signature (1) has a canonical presentation with generators:

x1, . . . , xr, e1, . . . , , ek, cij , 1 ≤ i ≤ k, 1 ≤ j ≤ si + 1
and a1, b1, . . . , ah, bh if H/Γ is orientable or d1, . . . , dh otherwise,

and relators:



xmi
i , i = 1, . . . , r, c2ij , (cij−1cij)

nij , ci0e
−1
i cisiei, i = 1, . . . , k, j = 2, . . . , si + 1

and x1...xre1...eka1b1a
−1
1 b−11 ...ahbha

−1
h b−1h or x1...xre1...ekd

2
1...d

2
h, according to

whether H/Γ is orientable or not.
The hyperbolic area of the orbifold H/Γ coincides with the hyperbolic area

of an arbitrary fundamental region of Γ and equals:

µ(Γ) = 2π

εh− 2 + k +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

) , (2)

where ε = 2 if there is a ′′+′′ sign and ε = 1 otherwise. If Γ′ is a subgroup of Γ of
finite index then Γ′ is an NEC group and the following Riemann-Hurwitz formula
holds:

[Γ : Γ′] = µ(Γ′)/µ(Γ). (3)

An NEC or Fuchsian group Γ without elliptic elements is called a surface
NEC or Fuchsian group, and it has signature (h;±; [−], {(−), k. . ., (−)}) or (h; [−]).
Given a Riemann (resp. Klein) surface represented as the orbifold X = H/Γ,
with Γ a surface Fuchsian (resp. NEC) group, a finite group G is a group of au-
tomorphisms of X if and only if there exists an NEC group ∆ and an epimor-
phism θ : ∆ → G with ker(θ) = Γ, see [5]. The NEC group ∆ is the lifting of
G to the universal covering π : H → H/Γ and is called the universal covering
transformations group of (X,G).

Definition 1. For a prime p, a real cyclic p-gonal Riemann surface is a triple
(X, f, σ) where σ is a symmetry of X, f is a cyclic p-gonal morphism and f ◦σ =
c ◦ f , and c is the complex conjugation.

Notice that by Lemma 2.1 in [1] the condition f ◦ σ = c ◦ f is automatically
satisfied for genera g ≥ (p− 1)2 + 1, since the p-gonal morphism is unique. From
now on, the genera will satisfy g ≥ (p−1)2+1; as a consequence of that, the group
Cp of deck-transformations of the p-gonal morphism, the group of p-gonality, is a
normal subgroup of Aut±(Xg), see [21] and [10].

If a (surface) Fuchsian group Γ+ uniformizes a real Riemann surface (complex
curve) X admitting a symmetry σ, then the NEC group Γ = 〈Γ+, σ〉 is the
uniformizing group of the Klein surface (real curve) X/σ.

We give now a characterization of real cyclic p-gonal Riemann surfaces repre-
sented by means of NEC groups. The following is a straightforward generalization
of the characterization theorems for real cyclic trigonal Riemann surfaces given
in [9], see also [10].

Theorem 1. 1) Let p be a prime number and let X be a Riemann surface with
genus g ≥ (p − 1)2 + 1. A Riemann surface X admits a meromorphic function
f such that (X, f) is a cyclic p-gonal Riemann surface if and only if there is a
Fuchsian group ∆+ with signature

(0, [p, p, u..., p]), (4)



with (p−1)(u−2) = 2g, and a normal surface subgroup Γ of index p in ∆+, such
that Γ uniformizes X.

2) Let p be a prime number and let X be a Riemann surface with genus
g ≥ (p−1)2+1. The surface X admits a symmetry σ and a meromorphic function
f such that (X, f, σ) is a real cyclic p-gonal Riemann surface if and only if there
is an NEC group ∆ with signature

(0,+, [p, p, u..., p], {(p, p, v..., p)}), (5)

where (p − 1)(2u + v − 2) = 2g, such that there is an epimorphism θ : ∆ → G,
with G isomorphic to either Dp = Cp o C2 =

〈
r, s : rp = s2 = rsrs = 1

〉
or

Cp × C2 =
〈
r, s : rp = s2 = rsr−1s = 1

〉
, where X is conformally equivalent to

H/ ker θ and ker θ is a surface Fuchsian group.

Remark 1. i) Observe that in the for real hyperelliptic curves there is only one
case since D2 = C2 × C2.

ii) In the case of C2p = 〈Cp, σ〉, then the signature 5 of the NEC group ∆
becomes (0,+, [p, p, u..., p], {(−)}), with (p − 1)(u − 1) = g; then the genus g is
even.

Remark 2. Let p be an odd prime number. Consider a real cyclic p-gonal Riemann
surface (X, f, σ) with p-gonality group Cp = 〈ϕ〉 where ϕ : (x, y)→ (x, ωy), with
ω = exp 2 iπ

p , and equation yp = p(x). In the case 〈ϕ, σ〉 = Dp, the symmetry

σ is defined by σ : (x, y) → (x, y) and yp = p(x) = p(x), that is p(x) is a
real polynomial. However, in the case 〈ϕ, σ〉 = C2p the symmetry σ becomes
σ : (x, y) → (x, y). thus we have yp = p(x) = p(x). Complex polynomials p(x)
satisfying p(x) = p(x) are not real in general.

The study of symmetry type of Riemann surfaces goes back to Klein. Let
(X, f, σ) be a real cyclic p-gonal Riemann surface. The p-gonality of X imposes
severe constrains on the type of symmetries X admits. For the case of real hy-
perelliptic Riemann surfaces the symmetry type was completely studied by Bu-
jalance et al [4] since they gave the list of automorphism groups of hyperelliptic
real curves depending on the ramification. In the case of an odd prime p we have:

Theorem 2. Let (X, f, σ) be a real cyclic p-gonal surface, with X of genus g ≥
(p − 1)2 + 1. Then the possible species of σ are: −1 or −p for odd genus g and
±p and ±1 for even genus g.

Proof. By Theorem 1, there exists an NEC group ∆ with signature

(0,+, [p, 3, u..., p], {(p, p, v..., p)}),

with (p − 1)(2u + v − 2) = 2g, and an epimorphism θ : ∆ → G, where G is
isomorphic to either Dp or C2p, and X is conformally equivalent to H/ ker θ, with
ker θ a surface Fuchsian group. We consider two cases:

Case 1. G = Dp = 〈r, s : rp = s2 = rsrs = 1〉. The species of σ is determined by
the signature of the group θ−1(〈s〉) = Λ since X/〈σ〉 = H/Λ. If there are periods,



they are odd, thus by [7], there is a unique conjugacy class of generating reflections
in Λ, so the species of σ is ±1. If there are no link periods and the connecting
generator e is mapped to the identity then the symmetry has p ovals (see [15]).
The sign in the species of σ is − if and only if there is a cycle (not a loop) of
odd length in the Schreier coset graph G of 〈s〉 in Dp given by the action θ of
∆ on the cosets

{
0 = [s]1 = [rs], . . . , p− 1 = [rp−1s]

}
whose edges are produced

by generators of ∆ that are orientation reversing transformations, see Theorem
2 of [14]. Such a cycle does exist if and only if at least one of the following three
conditions are satisfied:

1. The signature of ∆ contains proper periods,
2. The epimorphism θ maps the connecting generator e of ∆ to an element

different from the identity,
3. The generating reflections of ∆ are mapped by θ on more than two invo-

lutions of Dp.

If one of the above conditions is satisfied, the species of σ is −1. If none of the
conditions are satisfied, then u = 0, v ≡ 0 mod 2 in signature 5; the genus
(p− 1)(v − 2) = 2g of the surface X is even.

Case 2. G = C2p =
〈
r, s : rp = s2 = rsr−1s = 1

〉
. Again, the species of σ is deter-

mined by the signature of the group θ−1(〈s〉) = Λ. In this case the NEC group ∆
must have signature (0,+, [p, p, u..., p], {(−)}), with (p − 1)(u − 1) = g, and then
the surface X must have even genus. σ has is 1 oval if θ(e) 6= 1, and p ovals if
θ(e) = 1. Since the index of Λ in ∆ is p and so odd, the symmetry σ has sign +
in its species by Corollary 2 of [14].

Now we give examples of real cyclic p-gonal surfaces with desired species of the

symmetry. Let ∆ be an NEC group with signature (0,+, [p, p], {(p,
2(g−p+1)

p−1... , p)})
and consider the epimorphism

θ1 : ∆→
〈
r, s : rp = s2 = rsrs = 1

〉
,

defined by:

θ1(x1) = r, θ1(c1) = s, θ1(c2i) = sr, θ1(c2i+1) = s, θ1(e) = rε, θ1(x2) = rµ

such that θ1(c1e
−1c (2g−p+1)

p−1
e) = 1 and 1 + ε+ µ ≡ 0 mod p.

By Theorem 1, ker(θ1) uniformizes a real cyclic p-gonal surface with a sym-
metry of species −1.

Now consider an NEC group ∆ with signature (0,+, [−], {(p,
2(g+p−1)

p−1... , p)}),
with g ≡ 0 mod 2 and epimorphism

θ2 : ∆→
〈
r, s : r3 = s2 = rsrs = 1

〉
,

defined by:

θ2(c2i−1) = s, θ2(c2i) = sr, 1 ≤ i ≤ (g + p− 1)

p− 1
, θ2(e) = 1.



By Theorem 1, ker(θ2) uniformizes a real cyclic p-gonal surface with a symmetry
of species +1.

Consider now NEC groups with signature

(0,+, [p, p,
(g+p−1)

p−1... , p], {(−)}),

with g ≡ 0 mod 2, and epimorphisms θ3 : ∆ → Dp sending the generating
reflection c of ∆ to s and the generating elliptic elements to suitable powers of
r such that the the generator e is sent to the identity. By Theorem 1, ker(θ2)
uniformizes a real cyclic p-gonal surface with a symmetry of species −p.

Finally consider NEC groups with signature

(0,+, [p, p,
(g+p−1)

p−1... , p], {(−)}),

with g ≡ 0 mod 2, and epimorphisms θ3 : ∆ → C2p sending the generating
reflection c of ∆ to s and the generating elliptic elements to suitable powers of
r such that the the generator e is sent to either the identity, or e is sent to a
power of r. By Theorem 1, ker(θ3) uniformizes a real cyclic p-gonal surface with
a symmetry with desired species

3. Automorphism Groups of Real Curves

Since 2001 Bujalance et al, Kontogeorgis, Wootton, Shaska, Sanjeewa and others
have studied the groups of automorphisms of cyclic p-gonal Riemann surfaces
allowing to find defining equations of the curves, see [4,16,12,19,21,22,18,17,6,8].
Gutierrez-Sevilla and Shaska [12] found rational models of hyperelliptic curves.
Shaska and Thompson [20] have studied sub loci of hyperelliptic curves of genus
3.

In 2001 Bujalance et al [4] gave the automorphism groups of hyperelliptic real
curves. The gave:

1. list of all groups which act as the full group Aut±(X) of real hyperelliptic
Riemann surfaces X of genus g ≥ 2

2. the classification of the symmetry types of all compact hyperelliptic Rie-
mann surfaces of genus g ≥ 2

3. explicit polynomial equations and explicit formulae for the hyperelliptic
real curves in each symmetry class.

In the sequel p is an odd prime integer and the genus g ≥ (p − 1)2 + 1.
Consider a real curve C of genus g which is cyclic p-gonal, that is, the real curve
C can be considered to be the quotient X/〈σ〉 of a real cyclic p-gonal Riemann
surface X by a symmetry σ of X in a given conjugacy class of symmetries in
Aut±(X). As we say above the automorphism group of the real curve C is given
by the (conformal and anticonformal) automorphisms of X commuting with the
symmetry σ, that is the normalizer in Aut±(X) of 〈σ〉.

Given a real cyclic p-gonal surface (X, f, σ), we shall call ±-automorphism
group to the group Aut±(X) of conformal and anticonformal automorphisms of



X. We want to find the groups of automorphisms of real cyclic p-gonal Riemann
surfaces. As for the case of groups of conformal automorphisms of p-gonal Rie-
mann surfaces we have (see [8]):

Lemma 1. Let (X, f, σ) be a real cyclic p-gonal Riemann surface such that the
p-gonality group is normal in Aut±(X). Then Aut±(X) is an extension of Cp by
a group of conformal and anticonformal automorphisms of the Riemann sphere.

The group of ±-automorphisms of real p-gonal Riemann surfaces are known
and classified according to spherical group of automorphisms of the quotient of
the surface by the group of p-gonality (see [10]). A finite group Ḡ of conformal
and anticonformal automorphisms of the Riemann sphere is a subgroup of:

Dq, Cq × C2, Dq o C2, A4 × C2, Σ4, Σ4 × C2, A5 × C2.

The following theorem gives the ±-automorphism groups of real cyclic p-gonal
Riemann surfaces

Theorem 3 ([8]). Let (Xg, f, σ) be a real cyclic p-gonal Riemann surface with p
an odd prime integer, g ≥ (p − 1)2 + 1. If the p-gonality group of Xg is 〈ϕ〉 and
Ḡ = Aut±(Xg)/〈ϕ〉 then the possible ±-automorphisms groups of Xg are

1. Cpq × C2 if 〈ϕ, σ〉 = C2p.
Dpq if 〈ϕ, σ〉 = Dp

2. Dpq o C2, where o means any possible semidirect product (including the
direct product).

3. (CpoCq)oC2, where o means any possible semidirect product (including
the direct product).

4. (CpoDq)oC2, where o means any possible semidirect product (including
the direct product).

5. Cp o2 Σ4Dp ×A4, Dp × Σ4, Dp ×A5 if 〈ϕ, σ〉 = Dp

Cp × Σ4, C2p ×A4, C2p × Σ4, C2p ×A5 if 〈ϕ, σ〉 = C2p

6. Exceptional Case 1. ((C2×C2)o3 C9)o2 C2 for p = 3 and Ḡ = Σ4 where
〈ϕ, σ〉 = Dp

((C2 × C2) o3 C9)× C2 for p = 3 and Ḡ = A4 × C2 where 〈ϕ, σ〉 = C2p

7. Exceptional Case 2. (Cp×C2×C2)o3 C6 for p ≡ 1 mod 6, Ḡ = A4×C2

and 〈ϕ, σ〉 = C2p

8. Exceptional Case 3. (((C2 × C2) o3 C9) o2 C2) × C2 for p = 3 and Ḡ =
Σ4 × C2.

Now, one can calculate the automorphism groups of p-gonal real curves. Let
C be the p-gonal real curve associated to a real cyclic p-gonal Riemann surface
(X, f, σ) with symmetry σ. The automorphism group of the real curve C consists
of the (conformal and anticonformal) automorphisms of X commuting with the
symmetry σ, that is the normalizer in Aut±(X) of 〈σ〉, NG(〈σ〉).

Then the symmetry type and the automorphism group of C are studied below
according to G = Aut±(X):



1. Case 1a G = Cpq×C2 = 〈ϕ̂, σ〉. In this case there is one class of symmetries
(one real curve)(with representative σ) if q ≡ 1 mod 2, and two classes of
symmetries - two real curves- (with representatives σ and τ = σϕ̂pq/2) if
q ≡ 0 mod 2. In both cases the automorphism group of the corresponding
real curves is the whole group G = Cpq × C2 = NG(〈ϕ, σ〉) = NG(〈ϕ, τ〉)

2. Case 1b Dpq = 〈ϕ̂, σ〉. Again, X has one or two classes of symmetries
according to wether q is odd or even respectively (the representatives are
σ and τ = σϕ̂). The automorphisms groups of the real curves associated
to (X,σ) and (X, τ) equal Dp = NG(〈ϕ, σ〉) = NG(〈ϕ, τ〉)

3. Case 2a G = Dpq × C2 = 〈ϕ̂, ρ〉 × 〈σ〉, where q ≡ 1 mod 2. There are
two classes of symmetries (two real curves) with representatives σ and
τ = σρ. The real curve associated to (X,σ) has automorphism group
G = NG(〈ϕ, σ〉), and the real curve associated to (X, τ) has automorphism
group Dp = NG(〈ϕ, τ〉).

4. Case 2b G = Dpq × C2 = 〈ϕ̂, ρ〉 × 〈σ〉, where q ≡ 0 mod 2. There
are four classes of symmetries (four real curves) with representatives
σ, σϕ̂pq/2, τ1 = σρ and τ2 = σρϕ̂. The real curves associated to
(X,σ) and (X,σϕ̂pq/2) have automorphism group G = NG(〈ϕ, σ〉) =
NG(〈ϕ, σϕ̂pq/2〉). The real curves associated to (X,σρ) and (X,σρϕ̂) have
autoharphism group Dp = NG(〈ϕ, τ1〉) = NG(〈ϕ, τ2〉).

5. Case 2c G = Dpq o C2 = 〈ϕ̂, ρ, σ |ϕ̂p = ρ2 = σ2 = (ϕ̂pρ)2 = (ϕ̂pσ)2 =
σρσρϕ̂−j = 1〉. Using elementary group theory we get that the symmetries
are σϕt, 0 ≤ t ≤ p − 1 and σρϕ̂j/2. All the symmetries σϕt, 0 ≤ t ≤
p− 1 are conjugate. The real curve associate to their conjugacy class has
sutomorphism group G = NG(〈ϕ, σ〉). The symmetry σρϕ̂j/2 is central in
G, thus the automorphism group of the real curve given by (X,σρϕ̂j/2) is
the whole G = Dpq o C2.

6. Case 3a G = (Cp o Cq) × C2 = 〈ϕ, α |ϕp = αq = α−1ϕαϕ−i = 1〉 × 〈σ〉.
(id ≡ 1 mod p where d = mcd(q, p− 1)). By elementary group theory one
obtains that, if q ≡ 1 mod 2, the only symmetry is σ. In this case the
automorphism group of the real curve is G = NG(〈ϕ, σ〉). Now, let q ≡ 0
mod 2. If i = −1 and q ≡ 2 mod 4 the only symmetries are σ and σαq/2,
they are not conjugate so they induce two non-equivalent real curves, both
with automorphism group the whole group G. If i 6= −1 or q ≡ 0 mod 4
there are three symmetries: σ, σαq/2 and σαq/2ϕh, with h the solution of
h(iq/2 + 1 ≡ 1modp. Moreover, the symmetries σαq/2 and σαq/2ϕh are
non-conjugate if and only if i = 1 or i = −1 and q ≡ 0 mod 4. In any case
the automorphism group of the corresponding real curve is the group G.

7. Case 3b G = (Cp o Cq) o C2 = 〈ϕ, α |ϕp = αq = α−1ϕαϕ−i = 1〉 o 〈σ〉
with id ≡ 1 mod p where d = mcd(q, p − 1). First of all there are three
remaining possible cases for the action of σ on ϕ and α:

(a) σϕσ = ϕ−1, σασ = α. Using elementary group theory one obtains
that the only symmetries are σϕt, 0 ≤ t ≤ p − 1, all them in the



conjugate to each other. The automorphism group of the real curve is
G = NG(〈ϕ, σ〉).

(b) σϕσ = ϕ−1, σασ = α−1. Using elementary group theory one obtains
that the symmetries are σαr, 0 ≤ r ≤ q− 1, and σαr0ϕt, 0 ≤ t ≤ p− 1,
where r0 6= 0 is such that ir0 ≡ −1 mod p. Now, for even q, there
are two conjugacy classes of symmetries in G with representatives σ
and σα. The automorphism groups of both real curves coincide and
equal Dp o C2 = NG(〈ϕ, σ〉) = NG(〈ϕ, σα〉) (the product maybe a
direct product). For odd q, there is a unique class of symmetries in
G with representative σ The automorphism group of the real curve is
Dp = NG(〈ϕ, σ〉).

(c) σϕσ = ϕ, σασ = α−1. Using elementary group theory one obtains
that the symmetries are σαr, 0 ≤ r ≤ q− 1, and σαr0ϕt, 0 ≤ t ≤ p− 1,
where r0 6= 0 is such that ir0 ≡ −1 mod p. Now, for even q, there
are two conjugacy classes of symmetries in G with representatives σ
and σα. The automorphism groups of both real curves coincide and
equal C2p o C2 = NG(〈ϕ, σ〉) = NG(〈ϕ, σα〉) (the product maybe a
direct product). For odd q, there is a unique class of symmetries in
G with representative σ The automorphism group of the real curve is
C2p = NG(〈ϕ, σ〉).

8. Case 4a G = (Cp o Dq) × C2 = 〈ϕ, α ρ |ϕp = αq = ρ2 = α−1ϕαϕ−i =
(ρα)2 = ρϕρϕ±1 = 1〉 × 〈σ〉 with id ≡ 1 mod p where d = mcd(q, p − 1).
We divide the case in subcases according to the action of ρ on ϕ:

(a) G = (Cp oDq)× C2 = 〈ϕ, α ρ |ϕp = αq = ρ2 = α−1ϕαϕ−i = (ρα)2 =
ρϕρϕ−1 = 1〉 × 〈σ〉. σ is a central symmetry in G, σραr, 0 ≤ r ≤ q − 1
are symmetries as well. For semidirect products such that there are r0
such that ir0 ≡ −1 mod p the elements σραr0ϕt, 1 ≤ t ≤ p−1 are also
symmetries.
For q ≡ 1 mod 2 the above are the only symmetries. The group G
contains two classes of symmetries, the central symmetry σ and the
conjugacy class of σρ. The automorphism groups of the corresponding
real curves are G = NG(〈ϕ, σ〉) and C2p × C2 = NG(〈ϕ, σρ〉).
For q ≡ 0 mod 2 In this case the symmetries are the ones listed above
together with σαq/2 and, if p ≡ 1 mod q (equivalently iq/2 ≡ −1
mod p), also σαq/2ϕt, 0 ≤ t ≤ p− 1. These last symmetries, if they do
exist, are conjugate to σαq/2. The group G contains four classes of sym-
metries, the central symmetry σ and the conjugacy classes with repre-
sentatives σρ, σρα and σαq/2. The automorphism groups of the corre-
sponding real curves are G = NG(〈ϕ, σ〉) and C2p×C2 = NG(〈ϕ, σρ〉) =
NG(〈ϕ, σρα〉) and G = NG(〈ϕ, σαq/2〉).

(b) G = (Cp oDq)× C2 = 〈ϕ, α ρ |ϕp = αq = ρ2 = α−1ϕαϕ−i = (ρα)2 =
(ρϕρϕ)2 = 1〉 × 〈σ〉. we can assume that i 6= −1, since in that case
we are in the conditions of Case 4a. σ is a central symmetry in G,
σραr, 0 ≤ r ≤ q − 1 and σραr0ϕt, 1 ≤ t ≤ p − 1 with r0 such that
ir0 ≡ 1 mod p (for instance r0 = 0) are also symmetries.



For q ≡ 1 mod 2 the above are the only symmetries. The group G
contains two classes of symmetries, the central symmetry σ and the
conjugacy class of σρ. The automorphism groups of the corresponding
real curves are G = NG(〈ϕ, σ〉) and Dp × C2 = NG(〈ϕ, σρ〉).
For q ≡ 0 mod 2 In this case the symmetries are the ones listed above
together with σαq/2 and, if p ≡ 1 mod q (equivalently iq/2 ≡ −1
mod p), also σαq/2ϕt, 0 ≤ t ≤ p− 1. These last symmetries, if they do
exist, are conjugate to σαq/2. The group G contains four classes of sym-
metries, the central symmetry σ and the conjugacy classes with repre-
sentatives σρ, σρα and σαq/2. The automorphism groups of the corre-
sponding real curves are G = NG(〈ϕ, σ〉) and Dp×C2 = NG(〈ϕ, σρ〉) =
NG(〈ϕ, σρα〉) and G = NG(〈ϕ, σαq/2〉).

9. Case 4b G = (Cp o Dq) o C2 = 〈ϕ, α ρ, σ |ϕp = αq = ρ2 = σ2 =
α−1ϕαϕ−i = (ρα)2 = ρϕρϕ−1 = (σϕ)2 = 1, σρσ = ραk, σασ = αj〉, with
j = ±1, id ≡ 1 mod p where d = mcd(q, p − 1). We can assume that ρ
and ϕ commute, otherwise we choose σρ as generator of Dq. As σ2ρσ2 = ρ
we get that k(1 + j) ≡ 0 mod q. So either j = −1 or j = 1, k = 0; or
j = 1, k = q/2 if q ≡ 0 mod 2.
We divide the case in subcases according to the action of σ on 〈ρ, α〉:

(a) Case j = −1 The group G = (Cp o Dq) o C2 = 〈ϕ, α ρ, σ |ϕp =
αq = ρ2 = σ2 = α−1ϕαϕ−i = (ρα)2 = ρϕρϕ−1 = (σϕ)2 = 1, σρσ =
ραk, (σα)2 = 1〉. The symmetries are σ, σαr, 0 ≤ r ≤ q−1, σαr0ϕt, 1 ≤
t ≤ p − 1, where r0 satisfies that ir0 ≡ 1 mod p. For q ≡ 1 mod 2,
let k/2 denote the solution of 2s ≡ k mod q, for q ≡ 0 mod 2 the
parameter k is even. Then the remaining symmetries are σραk/2 and, if
ik/2 ≡ 1 mod p, the involutions σραk/2ϕt, 1 ≤ t ≤ p−1. There are two
conjugacy clases of symmetries if q ≡ 1 mod 2; with representatives σ
and σραk/2. The automorphism groups of the corresponding real curves
are G = NG(〈ϕ, σραk/2〉) and Dp o C2 = NG(〈ϕ, σ〉). For q ≡ 0mod
there are three conjugacy classes of symmetries with representatives σ,
σα and σραk/2. The automorphism groups of the corresponding curves
are G = NG(〈ϕ, σραk/2〉) and Dp o C2 = NG(〈ϕ, σ〉) = NG(〈ϕ, σα〉).

(b) Case j = 1, k = 0. The group G = (Cp oDq) o C2 = 〈ϕ, α ρ, σ |ϕp =
αq = ρ2 = σ2 = α−1ϕαϕ−i = (ρα)2 = ρϕρϕ−1 = (σϕ)2 =
1 = (σρ)2, σασ = α〉. The symmetries are σ, σραr, 0 ≤ r ≤ q −
1, σραr0ϕt, 1 ≤ t ≤ p−1, where r0 satisfies that ir0 ≡ 1 mod p. For q ≡
1 mod 2, let q/2 = 0 . Then the remaining symmetries are σαq/2 and, if
iq/2 ≡ 1 mod p, the involutions σαk/2ϕt, 1 ≤ t ≤ p− 1. There are two
conjugacy clases of symmetries if q ≡ 1 mod 2; with representatives
σ and σρ. The automorphism groups of the corresponding real curves
are G = NG(〈ϕ, σ〉) and D2p o C2 = NG(〈ϕ, σρ〉). For q ≡ 0 mod 2
there are three conjugacy classes of symmetries with representatives σ,
σρ, σαq/2. The automorphism groups of the corresponding curves are
G = NG(〈ϕ, σαq/2〉) and D2p o C2 = NG(〈ϕ, σ〉) = NG(〈ϕ, σα〉).



(c) Case q ≡ 0 mod 2, j = 1, k = q/2. We have the groupG = (CpoDq)o
C2 = 〈ϕ, α ρ, σ |ϕp = αq = ρ2 = σ2 = α−1ϕαϕ−i = (ρα)2 = ρϕρϕ−1 =
(σϕ)2 = 1, σρσ = ραq/2, σασ = α〉. In this case the symmetries are
σ, σαq/2 and, if iq/2 ≡ 1 mod p also σαk/2ϕt, 1 ≤ t ≤ p − 1. All the
symmetries are conjugate and the automorphism group of the real curve
is Dp o Cq = NG(〈ϕ, σ〉).

10. Case 4c G = (Cp o Dq) o C2 = 〈ϕ, α ρ, σ |ϕp = αq = ρ2 = σ2 =
α−1ϕαϕ−i = (ρα)2 = ρϕρϕ±1 = σϕσϕ−1 = 1, σρσ = ραk, σασ = αj〉,
with j = ±1, id ≡ 1 mod p where d = mcd(q, p − 1). As σ2ρσ2 = ρ
we get that k(1 + j) ≡ 0 mod q. So either j = −1 or j = 1, k = 0; or
j = 1, k = q/2 if q ≡ 0 mod 2.
We divide the case in subcases according to the action of σ on 〈ρ, α〉:

(a) Case j = −1 The group G = (Cp oDq) o C2 = 〈ϕ, α ρ, σ |ϕp = αq =
ρ2 = σ2 = α−1ϕαϕ−i = (ρα)2 = ρϕρϕ±1 = sigmaϕσϕ−1 = 1, σρσ =
ραk, (σα)2 = 1〉. The symmetries are σ, σαr, 0 ≤ r ≤ q−1, σαr0ϕt, 1 ≤
t ≤ p − 1, where r0 satisfies that ir0 ≡ −1 mod p. For q ≡ 1 mod 2,
let k/2 denote the solution of 2s ≡ k mod q, for q ≡ 0 mod 2 the
parameter k is even. Then the remaining symmetries are σραk/2 and,
for the semidirect products satisfiyng either ik/2 ≡ 1 mod p if ρϕρ = ϕ
or ik/2 ≡ −1 mod p if ρϕρ = ϕ−1, the involutions σραk/2ϕt, 1 ≤
t ≤ p − 1. There are two conjugacy clases of symmetries if q ≡ 1
mod 2; with representatives σ and σραk/2. The automorphism groups
of the corresponding real curves are G = NG(〈ϕ, σραk/2〉) and C2p o
C2 = NG(〈ϕ, σ〉). For q ≡ 0mod there are three conjugacy classes of
symmetries with representatives σ, σα and σραk/2. The automorphism
groups of the corresponding curves are G = NG(〈ϕ, σραk/2〉) and C2po
C2 = NG(〈ϕ, σ〉) = NG(〈ϕ, σα〉).

(b) Case j = 1, k = 0. This case is Case 4a, where σ is central in G.

(c) Case q ≡ 0 mod 2, j = 1, k = q/2. We have the groupG = (CpoDq)o
C2 = 〈ϕ, α ρ, σ |ϕp = αq = ρ2 = σ2 = α−1ϕαϕ−i = (ρα)2 = ρϕρϕ−1 =
(σϕ)2 = 1, σρσ = ραq/2, σασ = α〉. In this case the symmetries are
σ, σαq/2 and, if iq/2 ≡ 1 mod p also σαk/2ϕt, 1 ≤ t ≤ p − 1. All the
symmetries are conjugate and the automorphism group of the real curve
is C2p o Cq = NG(〈ϕ, σ〉).

11. Case 5. The ±−automorphism group G = Aut±(X) of the real Riemann
surface X is one of Cp o2 Σ4, Dp ×A4, Dp × Σ4, Dp ×A5 if 〈ϕ, σ〉 = Dp,
or Cp × Σ4, C2p ×A4, C2p × Σ4, C2p ×A5 if 〈ϕ, σ〉 = C2p.

(a) There is one conjugacy class of symmetries in G = Aut±(X) =
Cp o2 Σ4 = 〈ϕ〉 o2 Σ4, with Σ4 = 〈τ, α |α3 = τ2 = ατ4 = 1〉; with
representative τ . The automorphism group of these real curves equals
Cp × C2 × C2 × C2.

(b) There are two conjugacy classes of symmetries in G = Aut±(X) =
Dp × A4 or G = C2p × A4, with A4 = 〈τ, α |α3 = τ2 = ατ3 = 1〉, with



representatives σ and στ . The automorphism groups of the correspond-
ing real curves are either G for the real curve associated to the symme-
try σ and C2p×C2×C2 if 〈ϕ, σ〉 = C2p, or Dp×C2×C2 if 〈ϕ, σ〉 = Dp

for real curves given by the conjugacy class of the symmetry στ .
(c) There are two conjugacy classes of symmetries in G = Aut±(X) =
Dp × A5 or G = C2p × A5, with A5 = 〈τ, α |α5 = τ2 = ατ3 = 1〉,
with representatives σ and στ .. The automorphism groups of the cor-
responding real curves are either G for the real curve associated to the
symmetry σ and C2p × C2 if 〈ϕ, σ〉 = C2p, or Dp × C2 if 〈ϕ, σ〉 = Dp

for real curves given by the conjugacy class of the symmetry στ .
(d) There are three conjugacy classes of symmetries in G = Aut±(X) =
Dp × Σ4 or G = C2p × Σ4, with Σ4 = 〈τ, α |α3 = τ2 = ατ4 = 1〉, the
conjugacy classes have representatives σ, στ and σ(τα)2. The automor-
phism groups of the corresponding real curves are either G for the real
curve associated to the central symmetry σ and C2p × C2 × C2 × C2 if
〈ϕ, σ〉 = C2p, or Dp ×C2 ×C2 ×C2 if 〈ϕ, σ〉 = Dp for real curves given
by the conjugacy classes of the symmetries στ and σ(τα)2.

12. Exceptional Case 1. The ±-automorphism group is G = ((C2 × C2) o3

C9) o2 C2 = ((〈τ1, τ2〉) o3 〈ϕ̂〉) o2 〈σ〉 for p = 3 and Ḡ = Σ4 where
〈ϕ, σ〉 = Dp or G = ((C2 ×C2) o3 C9)×C2 = ((〈τ1, τ2〉) o3 〈ϕ̂〉)× 〈σ〉 for
p = 3 and Ḡ = A4 × C2 where 〈ϕ, σ〉 = C2p

In the first case the group G has two conjugacy classes of symmetries
with representatives σ and σϕ̂3τ1. Real curves given by the symmetry
σ have automorphism group D3 × C2 × C2 = NG(〈ϕ̂3, σ〉); real curves
given by the symmetry σϕ̂3τ1 have automorphism group (C6×C2)oC2 =
NG(〈ϕ̂3, σϕ̂3τ1〉).
In the second case the group G has two conjugacy classes of symmetries
with representatives σ (central symmetry) and στ1. Real curves given by
the central symmetry σ have automorphism group G = NG(〈ϕ̂3, σ〉); real
curves given by the symmetry στ1 have automorphism group (C6 ×C2)×
C2 = NG(〈ϕ̂3, στ1〉).

13. Exceptional Case 2. G = (Cp×C2×C2)o3C6 = 〈ϕ, τ1, τ2〉o3 〈α〉, σ = α3

for p ≡ 1 mod 6, Ḡ = A4 × C2 and 〈ϕ, σ〉 = C2p. Again G two conjugacy
classes of symmetries, the central symmetry σ and the conjugacy class
with representative στ1. Real curves given by the central symmetry σ have
automorphism group G = NG(〈ϕ, σ〉); real curves given by the symmetry
στ1 have automorphism group (Cp × C2)× C2 × C2 = NG(〈ϕ, στ1〉).

14. Exceptional Case 3. G = (((C2 × C2) o3 C9) o2 C2) × C2 = ((〈τ1, τ2〉 o3

〈ϕ̂〉) o2 〈α〉)× 〈σ〉 for p = 3 and Ḡ = Σ4 × C2. There are three conjugacy
classes of symmetries in G,with representatives σ, σα and σαϕ̂3τ1. The
automorphism groups of the corresponding real curves are either G for
the real curve associated to the central symmetry σ, (C6 ×C2 ×C2) oC2

for real curves given by the conjugacy class of the symmetry σαϕ̂3τ1, and
D3 × C2 × C2 × C2 for real curves given by the conjugacy class of the
symmetry σα.



Notice that as in the case of real hyperelliptic surfaces to provide defining

equations one has to look not only to the automorphism groups but also to the

ramification of the p-gonal morphism. When calculating equations of p-gonal Rie-

mann surfaces the ramification set on the sphere was invariant by the complex

conjugation, in other words, the equations already found are equations for the

real sublocus of the p-gonal locus.
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